GB2127251A - Variable density scanner - Google Patents
Variable density scanner Download PDFInfo
- Publication number
- GB2127251A GB2127251A GB08227187A GB8227187A GB2127251A GB 2127251 A GB2127251 A GB 2127251A GB 08227187 A GB08227187 A GB 08227187A GB 8227187 A GB8227187 A GB 8227187A GB 2127251 A GB2127251 A GB 2127251A
- Authority
- GB
- United Kingdom
- Prior art keywords
- video
- control signal
- line
- samples
- response
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/40—Picture signal circuits
- H04N1/40068—Modification of image resolution, i.e. determining the values of picture elements at new relative positions
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
An original is scanned at a variable density (i.e. resolution) in response to a control signal by means of a light beam of a fixed spot size (represented by circles in Figs. 1a-1d). The light beam is scanned over the original successively along parallel line paths at a constant speed to generate a video signal. The distance between successive line paths together with the rate of sampling the video signal are varied in response to the control signal. In addition the control signal is used to divide each of the line paths into line segments, each segment providing a plurality of video samples. The line paths are formed into groups of adjacent line paths and the video samples from the resulting groups of adjacent line segments are averaged in response to the control signal. By combining the examples of Figs. 1a-1d the line density is continuously variable with a ratio of 16:1, the video signal samples derived from each variable size pixel 1-8 being averaged to represent the brightness of that pixel (i.e. elemental area represented by squares in Figs. 1a-1d). <IMAGE>
Description
SPECIFICATION
Variable density scanner
The present invention relates to a variable density scanner.
Variable density scanners are known in the art for scanning a continuous tone image at a desired line density. In one prior art system an optical lens system is used in combination with a flying spot scanner. The lens system is located in front of the screen to focus the spotformed thereon onto the surface of an original, the focused spot size being varied by controlling the spot size ofthe electron beam.
However, this prior art system hasvarious shortcom- ingswhich include low power of resolution, low brightness, picture distortion, and noise.
Another prior art system comprises a variable aperture disk having a plurality of apertures for passing a light beam through one ofthe apertures to form a variable beam spot on an original and a control circuitwhich controls the scan rates ofthe original in the main-scan and subscan directions in accordance with the size of the beam spot. This prior art system is also unsatisfactory since the system becomes complex and the variable range ofthe spot size is limited.
The present invention provides a variable density scanner having a simple and inexpensive mechanism and a wide of variable scan densities by processing video signals so that a plurality of variable size patterns of video samples is generated as a function of a desired scan density.
According to the present invention, an apparatus for scanning an original at a variable density in response to a control signal comprises first meansforscanning a light beam of a fixed spot size on the original along each of a plurality of parallel line paths at a constant speed to generate a video signal and successively shifting the line path to the next by a distance variable in responsetothecontrol signal, second meansfor sampling the video signal at a rate variable in response to the contro Isignal and generating therefrom a video sample, third means responsive to the control signal for dividing each of the line paths into a plurality of line segments so that each segment derives a plurality of video samples and forming the line paths into a plurality of groups of adjacent line paths so thatthe video samples are derived from a plurality of patterns of rows and columns, and fourth means for arithmetically dividing the total value of the video samples of each pattern by their number in response to the control signal to derive an average value.
The present invention will be described in further detail with reference to the accompanying drawings, in which:
Figs. 1 a told are illustrations ofvariable size pixels for describing the underlying principle ofthe invention;
Fig. 2 is an illustration of a mechanical part of the scannerofthe invention;;
Fig. 3 is an illustration of a block diagram ofthe
TABLE 1
k m n Pixel Size I Scan Density (micrometers) (Lines/Inch) 0 < 12 14 27 to 54 940 to 470 1 2 4 64 to 108 470 to 235 2 4 16 108 to 216 1 235 to .117 3 8 64 216 to 432 ( 117 to 58 scannerofthe invention;
Figs. 4to 6 are illustrations oftiming diagrams useful for describing the operation ofthe scanner; and
Figs.7a to 7d are illustrations ofthe operating principle of the divider of Fig. 3.
Before describing a preferred embodiment ofthe present invention, the underlying principle ofthe invention will first be described with reference to Fig.
