GB2152197A - Valve assembly - Google Patents

Valve assembly Download PDF

Info

Publication number
GB2152197A
GB2152197A GB08432658A GB8432658A GB2152197A GB 2152197 A GB2152197 A GB 2152197A GB 08432658 A GB08432658 A GB 08432658A GB 8432658 A GB8432658 A GB 8432658A GB 2152197 A GB2152197 A GB 2152197A
Authority
GB
United Kingdom
Prior art keywords
fluid
tubular member
valve assembly
flow
contractable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08432658A
Other versions
GB2152197B (en
GB8432658D0 (en
Inventor
Andries Johannes Stoltz
Dieter Hans Frieder Kallenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
COXWOLD Pty Ltd
Original Assignee
COXWOLD Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by COXWOLD Pty Ltd filed Critical COXWOLD Pty Ltd
Publication of GB8432658D0 publication Critical patent/GB8432658D0/en
Publication of GB2152197A publication Critical patent/GB2152197A/en
Application granted granted Critical
Publication of GB2152197B publication Critical patent/GB2152197B/en
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/14Parts, details or accessories not otherwise provided for
    • E04H4/16Parts, details or accessories not otherwise provided for specially adapted for cleaning
    • E04H4/1654Self-propelled cleaners
    • E04H4/1663Self-propelled cleaners the propulsion resulting from an intermittent interruption of the waterflow through the cleaner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/02Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm
    • F16K7/04Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force
    • F16K7/07Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with tubular diaphragm constrictable by external radial force by means of fluid pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

A valve assembly including a hollow body 2 housing a tubular flexible diaphragm 7 to provide a passage for fluid flow through the body and forming with the diaphragm on chamber 10 includes means responsive to fluid pressure on the diaphragm to control the fluid flow. In use the diaphragm is caused automatically and repeatedly to contract and expand. This results in a pulsating flow of fluid through the assembly. Such a valve assembly finds particular application in a swimming pool cleaner operating off the reduced pressure provided by the pump for the conventional pool filtration plant. In the embodiment of Fig. 1 a rigid member has flaps 15, 16 which alternately close inlets 3, 9 to the main flow path and chamber 10 respectively. Further embodiments described with reference to Figs. 2-9 include modifications wherein the chamber 10 is sealed. <IMAGE>

