GB2157676A - Forehearths - Google Patents

Forehearths Download PDF

Info

Publication number
GB2157676A
GB2157676A GB08508566A GB8508566A GB2157676A GB 2157676 A GB2157676 A GB 2157676A GB 08508566 A GB08508566 A GB 08508566A GB 8508566 A GB8508566 A GB 8508566A GB 2157676 A GB2157676 A GB 2157676A
Authority
GB
United Kingdom
Prior art keywords
channel
aforehearth
heating
electrical
heating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08508566A
Other versions
GB2157676B (en
GB8508566D0 (en
Inventor
Frederick Scarfe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electroglass Ltd
Original Assignee
Electroglass Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electroglass Ltd filed Critical Electroglass Ltd
Publication of GB8508566D0 publication Critical patent/GB8508566D0/en
Priority to US06/749,445 priority Critical patent/US4622678A/en
Priority to AT85304782T priority patent/ATE36511T1/en
Priority to EP85304782A priority patent/EP0167402B1/en
Priority to DE8585304782T priority patent/DE3564419D1/en
Publication of GB2157676A publication Critical patent/GB2157676A/en
Application granted granted Critical
Publication of GB2157676B publication Critical patent/GB2157676B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means

Abstract

A forehearth having a delivery channel 2 for a molten liquid (e.g. glass) 1, provided with a channel ceiling 11 of an insulating refractory ceramic fibre material and with electrical heating means 6, is capable of greatly increased efficiency in energy usage relative to conventional gas-fired forehearths. <IMAGE>