1.Shown in Fig. 1aaresquare-shaped picture elements 1 and 2, or"elemental areas" on an original having a side a and a side 2a. Circles indicate light beam spots of equal size with their center corresponding to the center of each square. Line density is continuouslyvariable between areas 1 and 2 with a ratio of 2:1.These elemental areas are combined in a number of ways to form a plurality of variable size pixels. Variable size pixels 3 and 4 having a side 2a and a side 4a, respectively, are shown in Fig. 1 b, on each of which a set of four beam spots is formed. Scan density is continuously variable between pixels 3 and 4with a ratio of 2:1 as in Fig. la, so that by combining the examples of Figs. 1 a and 1 bit is seen that scan density is continuouslyvariablewith a ratio of 4:1.Examples shown in Figs. 1 c and id are further developments of the combinations comprising sets of 16 and 64 elemental areas, in which scan density is variable continuously with the ratio of 2:1. By combining the examples of Figs. lea to 1 d, the line density is continuously variable with a ratio of 16:1. As will be described later, the video signals derived from each variable size pixel are averaged to representthe brightness ofthatvariable size pixel.Each ofthe variable size pixels thus comprises a plurality of elemental areas arranged in a pattern of rows and columns with the rows corresponding to scan lines and the columns corresponding elemental areas, and represented as follows: m=2k n = m2 = 22k where, k is a parameter for identifying the patterns of
Figs. 1 a to 1 d, m representing the number of elemental areas arranged in a main-scan orsubscan and n being the number of elemental areas contained in a variable size pixel. Table 1 shows practical values of the size of elemental area and pixels and scan densities for different patterns.
The variable size pixel as measured in side length varies in the range of from 27 micrometers to 432 micrometers which correspond to a range of scan densities from 940 lines/inch (LPI) to 58 LPI. The beam
spot has a diameter of 34 micrometers and the
elemental area is variable in a range of from a side of
27 micromemtersto a side of 54 micrometers which
corresponds to a range of scan densities from 940 LPI to 470 LPI.
Referring to Figs. 2 and 3, there is shown a variable density scanner ofthe invention that embodies the conceptoffigs. 1ato Id. Illustrated at 10 in Fig. 2 is a rotary drum driven by a motor 11 at a constant speed.
A sync generator if provided comprising a notched wheel 12 coupledtothe motor 11 and a sensor 13, which may be magnetic or photoelectrical, for generating a line sync pulse C4for each revolution of the drum 10, the pulse being applied to a sampling pulse generator 14. Ascan density control panel 15 supplies controlsthesampling pulsegenerator14sothata train of sampling pulses C1 is generated immediately following the line sync pulse C4 with each sampling pulse occurring art a frequency proportional to a desired line scan density.Further connected to the control panel 15 is a pixel size control circuit 16 which, underthe control of the panel 15, is arranged to produce a digital command signal indicating the size of a variable size pixel. An optical sensor 18 is movably mounted with respect to the drum 10 to direct a light beam on an original 21 rolled on the drum lOto scan along a line path which is the direction of main scan. In a well known manner, the sensor 18 is held in position as the drum 10 rotates during the main scan and successively moved in response to the line sync pulse
C4 by a drive means 17 in a direction normal to the main scan direction by a distance determined by a signal supplied thereto from the scan density control panel 15. As is known in the art the direction of movement of the optical sensor 18 is the direction of subscan.The sensor 18 comprises a light source 19, preferably a laser, an object lens 20 forfocusing the laser beam on the surface of original 21, and a condenser lens 22forcollecting light reflected on the original to a photoelectrical transducer, producing an analog video signal D1.
It is seen thatthe spot size of the light falling on the original 21 has a fixed value and the drum 10 is driven at a constant speed regardless ofthe scan density. The mechanism of the variable density scanner is thus significantly simplified compared with prior artsys- tems.
In Fig. 3, the video output D1 is coupled to a sample hold circuit 31 where the signal is ampled by the sampling pulse C1, the sampled value of the video signal, designated D2, being measured of the light intensity of each elemental area on the original 21. An analog-digital converter 32 accepts the sampled signal for conversion to a digital sample D3 of 8-bit word in response to the sampling pulseCl,the digital sample being stored in an 8-bit latch 33 in response to an end-of-conversion pulse C2 (Fig. 4) provided from the converter 32.