Description

SPECIFICATION Valve assembly This invention relates to a valve assembly. In particular, it relates to a valve for controlling the intermittent flow of a fluid through a passage. The invention also relates to means for cleaning a surface submerged in a liquid, such as a swimming pool cleaning device, utilizing the valve.
There are different types of pool cleaners known which operate on different principles to give the cleaner automatic movement over the surface to be cleaned. This invention is concerned with the type of cleaner which operates on the reduced pressure caused by a pump used to induce flow of water from a swimming pool through the conventional filtration equipment and thence back to the pool. The principle of operation is effected by intermittently interrupting the flow through the cleaner to the pump and use a special valve assembly for effecting this cycle interruption. The principle has been effected through oscillatory movement of a valve to interrupt flow through a cleaner and in an alternative arrangement by the use of a valve carried in rotational movement by a wheel which is driven by flow of liquid through the cleaner.
According to the invention there is provided a valve assembly comprising a body having a fluid inlet and a fluid outlet, a flow passage between the inlet and the outlet at least partly defined by a tubular member which is transversely contractable and expansible over at least part of its length to control the flow of fluid through the passage, the body forming a chamber around the tube and means, reponsive to variation in pressure internally and externally of the tubular member, for controlling the flow of fluid through the flow passage.
Further features of the invention provide for the part of the tubular member which is contractable and expansible to be circumferentially collapsible and expansible and to be of an elastic material, such as rubber or a synthetic plastics material. Alternatively, it may be of a flexible material or contain a flexible insert which is capable of being moved between a contracted position and an expanded position.
The invention also provides for the assembly to be such that the tubular member is complete.ly closed to fluid flow when in the contracted condition or contracted only to a degree which will enable substantial interruption of the flow through the passages to be effected.
The chamber may be sealed or it may have a fluid path externally of the tubular member to the fluid outlet. The fluid path in the latter instance may include an inlet into the chamber from the outside with inlet for alternately opening and closing this inlet responsive to the contraction or expansion of the tubular member.
Where the tubular member is made from elastic material it may be made to have a downstream portion less elastic than the remainder and the length of the less elastic part of the tubular member may vary circumferentially adjacent the more elastic portion and the tubular member may be reinforced with fabric or other stranded material.
The body may also be of elastic material or have a portion of its outer wall of elastic material but of appreciably less elasticity than the tubular member.
By way of example, preferred embodiments of the invention will be described with reference to the accompanying drawings in which: Figs. 1 to 6 illustrates axial sectional views of different embodiments, Figs. 7 and 8 illustrates details of specific forms of tubular members, and Fig. 9 illustrates the valve assembly wherein the body has a wall with a resilient panel therein, and Fig. 10 illustrates the valve assembly included in an automatic valve cleaner.
As shown in Fig 1, reference numeral 1 generally indicates a valve assembly comprising a body 2 having a fluid inlet 3 and a fluid outlet 4. The inlet 3 is formed by a rigid tube 5 and the outlet 4 by a rigid tube 6. A tubular member or diaphragm 7 of elastomeric material extends between the tubes 5 and 6, defining a flow passage 8.
The body 2 is further provided with a secondary inlet 9 into the substantially annular chamber 10 which is defined in the body 2, externally of and around the tubular member 7. Openings or ports 11 are provided in the tube 6 downstream of the tubular member 7 which connect the chamber 10 with a flow passage 8 to permit automatic regulation of the pressure in the flow passage 8 and the chamber 10.
The diaphragm 7 is provided with inner circumferential ribs 1 2 and 1 2a extending along substantially 1 80 of the surface of the diaphragm 7 and on opposite sides thereof, as shown. The ribs 1 2 and 1 2a assist in closing the diaphragm 7 to the flow of fluid, as will be described in more detail below.
A substantially L-shaped control member 1 3 is mounted for pivotal movement about an axis 1 4 and has a pair of control flaps 1 5 and 1 6 arranged for co-operating with the inlets 3 and 9, respectively. An annular seal 1 7 is provided around the inlet 9 to assist in sealing off the inlet 9 by means of the flap 16, as will be described in greater detail below.
The flaps 1 5 and 1 6 are arranged at an angle with respect to each other which is somewhat greater than 90 but also preferably not greater than 100 .
A bleed opening 1 8 is provided into the tube 5 to allow leakage of fluid into the inlet 8 when this inlet is closed by means of the flap 1 5, the purpose of which will be described below.
The valve assembly 1 operates as set out below and is described in a situation when the valve assembly 1 5 is submerged in a fluid similar to that which is to flow intermittantly through the passage 8.
In use, the inlets 3 and 9 are both in communication with the fluid. The outlet 4 is in communication with a region of reduced pressure or means for creating a reduced pressure, such as a suction pump (not shown).