Description

1 GB 2 157 676 A 1
SPECIFICATION
Forehearths This invention re I ates to fore hearths, in p a rticu I a r to forehearths provided with electrical heating means.
Forehearths are used, particularly in glass produc tion, as heated conduits through which molten fluid, e.g. glass or metal, may flow to forming apparatus.
In general, a forehearth comprises a channel 75 resistantto the molten fluid and provided with heating means, such as gas burners arranged above and along the sides of the channel, to maintain the fluid in its molten state and to bring it to the correct temperature for delivery to the forming apparatus.
With conventional gas-heated forehearths it is generally necessary to provide cooling means, such as a forced cold air-flow, to prevent the molten fluid e,g. glass, in the delivery channel from overheating orto condition the fluid to the desired outlet temperature. The cooling means are required since the gas supply to the burners cannot be reduced significantly without causing serious non-uniformity of the radiative heating of the fluid in the channel and/or causing the burner flames to cut out with the consequent risk of explosion. Non-uniformity of radiative heating arises as the gas supply is reduced since the flame length is also reduced and maximum temperature sections of the refractive channel ceil ing move towards the burners which are generally arranged along the channel sides. Thus the use of such forehearths involves a high energy wastage.
We have now found that a reduction in forehearth energy expenditure by up to about 93% can be achieved by the use of the combination of ceramic fibre based refractive insulating material for the channel ceiling and of electrical heating for the forehearth delivery channel.
According to one aspect of the present invention we thus provide a forehearth having a molten liquid delivery channel, e.g. a molten glass delivery chan nel, with disposed thereover a channel ceiling member of insulating refractory ceramic fibre mate rial and a electrical heating means arranged to heat molten fluid travelling along said channel.
The refractory ceramiefibre based insulating material from which the delivery channel ceiling, or at leastthat part of the channel roof thatfaces into the channel, is formed is generally unsuitale for use with conventional gas burners since the air turbu lance resulting from the flame jets causes the fibrous insulating material to be eroded. Furthermore, using electrical heating means a particular uniformity in roof and/or molten liquid temperature can be main tained even when the heat output of the heating means is increased or decreased. Thus it becomes no longer essential to provide the forehearth with the forced draught cold air inlets required in conven tional foreheaths.
If it is desired, the heating means in the forehearth of the invention may be adapted to provide regions of greater or lesser heating effect to increase the uniformity of molten liquid temperature across the channel. In general, the molten liquid in the fore hearth delivery channel will be cooler towards the channel sides and the heating means is adapted to provide a greater heating effect at the channel sides. Forehearths provided with such adapted heating means are described in our copending patent appli- cation no. 8417117.
Particularly suitably, the electrical heating means in the forehearth of the invention may be in the form of a plurality of heating elements such as silicon carbide tubes or rods. To create a region of enhanced heating effect in such tubes, an elongate aperture, for example a helical cut, may be formed along the tube surface to reduce the cross-sectional area of the path through which electrical current may flow along the tube and thus increase electrical resistance and the heating effect in the apertured section of the tube. A heating element with "hot" regions, i.e. regions of enhanced heating effect,on either side of a central "cold" region may thus take the form of a tubular element having helical aper- tures in the tube surface on either side of a central tube portion in which either no helical aperture appears or in which the helix frequency (i.e. the number of turns per unit length) is reduced.
Where a sharp distinction between "hot" and "cold" regions is not desired, the helix freqency can be varied gradually to be greater in those regions requiring greater heating. Alternatively regions of enhanced heating effect can be achieved by reducing the cross- sectional area of the silicon carbide tube or rod in the areas where enhanced heating is required. Again the change-over to areas of reduced cross-sectional area (the---hot-regions) may be gradual or sharp.
As a further alternative "hoV and "cold" regions of the heating element may be achieved by varying the chemical composition along the element to achieve a variation in resistivity.
Electrical heating elements having different relative lengths of the "hot" and "cold" regions can thus readily be formed thereby allowing a great variation in the preferential heating effects to be achieved. Thus for example in certain forehearths the extra heating required at the channel sides is asymmetric. In such cases heating elements having suitably asymmetric regions of enhanced heating effect can be employed.
It is particularly preferred howeverthat the heating elements used in the forehearths of the invention shall have the same overall resistance as and so be readily interchangeable with standard heating elements of uniform heating effect.
The forehearths of the invention may comprise several electrical heating elements disposed above and extending across at least a major part of the molten liquid delivery channel. The successive heating elements underneath which the molten fluid passes as it moves along the channel may be elements providing uniform heating effect along their length or, if preferential channel side heating is desired, some or all may have the same or different relative hot and cold regions according to the extent of preferential channel side heating required. A preferred arrangement of preferential electrical heating elements however is one in which the relative size of the central cold region increases along the 2 GB 2 157 676 A 2 direction of flow of the fluid to enable the cooling at the channel sides to be tackled more vigorously as the fluid approaches the forehearth outlet or spout.
The regions of preferential heating in the fore hearths of the invention may be well defined and do not vary with the current passing through the heating elements. This contrasts with the heating effect of gas burners in conventional forehearths where with a reduction in gas supply the flame lengths shorten and the most radiant regions of the refractory ceiling to the channel move towards the channel sides.
A further advantage of the use according to the invention of electrical heating elements rather than gas heating in forehearths is that it permits the refractory ceiling to the channel to be positioned at a lower height above the channel thus allowing the ---hot-regions of the ceiling to have a more localised heating effect on the fluid in the channel below. The ceramic fibre material used for the ceiling member in the forehearths of the invention is preferably light weight and suitably is such as to be capable of withstanding temperatures of up to 1300'C and preferably up to at least 11500'C. The fibres may be of any ceramic material capable of withstanding these 90 temperatures but preferably are of alumina or zirconia, optionally in admixture with silica.
Preferably the ceiling member has a density of 0.1 to 0.5, especially preferably about 0.25, g/CM3 and comprises alumina fibres vacuum formed with a binder. Such a material is commercially available as ---1600grade board---. Such lightweight ceramic fibre materials allow a channel ceiling to be constructed with a thermal mass of as low as aout 10% of that of the conventional gas heated forehearths. This reduc tion in thermal mass permits much faster response speeds and allows a greater precision in tempera ture control. In turn this allows glass of increased temperature uniformity to be delivered to the form ing apparatus.
As the weight of glass is closely related to its temperature on delivery to the forming apparatus, improved temperature control results in improved product weight control and a lower rate of rejection of products for being overweight or underweight.
Preferred embodiments of the present invention will now be described by way of example and with reference to the accompanying drawings, in which:
Figure 1 is a cross-sectional view of a conventional gas heated forehearth; Figures 2A and 28 are schematic cross-sections, showing isotherms, through molten glass streams in forehearth channels; Figure 3 is a cross-sectionai view of a forehearth according to the present invention; Figure 4 is a cross-sectional view of an alternative construction of a forehearth according to the present invention; Figure 5 is a schematic plan view of a forehearth according to the present invention with the channel 125 ceiling removed; and Figure 6 is a schematic plan view of a further forehearth according to the present invention also with the channel ceiling removed and showing an alternative arrangement of the heating elements.
Referring to Figure 1, molten glass 1, generally at a temperature of 1050 to 1300'C, flowing along channel 2 (in the out of plane direction) is heated by gas burners 3 which cause the refractory material of channel ceiling 4 to radiate heat down onto the glass. Forced draught cold air inlet ducts 15 and vent 5 are provided in channel ceiling 4to permit cooling of the glass.
Figures 2A and 213 are provided to showthe degree of temperature inhomogeneity across the glass streams in the channels of conventional gasheated forehearths at positions close to the outlets of the channels into the forming apparatus.
In Figure 3, electrical heating element 6 is shown extending across channel 2. Element 6 has "hot" regions 7 about a central "cold" region 8. The element 6 is in the form of a silicon carbide tube with helical apertures 9 cut into its surface to provide the "hot" regions. Electrical current to the element 6 is supplied through flexible braids 10 electrically connected to sections of the element which protrude out through the walls of the forehearth.
The channel is suitably formed of MULLITE, a refractory glass contact material which is commonly used in forehearths and glass furnaces and is resistantto glass attack.
The channel ceiling 11 is formed of a ceramic fibre board, which suitably has a density of about 0.27 91CM3 (as compared with the 2.5 g/cm3 density of MULLITE). This material is preferably made from pure alumina fibres which, together with a binder, are vacuum formed into boards. Board available as 1600 grade board is particularly suitable.
The channel 2 and the channel ceiling 11 are provided with insulating backing layers 12 in the form of ceramic fibre boards, such as those discussed above, or blankets of ceramic fibre material. The blankets are also of low density and may conveniently be made from a mixture of silica and alumina fibres, particularly preferably blankets of 0.096 g/cm3 density and having maximum service temperatures of about 11250'C.
The backing layers 12 are themselves provided with further insulating layers 13 of a microcellular silica material such as that obtainable underthe trade name MICORTHERM.
In the alternative embodiment shown in Figure 4, channel 2 is shown as having conventional forehearth insulation 14 and channel ceiling 11 is shown provided with a vent 5.
The channel ceiling is preferably of such insulative quality as to enable the ceiling exterior to be touched even when glass at temperatures of e.g. 1250'C is flowing along the channel. This is achievable with ceiling thicknesses of as little as 7.5 em. With the use of such ceiling members and electrical heating elements, the total energy usage of a glass forehearth according to the invention may be as low as 7% of that of a comparable gas heated forehearth.
Figures 5 and 6 show embodiments of the forehearth of the invention with channel ceiling 11 removed. Molten glass flows along channel 2 towards spout 15 below the electrical heating elements 6. In the embodiment shown in Figure 5, the central "cold" regions of elements 6 becomes 3 GB 2 157 676 A 3 successively wider towards spout 15 to enable cooling at the channel sides to be tackled more vigorously. In the alternative embodiment shown in Figure 6, heating elements having a central "cold" region alternative with heating elements of uniform heating effect; in this embodiment, the uniform and non-uniform heating elements can be controlled separately and, by varying the relative power supply to the two sets of heating elements, the preferential i o channel side heating effect can be varied as required.
While the present invention has been described in terms of forehearths for molten liquids it should be realised that delivery channels constructed in accordance with the present invention may be suitable in processess where constant heating across the delivery channel is required e.g. in the reheating of billets or partially formed metal sections. Such delivery channels are deemed also to fall within the scope of the present invention.