The scanner includes a control circuit 40 which receives the end-of-conversion pulse C2, line sync pulse C4, pixel size control signal C3 and time-base clockpulsesfrom a clock source 30 to generate various control signals C6 to Cl 5 whose timing diagrams are illustrated in Figs. 5 and 6.
To enable each line path to be divided into a plurality of equal line segments, the apparatus is arranged to respond to the pixel size control signal by successively summing up as many digital samples as there are in each line segment. This is accompiished by a circuit comprising an 11 it adder 35, an ? 11bit latch 36 connected to the output of adder35 and an 8-bit gate 34 for passing the output of latch 36to an input of the adder 35. The digital sample stored in latch 33 is applied as sample D4to an input ofthe adder 35 where it is arithmetically summed with a digitaf sample D10 which is supplied through the gate 34 in response to a gate control pulseC6 (Fig. 6) which is in turn supplied from the output of latch 36.The length of the gate control pulse C6 is determined bythe pixel size control digital C3. A combined digital sample D5 is stored in latch 36 in response to a latch pulse C7 which occurs priorto the occurrence of the gate control pulse C6 as shown in Fig. 6. Therefore, a digital sample D4 derived from the first column ofthefirst row of each pixel is stored in latch 36 and fed to a 14-bit adder 37 as digital sample D6 and is further applied to the gate 34. During the time the gate 34 is open the digital video samples are accumulated successively to generate a digital block which corresponds to a line segment of the scanned line path which in turn corresponds to the upperfour elements of the pixel 5 or 6 (Fig. 1 c).By controlling the length of the gate pulse C6 it is possible to adjustthe density in the direction of main scan at a desired setting in addition to the variable sampling rate.
In the following description it is assumed thatthe scan density parameter k is 2 for convenience. Digital samples D4 ofthe #1 to #3 elemental areas of the #1 scan line are summed in the the adder 35 with the digital samples D10 recirculated through the gate 34 in the presence of a gate pulse C6-1 (Fig. 6), so thatthere is generated a sequence of data blocks D6which are designated 1(1), 1(1+2), 1(1+2+3) and 1(1+2+3+4) where the number in the parentheses indicates the elemental area number within the #1 line segment and the number preceding the parentheses indicates the line number. In the presence of a gate pulse C6-2 a sequence of data blocks 1(5), 1(5+6), (5+6+7) and 1(5+6+7+8) is generated. This process is repeated until the end of the #1 line scan.The data block ofthe highest value represents the combined digital values of each line segment and is used for summation with the corresponding data blocks of the #2 to #4 scan lines.
To enable the line paths to be formed into a plurality of groups of adjacent line paths, the apparatus further responds to the pixel size control signal by successively summing the corresponding data blocks of the adjacent line paths. This is achieved by a circuit comprising a gate 42, a random access memory 44, an address counter 43 and a latch 41. The latch 41 is enabled in response to a latch pulse C8 which occurs during the period other than the #1 scan period and disabled in response to an inhibit pulse C9which occurs only during the first line scan. During subsequent line scansthe data block of each line segment is combined with the corresponding data blocks D11 of the previous line. These data blocks are supplied from the latch 41 as follows.
The data block that occurs atthe end of each line segment ofthe #1 scan line D6 is delivered from the latch 36 in response to a pulse C7 to the adder 37 and thence as data block D7 to a gate 42 in response to a write enable pulse C10 and is written into the associated cell location of a random access memory 44 in response to a read/write enable pulse C13 and address data supplied from an address counter 43.
This address counter 43 is responsive to a reset pulse Cii which occurs in synchronism with the line scan pulse C4 as shown in Fig. 5, to initialize the address data to the first cell location to store the data block 1 (1 +2+3+4) therein. The address counter 43 is incremented by one in response to a countup pulse
C12 which occurs at every four data blocks as illustrated in Fig. to enable the data block 1(5+6+7+8) of the next data segment to be stored in the second cell location. This process is repeated until the last data block is stored in memory 44 at the end of each line path.
During the second line scan the same process takes place until the first data block 2(1 +2+3+4) is stored in latch 36. In the absence ofthe disabling pulse C9, the latch 41 is now enabled to respond to a latch pulse C8-l,while the address counter43 is initialized in response to a reset pulse Cii. Thus, data block 1(1+2+3+4) is read out ofthe memory 44 into the latch 41 and summed with the data block 2(1 +2+3+4) in the adder 37. Thus, data D7 is a combined value of the first data segments of the #1 and #2 scan lines.