When the pump is operated a reduced pressure is applied to the outlet 4, with the control member 1 3 in the position as shown in Fig 1, the diaphragm 7 will remain in the open condition, due to substantially equal fluid pressure being exerted on both the inner and outer surfaces of the diaphragm 7. The tendency of the diaphragm 7 is to retain its normal open shape due to the pressures within and outside it and its inherent physical characteristics. The latter is predetermined by the choice of elastomeric material to suit the particular application to which the valve assembly is to be put. The equalization of pressure is achieved by means of the openings 11 in the tube 4 connecting the chamber 10 with the flow passage 8.
Fluid therefore flows freely through the flow passage 8. However, this flow of fluid will sweep the flap 1 5 against the tube 5 causing it to close the inlet 3. Closing of the inlet 3 will cause the flap 1 6 to open the inlet 9 by virtue of the pivotal movement of the member 1 3 about the axis 14. This will in turn result in a flow of fluid into the chamber 10 and exiting through the ports 11. This creates a force contracting the diaphragm 7 due to unequal pressure on the inside and the outside of the diaphragm. The diaphragm 7 will therefore contract, closing off the flow of fluid therethrough. This action is assisted by the ribs 1 2 and 1 2a. This results in the release of the flap 1 5 to again open the inlet 3 to the flow of fluid.This is assisted by the bleed opening 1 8. The control member 1 3 may in addition be spring-loaded, to the position shown in Fig 1, to facilitate opening of the inlet 3. Opening of the inlet 3, closes the inlet 9 and the process is repeated so that the control member 1 3 continuously performs an oscillating movement about the axis to alternately open and close inlets 3 and 9.
The diaphragm 7 may have any suitable shape in cross-section and the ribs 1 2 and 1 2a may be such that either total or partial interruption of fluid flow through the diaphragm 7 is achieved. The diaphragm 7 as shown may be cylindrical in cross-section but it has been found that a substantially ovalshaped or diamond-shaped cross-section can be advantageous when a total fluid flow interruption is to be achieved.
In place of the control member 13, other means may be used to achieve either a synchronous or independant opening and closing off the inlets 3 and 9.
As shown in Fig 2, the chamber 10 is completely sealed and an elastic at a predetermined pressure fluid is contained between the diaphragm 7 and the outer body 2. Thus fluid tends to compress the diaphragm as fluid flowing through the passage 8 results in a reduced pressure therein. This flow through the passage results in a contraction of the diaphragm 7 and this allows the fluid in the body to expand consequently reducing its pressure to a point where the diaphragm 7 reacts to expand again. Fluid may then again flow through the passage 8.
The mechanism. enables a pulsating flow of a liquid through the passage 8 to be obtained by the alternating contracting and expansion of the diaphragm. The material of the diaphragm and choice of the compressible fluid and its pressure will enable a stable rhythmic operation of the valve assembly to be obtained.
Referring now to Fig 3, a valve assembly 1 according to another embodiment of the invention is shown. The assembly 1 is basically similar to the other embodiments described above and like parts are correspondingly referenced.
The main difference between the embodiments of Figs 1 and 3 is that, instead of the control member 13, the assembly has a secondary tubular diaphragm 19, situated in a tube 20 at the inlet 9. The tube 20 is provided with ports 21 for equalizing the pressure on the inside and the outside of the diaphragm 1 9.
In use, under the same conditions as in Fig 1, fluid can flow through the diaphragm 1 9.
as shown at 22 in Fig 3, as well as along the flow passage 8 through the diaphragm 7.
During such flow, the diaphragm 7 is adapted to close first, due to its larger surface area and other design features, including shape and material of the diaphragms. Closing of the passage 8 will result in an increased flow through the diaphragm 19, resulting in contraction and closure thereof. This will cause the diaphragm 7 to open again due to the reduction of pressure in the chamber 1 0.
When the flow through the diaphragm 7 is resumed, the diaphragm 1 9 will open because the flow rate therethrough is reduced and pressure increased so that it cannot maintain its closed position. This will result in the diaphragm contracting again and the cycle is repeated automatically. This causes a substantially pulsating fluid flow through the passage 8.
Referring now to Fig 4, a valve assembly 1 according to a further embodiment of the invention is shown. The valve assembly 1 is again basically similar to that shown in Fig 1, except for the mechanism used for opening and closing the inlet 9. In this embodiment the valve assembly 1 is provided with a secondary valve 23 having an oscillatable flow direction control component 24 which is adapted alternately to direct fluid flow through an inlet opening 25 and an outlet tube 26, which is in communication with the outlet of passage 8. (The first mentioned position is shown by dotted lines in Fig 4.) The operation of the diaphragm 7 is the same as that described above. The oscillatable component 24 is biased, (conveniently by a suitable spring not shown) to the position where inlet opening 25 is open.When the diaphragm 7 contracts to close passage 8 the resulting reduced pressure in outlet tube 26 causes the component 24 of valve 23 to swing to open the outlet 26 to the chamber 1 0. This results in a reduction of pressure thereon and the diaphragm 7 reopens. This in turn results in a relative increase in pressure in outlet tube 26 enabling component 24 to revert to its original position described.