Claims (9)

1. Aforehearth having a molten liquid delivery channel with disposed thereover a channel ceiling member of insulating refractory ceramic fibre material and an electrical heating means arranged to heat molten fluid travelling along said channel.
2. Aforehearth as claimed in claim 1 comprising a molten glass delivery channel with arranged thereover a plurality of electrical heating elements.
3. Aforehearth as claimed in claim 2 wherein at least one of said heating elements is adapted to provide a greater heating effect towards the sides of said delivery channel than towards the centre thereof.
4. Aforehearth as claimed in claim 3 wherein the overall electrical resistance of each said electrical heating element is substantially the same.
5. Aforehearth as claimed in anyone of claims 1 to 4 wherein said electrical heating means comprises a plurality of tubular or rod-like silicon carbide heating elements.
6. Aforehearth as claimed in claim 5 wherein in at least one said element the cross-sectional area of the electrical path is reduced on either side of a central portion of said element thereby to create regions of enhanced heating effect on said element.
7. Aforehearth as claimed in anyone of claims 1 to 6 wherein said ceramic fibre material comprises alumina fibres.
8. Aforehearth as claimed in ay one of claims 1 to 7 wherein said ceramic fibre material has a density of from 0.1 to 0.5 g CM-3.
9. Aforehearth as claimed in anyone of claims 1 to 8 wherein said channel ceiling member comprises an alumina fibre board provided with one or more insulating backing layers.
Printed in the U K for HMSO, D8818935,985,7102. Published by The Patent Office, 25Southa m pton Buildings, London, WC2A lAY, from which copies may be obtained.
GB08508566A 1984-07-05 1985-04-02 Forehearths Expired GB2157676B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US06/749,445 US4622678A (en) 1984-07-05 1985-06-27 Electrically heated forehearth
AT85304782T ATE36511T1 (en) 1984-07-05 1985-07-04 FEED CHANNEL.
EP85304782A EP0167402B1 (en) 1984-07-05 1985-07-04 Forehearths
DE8585304782T DE3564419D1 (en) 1984-07-05 1985-07-04 Forehearths