The address counter 43 is successively incremented in response to countup pulses C12 to read subsequent data blocks from the memory 44to enable them to be combined with the corresponding data blocks of the #2 scan line. This process is repeated until the last data blocks of the #1 and #2 scan lines are combined in the adder 37.
The contents ofthe memory 44 are successively updated with the combined data blocks ofthe #1 and #2 lines and read out ofthe memory during the third line scan in response to a latch pulse C8. Itwill be seen that corresponding data blocks ofthe #1, #2, #3 and #4 line paths are successively summed in the adder 37 during the fourth line scan, producing a digital video output representing the variable size pixels.
The divider 38,which essentially comprises a 14-bit memory, is arranged to divide the digital video output from the adder 37 by the number of elemental areas (16, in this example) in accordance with a pixel size control data Cl4to provide an average value of the combined digital values. Since the number of elemental areas within each variable size pixel is given by 22k, the average value can be derived by subtracting 2 bits from the least significant position ofthe 14-bit memory and selecting eight higher significant bits.
Figs. 7a to 7d are illustrations ofthe bits selected from the total of 14 bits that represent the video signal of a given pixel for k=0, k=l,k=2 and k=3, respectively, in which Bn (n = 1 to 14) indicates the bit position. In the case of k=0 in which the dividing factor equals zero an 8-bitword is selected from the firstto eight bit
positions. Fork 1, lower two bits are disregarded and
an 8-bitword is selected from the third to tenth bit
positions. For k=2, lower bit four bits are disregarded
and the output is selected from the fifth to twelveth bit
positions, and for k=3, lower six bits are disregarded and the output is selected from the seventh to fourteenth bit positions.
The averaged value of each pixel is transferred to an output latch 39 in response to a latch pulse C15 which is generated when every fourth data block D6 of the #4 scan line is stored in latch 36.
Therefore, in the case of k=2, the above process is repeated at every four scan lines.
The foregoing description shows a preferred embodimentofthe present invention. Various mod ifications are apparent to those skilled in the art without departing from the scope of the present invention which is only limited by the appended claims. Therefore, the embodiment shown and described are only illustrative, not restrictive.
Claims (8)
1. An apparatusforscanning an original ata variable density in response to a control signal, comprising:
first means for scanning a light beam of a fixed spot size on said original along each of a plurality of parallel line paths at a constant speed to generate a video signal and successively shifting the line path to the next; second means for sampling said video signal and generating therefrom a video sample;
third means responsive to said control signal for dividing each of said line paths into a plurality of line segments so that each segment derives a plurality of said video samples and forming said line paths into a plurality ofgroups of adjacent line paths so that said video samples are derived from a plurality of patterns of rows and columns; and
fourth means for arithmetically dividing the total value of the video samples of each pattern by their number in response to said control signal to derive an average value.
2. An apparatus as claimed in claim 1 ,wherein said first means comprises means for shifting said line path to the next by a distance variable in responseto said control signal.
3. An apparatus as claimed in claim 1 or 2, wherein said second means comprises meansforcontrolling the sampling in response to said control signal.
4. An apparatus as claimed in claim 1, wherein said third means comprises means for combining the video samples derived from each line path into a plurality of blocks of video samples, the number of video samples in each block being variable in re sponge to said control signal and combining the corresponding blocks of video samples derived from adjacent line paths into a plurality of groups of such blocks, the number of said combined blocks in each group being variable in response to said control signal.
5. An apparatus as claimed in claim 4, wherein said combining means comprises:
first adder means connected to said second means for successively summing the video samples therefrom with successively summed video samples from the outputthereofto provide a summed video sample indicative of the total value ofthe video samples of each block; second adder means connected to said first adder means;
memory means; and
memory control means for successively writing said summed video sample derived from a given line path into said memory means and reading said summed video sample out of said memory means into said second adder means when the line path is shifted to the next;
6. An apparatus as claimed 5, further comprising means connected to said second meansforconverting the video sample to a sequence of digital samples.
7. An apparatus as claimed in claim 6, wherein said fourth means comprises:
a memory connected to said second adder means for storing the digital samples therein; and
means for selecting a predetermined number of digital samples from the stored digital samples in accordance with said control signal.