The effect of the valve is to obtain a rhythmic pulsation of fluid flow through the passage 8.
An alternative form of secondary valve is shown in Fig 5. In this form the secondary valve 27 is in the form of a cylinder 28 in communication with ambient fluid relief opening 29 and with the chamber 10. A piston 30 operable in cylinder 28 with variation in pressure applied thereto is connected to the diaphragm 7 by link illustrated at 31.
The piston 30 also has a biasing spring 32 connected to it which spring 32 is adhered to the end of the cylinder 28 through a means shown at 33 for varying the tension in the spring 32.
An outlet 34 from cylinder 28 leads through tube 35 to the outlet 4 of the valve assembly 1. The outlet 34 is located to be closed and opened by movement of the piston 30 in the cylinder 28.
In use contracting of the diaphragm 8 in the manner described above draws the piston 30 along the cylinder 28 to open outlets 34.
This results in the reduced pressure in outlet 4 being transferred to the pistion 30 and together with the effect of the spring draws the piston in the cylinder to reclose the outlet 34 while simultaneously assisting in reopening the diaphragm 7.
This assembly also provides control to result in rhythmic pulsation of fluid flow through passage 8.
Fig 6 illustrates a still further alternative to the device shown in Fig's 1 to 5. In this embodiment the chamber 10 is connected to the outlet 9 through tube 36. The tube 36 may be open to conduct fluid through a valve 37 or may have a variable constriction in the length thereof provided by an adjustable screw 38 passing through the wall of the tube 36. This enables the effective cross-section of the tube 36 to be varied at this point by inserting or withdrawing the screw 38 into or from the tube 36.
The valve 37 serves to control an opening 39 into the tube 36. There is a flexible member 40 which is drawn by reduced pressure in tube 36 to close the opening 39 and the inherent resistance to the flexing of member 40 to close opening 39 can be made variable. In a simple form this can be effected by the construction of member 40. By anchoring it, through a releasable lock indicated at 41 at different positions along its length, the opening 39 may be closed due to different selected pressure reductions within tube 36.
Thus in use when diaphragm 7 closes the reduction of pressure in chamber 10 due to flow induced through tube 39 will cause the valve member 40 to close thus varying the ef fect of the reduced pressure in the outlet 4 on the diaphragm 7.
Both control means illustrated in Fig. 6 enable the operation of the valve assembly 1 to be controlled to suit particular operating conditions for the assembly 1.
Fig. 7 shows in cross-section a diaphragm 7 where the circumferential ribs 1 2 and 1 2a have been replaced by longitudinal ribs 42.
These ribs need not extend down the full length of the diaphragm 7 but only along that part which contracts to the greatest extent.
The ribs enable the diaphragm 7 to contract to the particular pattern indicated by dotted lines in Fig. 7.
Fig. 8 illustrates a further variation of the diaphragm 7 which is made to an oval configuration. The stiffness of the diaphragm 7 at the outlet end is made, by varying the thickness of the material in the wall of the diaphragm near this end, different along the length of the diaphragm. With such a construction there will also be lines 43 of least stiffness down the length of the diaphragm so that it can collapse to a flattened condition and open into an oval cross-section. The thickened parts of the diaphragm need not be coextensive along the length of the diaphragm.
One side 44 may be thickened for a greater length than the opposite side 45.
From the above it will be appreciated that the diaphragm 7 can be made to many varied configurations to allow it to work under different circumstances and constructions of valve assembly 1.
Fig. 9 illustrates two variations of the valve assembly 1 wherein an incompressible fluid under predetermined pressure fills the chamber 1 0. In the first variation the body 2 is constructed to have a predetermined resilience such that it can follow the collapse of the diaphragm 7 to maintain the same volume in chamber 10 as when the diaphragm 7 is in its expanded condition. However, the stiffness of the material of the body will be such that once the contracted condition of the diaphragm 7 is reached the stiffness of the body will act to re-expand the diaphragm to open passage 8.
Also illustrated in Fig. 9 is a solid outer body 2 with a flexible panel 46 in the wall thereof. This panel 46 may be of resilient material and acts as the resilient wall of the body 2 described above. However, also illustrated is a tension spring assembly 47 mounted to the body 2 and connected to the panel 46. This assembly 47 provides the necessary force to pull the panel into position to enable the diaphragm to expand after having reached its collapsed condition.
The valve assembly described above finds particular application in an automatic swimming pool cleaner for cleaning submerged walls and floor of a pool. The cleaner is of the type wherein an interruption of the flow of water through the cleaner is utilised to provide a propulsive force to cause the cleaner to move automatically across the surface to be cleaned. The cleaner is located on a submerged surface and connected through a flexible hose to the pump inlet through the swimming pool skimmer unit or through a separate suction line to the pump. The interruption of the flow generates a force which, together with the flexible hose and configuration of cleaner, results in a stepwise movement of the cleaner over the surface to be cleaned.