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB08417117A GB2157674B (en) 1984-07-05 1984-07-05 Forehearths

Publications (3)

Publication Number Publication Date
GB8508566D0 GB8508566D0 (en) 1985-05-09
GB2157676A true GB2157676A (en) 1985-10-30
GB2157676B GB2157676B (en) 1988-06-02

Family

ID=10563431

Family Applications (2)

Application Number Title Priority Date Filing Date
GB08417117A Expired GB2157674B (en) 1984-07-05 1984-07-05 Forehearths
GB08508566A Expired GB2157676B (en) 1984-07-05 1985-04-02 Forehearths

Family Applications Before (1)

Application Number Title Priority Date Filing Date
GB08417117A Expired GB2157674B (en) 1984-07-05 1984-07-05 Forehearths

Country Status (2)

Country Link
JP (1) JPS6140824A (en)
GB (2) GB2157674B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011451B2 (en) * 2013-05-14 2016-10-19 日本電気硝子株式会社 Feeder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1526648A (en) * 1976-07-28 1978-09-27 Baidalinov I Apparatus for selective electroplating of workpieces
GB2139210A (en) * 1983-05-04 1984-11-07 Owens Illinois Inc Glass forehearth with electrodes for eliminating transverse temperature variations

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1526684A (en) * 1973-03-06 1978-09-27 Emballage Ste Gle Pour Channel for molten glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1526648A (en) * 1976-07-28 1978-09-27 Baidalinov I Apparatus for selective electroplating of workpieces
GB2139210A (en) * 1983-05-04 1984-11-07 Owens Illinois Inc Glass forehearth with electrodes for eliminating transverse temperature variations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WO A1 83/01440 *

Also Published As

Publication number Publication date
GB2157676B (en) 1988-06-02
GB8508566D0 (en) 1985-05-09
GB8417117D0 (en) 1984-08-08
GB2157674A (en) 1985-10-30
GB2157674B (en) 1988-06-29
JPS6140824A (en) 1986-02-27

Similar Documents

Publication Publication Date Title
US5077461A (en) Far-infra-red heater
US4622678A (en) Electrically heated forehearth
EP0275345B1 (en) Glass forehearth
US8113018B2 (en) Apparatuses for controlling the temperature of glass forming materials in forehearths
US5928402A (en) Multi-screen system for mixing glass flow in a glass bushing
US4494974A (en) Forehearth for conditioning glass
CA1207534A (en) Glass melting furnaces
GB2157676A (en) Forehearths
SE419334B (en) APPLIANCES FOR HEATING MELT, THERMOPLASTIC MATERIAL, SEPARATE MELT GLASS
CA2011153C (en) Furnace and process for optical fiber drawing
US3508902A (en) Wetback heating apparatus
US3868212A (en) Radiant burner and furnace for treating at high temperature
US4803698A (en) Electrically heated forehearth
US3285720A (en) Apparatus for producing glass fibers
KR20100108558A (en) Device for shaping melts made of inorganic oxides or minerals having improved heating unit
US3672857A (en) Apparatus for producing glass filaments with auxiliary heating means
CN218202528U (en) Muffle furnace and glass production system
SU1654274A1 (en) Device for forming flat glass film
US3658503A (en) Apparatus for the drawing of continuous sheets of glass including glass melt heating and cooling means
US2556281A (en) Electric stove
RU2011137C1 (en) Cement clinker plant
SU943494A2 (en) Electric air heater
US1784670A (en) Electric furnace
GB2174485A (en) Annealing furnaces
JPS60151231A (en) Device for supplying stably glass gob

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19930402