8. An apparatus substantially constructed as describedwith referenceto Figs. 1 to7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08227187A GB2127251B (en) | 1982-09-23 | 1982-09-23 | Variable density scanner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB08227187A GB2127251B (en) | 1982-09-23 | 1982-09-23 | Variable density scanner |
Publications (2)
Publication Number | Publication Date |
---|---|
GB2127251A true GB2127251A (en) | 1984-04-04 |
GB2127251B GB2127251B (en) | 1986-02-26 |
Family
ID=10533125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB08227187A Expired GB2127251B (en) | 1982-09-23 | 1982-09-23 | Variable density scanner |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2127251B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0347805A2 (en) * | 1988-06-20 | 1989-12-27 | Dainippon Screen Mfg. Co., Ltd. | Method of and apparatus for recording image on photosensitive material with a plurality of photobeams |
EP0361857A2 (en) * | 1988-09-27 | 1990-04-04 | Canon Kabushiki Kaisha | Recording apparatus |
US5140349A (en) * | 1988-09-27 | 1992-08-18 | Canon Kabushiki Kaisha | Recording apparatus |
-
1982
- 1982-09-23 GB GB08227187A patent/GB2127251B/en not_active Expired
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0347805A2 (en) * | 1988-06-20 | 1989-12-27 | Dainippon Screen Mfg. Co., Ltd. | Method of and apparatus for recording image on photosensitive material with a plurality of photobeams |
EP0347805A3 (en) * | 1988-06-20 | 1991-09-11 | Dainippon Screen Mfg. Co., Ltd. | Method of and apparatus for recording image on photosensitive material with a plurality of photobeams |
EP0361857A2 (en) * | 1988-09-27 | 1990-04-04 | Canon Kabushiki Kaisha | Recording apparatus |
EP0361857A3 (en) * | 1988-09-27 | 1991-12-04 | Canon Kabushiki Kaisha | Recording apparatus |
US5140349A (en) * | 1988-09-27 | 1992-08-18 | Canon Kabushiki Kaisha | Recording apparatus |
Also Published As
Publication number | Publication date |
---|---|
GB2127251B (en) | 1986-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4338636A (en) | Method for reproducing pictures from original pictures depending on the desired layout | |
US4636869A (en) | Method and system for recording images in various magnification ratios | |
US3956583A (en) | Image reproduction systems providing reproduction at a finer pitch than input scanning | |
EP0006351B1 (en) | Method of processing image data | |
US4679155A (en) | Method and system for processing image data in reproducing images | |
US4288821A (en) | Multi-resolution image signal processing apparatus and method | |
US4672464A (en) | Method and system for recording a partially distorted image | |
US4270141A (en) | Method and machine for reproducing a color picture by storing signal streams, one entirely, and the rest partially | |
EP0195372B1 (en) | Method and apparatus for forming 3x3 pixel arrays and for performing programmable pattern contingent modifications of those arrays | |
US4363037A (en) | Apparatus and process for recording an image free of line structure | |
US5349451A (en) | Method and apparatus for processing color values | |
JPS6258590B2 (en) | ||
GB2119198A (en) | Image data masking apparatus | |
US4419691A (en) | Method for the improved reproduction of image in reproduction technology | |
JP2525794B2 (en) | Halftone image recorder | |
GB1507220A (en) | Video colour display system | |
EP0274196B1 (en) | Generating half-tone representations | |
EP0093143B1 (en) | A method and arrangement for correcting distortion in an image which is recorded electronically and built up along lines | |
US4350997A (en) | Lay-out recording method in a picture scanning recording system | |
US4149195A (en) | Method and apparatus for producing rastered printed forms | |
GB2127251A (en) | Variable density scanner | |
US4502081A (en) | Variable density scanner | |
EP0457519B1 (en) | Apparatus for generating a screened reproduction of an image | |
CA2097956C (en) | Apparatus and method for providing accurate layer registration for multiple layer electronic printing systems | |
US4422102A (en) | Laser recording method and apparatus simultaneously scanning and reading out adjacent data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
746 | Register noted 'licences of right' (sect. 46/1977) |
Effective date: 19950928 |
|
PE20 | Patent expired after termination of 20 years |
Effective date: 20020922 |