Such a cleaner is illustrated somewhat diagrammatically in Fig. 1 0. This figure is representative of the type of pool cleaner described in United States Patent No. 4,208,752 and the disclosure of that specification is incorporated herein.
The cleaner is externally the same as that set out in Patent No. 4,208 752 but the means for interrupting the flow is substituted by a valve assembly in accordance with this invention.
The cleaner 48 has an operating head 49 which has a basically rectangular cross-section which extends from an inlet opening 50 to an outlet opening 51. These openings are circular in shape with the axis of the inlet offset from that of the outlet at an angle which is preferably forty-five degrees.
The inlet 50 is made with a foot for the cleaner which will contact the surface to be cleaned. The lower part 52 of the foot has a stepped face 53 so that there are spaced apertures between the surface to be cleaned and the face 53 through which water and dirt may pass when the machine is in operation.
Spaced above the lower part of the foot 52 is a peripheral flange 54 and the wall between the flange 54 and part 52 is of reduced diameter around which is fitted a flexible annular flexible disc 55 to be rotatable thereon. An opening 56 is provided through the wall between the flange 54 and the part 52 through which water and dirt may pass and a flexible apron 57 is secured around the head to extend over the disc 55 in what is the normal forward direction of the cleaner indicated by arrow A.
A swivellable fitting 58 is provided at the outlet opening 51 for a rigid extension pipe 59 about the same length as the head 49 and to which a flexible suction hose 60 is attached for connection to the inlet to the pump of conventional swimming pool filtration plant (not shown).
Releasably sealed into the head 49 is a valve assembly 1 of one of the types described above. For simpiicity the diaphragm 7 is illustrated as a simple circular cyiindrical shape of constant wall thickness.
A hollow plug 61 is fitted into the body adjacent the inlet opening 50. A peripheral formation 62 projecting outwardly around the inlet tube 4 of diaphragm 7 can be made to clip and seal into a complementary recess 63 in the inner wall of the plug 61. This latter assembly will preferably be made a firm press fit and a retaining ring 64 will preferably be located around the end of the diaphragm 7 and the tube 4 between the diaphragm and the inner wall of the head 49.
The outlet tube 5 of the valve assembly 1 can be similarly secured adjacent the outlet 51 from the body with a circular rib 65 around the outlet end of the diaphragm 7 engaged in a suitable recess in the body 49.
With this assembly it will be apparent that the chamber 10 of valve assembly 1 is formed between the body 49 of the cleaner and the diaphragm 7. This valve assembly 1 has the chamber 10 sealed as is described with reference to Fig. 2 above.
It will of course be appreciated that the diaphragm 7 can be located in the body in any convenient manner and also that the particular embodiment of valve assembly 1 incorporated into the cleaner 48 can be chosen and designed to meet any particular application. For example, the embodiment described and illustrated in Fig. 6 with regard to the connection tube 36 extending between the chamber 10 and the outlet from the body 49 is indicated in dotted lines in Fig. 1 0.
The material from which the diaphragm 7 is to be made must be chosen to meet the particular application of the valve assembly 1.
In the case of a pool cleaner the material must be capable of flexing very many times in an environment of chlorinated water without deterioration over a considerable period of time.
In this application it is anticipated that polyurethane or a polyurethane mix will be suitable. Other materials are also expected to be developed for this application.
As has been set out above the diaphragm 7 may take many forms and it is anticipated that the material thereof may in appropriate circumstances be reinforced. This reinforcement can be provided by suitable fabric or other woven or non-woven strands of material.
Also it will be understood that cleaner 49 will be fitted with the well known balancing and ballast arrangement to maintain it stable and in proper relation to the surface which it is to clean. This is indicated by an outer body 66 around the cleaner head 49 with weights 67 and 68 located therein. The weight 67 is free to move in a housing 69 of vee-shape to assist in turning th cleaner away from the surface of the pool in which it is to operate.
A float 70 is included to ensure that the cleaner will settle in the pool on the disc with the head 46 upwards.
In use the cleaner is connected to the filter pump in the manner set forth above. Operation of the filter pump will cause water and dirt to be drawn through the valve assembly 1 in head 49 and this will cause the diaphragm 7 to repeatedly and alternately contract and expand as decribed above. This movement of the diaphragm 7 will result in interruptions in flow of water to the pump and thus generate intermittent propulsive forces in the cleaner which cause the cleaner to move in stepwise random fashion over the floor and walls of the pool to be cleaned as disclosed in U.S. Patent No. 4,208,752.
The diaphragm being tubular and of substantial diameter makes it possible for the cleaner to collect debris of considerable size and length from the surface to be cleaned and pass this debris through the valve assembly to the filtration plant.

Claims (24)

1. A valve assembly comprising a body having a fluid inlet and a fluid outlet, a flow passage between the inlet and the outlet at least partly defined by a tubular member which is transversely contractable and expansible over at least part of its length to control the flow of fluid through the passage, the body forming a chamber around the tube and means, responsive to variation in pressure internally and externally of the tubular member, for controlling the flow of fluid through the flow passage.
2. A valve assembly as claimed in claim 1 in which the part of the tubular member which is contractable and expansible is circumferentially contractable and expansible.
3. A valve assembly as claimed in claim 1 in which the tubular part is made fo elastomeric material.
4. A valve assembly as claimed in claim 1 in which the tubular member includes a flexi- ble insert capable of contracting or expanding the flow passage through the body.
5. A valve assembly as claimed in claim 1 in which the tubular member includes parts of different flexibility.
6. A valve assembly as claimed in claim 1 in which the body forms a sealed chamber of compressible fluid around at least the contractable and expansible part of the tubular member to provide the means responsive to pressure internally and externally of the tubular member.
7. A valve assembly comprising a body having a fluid inlet and a fluid outlet, a flow passage between the inlet and the outlet at least partly defined by a tubular member which is transversely contractable and expansible over at least part of its length to control the flow of fluid through the passage, the body forming a chamber around the tube and means, responsive to variation in pressure internally and externally of the tubular member, for controlling the flow of fluid through the flow passage, said means being a fluid path from the chamber externally of the tubular member into the fluid outlet downstream of the contractable an expansible part of the tubular member.
8. A valve assembly as claimed in claim 7 in which the fluid path includes a secondary control valve.
9. A valve assembly as claimed in claim 7 in which the fluid path includes an inlet into the chamber from outside the body.
10. A valve assembly as claimed in claim 9 in which the opening through the outer chamber wall is controlled by secondary valve.
11. A valve assembly as claimed in claim 1 in which the body is made of elastic material less elastic than the contractable and expansible part of the tubular member.
1 2. A valve assembly as claimed in claim 1 in which the body includes a flexible panel of material biased to be less flexible than the contractable and expansible part of the tubular member.
1 3. A swimming pool cleaner of the type wherein an interruption of the flow of water through the cleaner is utilized to provide a propulsive force to cause the cleaner to move automatically across the surface to be cleaned characterised in that the flow path through the cleaner includes a valve assembly comprising a body having a fluid inlet and a fluid outlet, a flow passage between the inlet and the outlet at least partly defined by a tubular member which is transversely contractable and expansible over at least part of its length to control the flow of fluid through the passage, the body forming a chamber around the tube and means, responsive to variation in pressure internally and externally of the tubular member, for controlling the flow of fluid through the flow passage.
14. A swimming pool cleaner as claimed in claim 1 3 in which the part of the tubular member which is contractable and expansible is circumferentially contractable and expansible.
1 5. A swimming pool cleaner as claimed in claim 1 3 in which the tubular part is made of elastomeric material.
16. A swimming pool cleaner as claimed in claim 1 3 in which the tubular member includes a flexible insert capable of contracting or expanding the flow passage through the body.
1 7. A swimming pool cleaner as claimed in claim 1 3 in which the tubular member includes parts of different flexibility.
1 8. A swimming pool cleaner as claimed in claim 1 3 in which the body forms a sealed chamber of compressible fluid around at least the contractable and expansible part of the tubular member to provide the means respon sive to pressure internally and externally of the tubular member.
1 9. A swimming pool cleaner as claimed in claim 1 3 in which the means for controlling the flow of fluid is a fluid path from the chamber externally of the tubular member into the fluid outlet downstream of the contractable and expansible part of the tubular member.
20. A swimming pool cleaner as claimed in claim 1 9 in which the fluid path includes a secondary control valve.
21. A swimming pool cleaner as claimed in claim 1 9 in which the fluid path includes an inlet into the chamber from outside the body.
22. A swimming pool cleaner as claimed in claim 21 in which the opening through the outer chamber wall is controlled by secondary valve.
23. A valve assembly substantially as described and illustrated in any one of Figs. 1 to 9 of the accompanying drawings.
24. A swimming pool cleaner substantially as described and illustrated in any one of the embodiments of Fig. 10 of the accompanying drawings.
GB08432658A 1983-12-28 1984-12-27 Valve assembly Expired GB2152197B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ZA839633 1983-12-28

Publications (3)

Publication Number Publication Date
GB8432658D0 GB8432658D0 (en) 1985-02-06
GB2152197A true GB2152197A (en) 1985-07-31
GB2152197B GB2152197B (en) 1987-12-31

Family

ID=25577065

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08432658A Expired GB2152197B (en) 1983-12-28 1984-12-27 Valve assembly

Country Status (9)

Country Link
AR (1) AR246328A1 (en)
AU (1) AU576806B2 (en)
BR (1) BR8406790A (en)
CA (1) CA1254105A (en)
DE (1) DE3447650C2 (en)
ES (1) ES8601500A1 (en)
FR (1) FR2557665B1 (en)
GB (1) GB2152197B (en)
IT (1) IT1178343B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172195A (en) * 1985-03-14 1986-09-17 Coxwold Pty Ltd Pool cleaner
GB2180325A (en) * 1985-09-12 1987-03-25 Coxwold Pty Ltd Valve for a pool cleaner
EP0631078A1 (en) * 1993-03-18 1994-12-28 SOL S.p.A. Mixer valve with electromagnetic diaphragm valve
WO1996001392A1 (en) * 1994-07-01 1996-01-18 Jury Grigorievich Ishkov Main gas pipeline
US5727546A (en) * 1993-08-18 1998-03-17 Fisons Plc Powder inhaler with breath flow regulation valve
WO2008053298A2 (en) * 2006-10-30 2008-05-08 Arengo 309 (Pty) Limited An apparatus for cleaning swimming pool surfaces

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4570660A (en) * 1983-11-11 1986-02-18 Chauvier Daniel J V D Vacuum sleeve valve
GB2182551B (en) * 1985-11-06 1988-12-29 Andries Johannes Stoltz Swimming pool cleaning device
US6009573A (en) * 1997-12-31 2000-01-04 Thibault; Arnold F. Safety diffuser for pool suction inlet
US6423217B1 (en) 2000-09-15 2002-07-23 Letro Products, Inc. Pool cleaner having vortex drive tube
US6495034B1 (en) * 2001-05-23 2002-12-17 Daniel Lee Schmidtke Swimming pool valve system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1289874A (en) * 1969-10-17 1972-09-20
GB1399501A (en) * 1971-08-03 1975-07-02 Dewall R A Perfusion safety valve
US4135550A (en) * 1977-03-11 1979-01-23 Trelleborg Rubber Company, Inc. Pinch valve control circuit
US4208752A (en) * 1976-08-23 1980-06-24 Hofmann Helmut J Cleaning apparatus for submerged surfaces
GB2036371A (en) * 1978-11-06 1980-06-25 Cardiflex Ltd Device for Providing a Pulsatile Blood Flow
EP0018088A1 (en) * 1979-03-26 1980-10-29 Dan Bron An in-line flow regulator for a pressurized fluid
GB1601438A (en) * 1977-04-15 1981-10-28 Luwa Ag Shutoff device
GB1602394A (en) * 1977-05-09 1981-11-11 Happel F Apparatus for machine milking
GB2076941A (en) * 1980-05-23 1981-12-09 Asulab Ag Flow regulating valve
GB2109091A (en) * 1981-08-25 1983-05-25 Bard Inc C R Valve for pulsator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1054798B (en) * 1958-02-05 1959-04-09 Bopp & Reuther Gmbh Pressurized hose valve
GB1166670A (en) * 1966-12-15 1969-10-08 Richard Robert Jackson Medical Air Flow Instrument
US3552712A (en) * 1969-03-24 1971-01-05 Whitlock Inc Collapsible tube valve
US3803658A (en) * 1971-01-14 1974-04-16 J Raubenheimer Cleaning devices
US3883074A (en) * 1972-02-18 1975-05-13 John W Lambert Hydraulic oscillator and systems utilizing the same
CH581793A5 (en) * 1973-09-03 1976-11-15 Luwa Ag
US4083375A (en) * 1976-02-18 1978-04-11 Johnson Dwight N Pilot regulator
US4195810A (en) * 1978-03-31 1980-04-01 Lavin Aaron M Pinch valve

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1289874A (en) * 1969-10-17 1972-09-20
GB1399501A (en) * 1971-08-03 1975-07-02 Dewall R A Perfusion safety valve
US4208752A (en) * 1976-08-23 1980-06-24 Hofmann Helmut J Cleaning apparatus for submerged surfaces
US4135550A (en) * 1977-03-11 1979-01-23 Trelleborg Rubber Company, Inc. Pinch valve control circuit
GB1601438A (en) * 1977-04-15 1981-10-28 Luwa Ag Shutoff device
GB1602394A (en) * 1977-05-09 1981-11-11 Happel F Apparatus for machine milking
GB2036371A (en) * 1978-11-06 1980-06-25 Cardiflex Ltd Device for Providing a Pulsatile Blood Flow
EP0018088A1 (en) * 1979-03-26 1980-10-29 Dan Bron An in-line flow regulator for a pressurized fluid
GB2076941A (en) * 1980-05-23 1981-12-09 Asulab Ag Flow regulating valve
GB2109091A (en) * 1981-08-25 1983-05-25 Bard Inc C R Valve for pulsator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2172195A (en) * 1985-03-14 1986-09-17 Coxwold Pty Ltd Pool cleaner
FR2578942A1 (en) * 1985-03-14 1986-09-19 Coxwold Pty Ltd POOL CLEANING APPARATUS
AU583358B2 (en) * 1985-03-14 1989-04-27 Sweepy International S.A. Pool cleaner
GB2180325A (en) * 1985-09-12 1987-03-25 Coxwold Pty Ltd Valve for a pool cleaner
GB2180325B (en) * 1985-09-12 1989-08-23 Coxwold Pty Ltd Valve member for water interruption pool cleaner
AU589683B2 (en) * 1985-09-12 1989-10-19 Sweepy International S.A. Valve member for water interruption pool cleaner
EP0631078A1 (en) * 1993-03-18 1994-12-28 SOL S.p.A. Mixer valve with electromagnetic diaphragm valve
US5727546A (en) * 1993-08-18 1998-03-17 Fisons Plc Powder inhaler with breath flow regulation valve
US6109261A (en) * 1993-08-18 2000-08-29 Fisons Plc Powder inhaler with breath flow regulation valve
WO1996001392A1 (en) * 1994-07-01 1996-01-18 Jury Grigorievich Ishkov Main gas pipeline
WO2008053298A2 (en) * 2006-10-30 2008-05-08 Arengo 309 (Pty) Limited An apparatus for cleaning swimming pool surfaces
WO2008053298A3 (en) * 2006-10-30 2008-07-24 Arengo 309 Pty Ltd An apparatus for cleaning swimming pool surfaces
AU2007315882B2 (en) * 2006-10-30 2014-09-11 Arengo 309 (Pty) Limited An apparatus for cleaning swimming pool surfaces

Also Published As

Publication number Publication date
ES539092A0 (en) 1985-11-01
IT8449376A0 (en) 1984-12-28
IT1178343B (en) 1987-09-09
GB2152197B (en) 1987-12-31
DE3447650A1 (en) 1985-07-25
GB8432658D0 (en) 1985-02-06
AU576806B2 (en) 1988-09-08
AR246328A1 (en) 1994-07-29
DE3447650C2 (en) 1996-09-05
BR8406790A (en) 1985-10-22
FR2557665A1 (en) 1985-07-05
AU3713584A (en) 1985-07-04
FR2557665B1 (en) 1988-12-16
CA1254105A (en) 1989-05-16
ES8601500A1 (en) 1985-11-01

Similar Documents

Publication Publication Date Title
US4642833A (en) Valve assembly
US4807318A (en) Suction operated cleaner
GB2152197A (en) Valve assembly
US2753876A (en) Drain plug valve flushing device
US4674137A (en) Manual device for cleaning clogged drains
US4769867A (en) Swimming pool cleaning device
US4475255A (en) Pipe flushing device
US20080115299A1 (en) Automatic Swimming Pool Cleaners and Components Thereof
US5234605A (en) Filter backwashing system using moveable member responsive to closing of filter outlet
US5450645A (en) Swimming pool cleaner operating head
JP2002276846A (en) Flush valve having flexible tube
US6163895A (en) Plunger apparatus
AU2001266253B2 (en) Swimming pool cleaner
US3342208A (en) Resilient material valve
CA1278495C (en) Fluid flow regulator
CA2204414A1 (en) Liquid filtering apparatus
WO2004015313A2 (en) Automatic high negative pressure relief valve and chest drainage units using same
AU2001266253A1 (en) Swimming pool cleaner
US20140326656A1 (en) Diatomaceous earth filter cleaning tool with fluid oscillation nozzle and diatomaceous earth capturing system
CA2360622A1 (en) Rotatable hose coupling
US6098228A (en) Pool cleaner diaphragm valve
US5974596A (en) High pressure plunger device
EP1519091B1 (en) Tubing pinch valve
CA2299706C (en) Siphon assembly with one way priming valve
US5787516A (en) Multi-purpose water pressure plunger

Legal Events

Date Code Title Description
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PE20 Patent expired after termination of 20 years