GB2115317A - Container with memory - Google Patents

Container with memory Download PDF

Info

Publication number
GB2115317A
GB2115317A GB08302588A GB8302588A GB2115317A GB 2115317 A GB2115317 A GB 2115317A GB 08302588 A GB08302588 A GB 08302588A GB 8302588 A GB8302588 A GB 8302588A GB 2115317 A GB2115317 A GB 2115317A
Authority
GB
United Kingdom
Prior art keywords
container
contents
spray
microprocessor
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08302588A
Other versions
GB2115317B (en
GB8302588D0 (en
Inventor
John Andrew Sommerville
Peter Howard Boyce
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plessey Co Ltd
Original Assignee
Plessey Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plessey Co Ltd filed Critical Plessey Co Ltd
Publication of GB8302588D0 publication Critical patent/GB8302588D0/en
Publication of GB2115317A publication Critical patent/GB2115317A/en
Application granted granted Critical
Publication of GB2115317B publication Critical patent/GB2115317B/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/2486Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device with means for supplying liquid or other fluent material to several discharge devices
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • A01M7/0092Adding active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/18Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with elements moving in a straight line, e.g. along a track; Mobile sprinklers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/16Arrangements for supplying liquids or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/06Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump the delivery being related to the movement of a vehicle, e.g. the pump being driven by a vehicle wheel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Insects & Arthropods (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Catching Or Destruction (AREA)
  • Cookers (AREA)
  • Devices For Use In Laboratory Experiments (AREA)
  • Special Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Table Devices Or Equipment (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Spray Control Apparatus (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Circuits Of Receivers In General (AREA)
  • Supplying Of Containers To The Packaging Station (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Abstract

A vehicle mounted spraying system includes a spray boom assembly (205) which is mounted onto a vehicle, preferably a tractor. The spraying process is automatically controlled to give correct dosages and the control system includes two microprocessors (206, 207), a first (206) associated with the spray boom assembly (205) which monitors the spray process and a second (207) associated with a display (225) and control (224) unit in the vehicle which monitors the vehicle operating conditions and drives the display to provide information to the operator.

Description

1 GB2115317A 1
SPECIFICATION
Container with memory The present invention relates to containers and more particularly to containers with a memory 5 which stores information relating to the contents of the container.
Containers of this type are particularly useful in the field of agricultural chemicals e.g.
pesticides and/or herbicides and the memory is particularly useful in assisting the application of the chemical when the container is connected into a distribution system such as a vehicle mounted spraying system. The chemical will normally be in a liquid form but it is possible in 10 other applications that it is in a powder form.
Previously known containers have included preset resistors which can for example identify one or more parameters relating to the chemical in the container such as for example a standard rate of application. Such resistor systems are however limited in the amount of information that they can provide.
It is an object of the present invention to provide a container suitable for use with a vehicle mounted spraying system, the container including a memory device in which information relating to the chemical in the container is stored and in which the contents of the memory are alterable during operation of the spraying system to reflect the usage of the 6hemical in the container.
The present invention therefore provides a container having associated with it at least one memory device in which a record of the contents of the container memory is stored, said memory device being addressable such that the record of contents may be altered during use of the container to maintain a record of the remaining contents of the container.
The present invention will be described in conjunction with a tractor driven spraying system in 25 which the spraying is controlled by microprocessors. The spraying system controls the spraying rate by monitoring tractor speed, air temperature etc and also by reference to standard spraying rates identified within the container memory which may be amended by hand controls operable by the driver. Additionally since it may be required to spray two or more chemicals at the same time the memory contains information relating to the incompatibility of the chemical in the 30 container with other chemicals. These other chemicals are contained in similar containers with memories and the microprocessor can either compare the identity of the two chemicals and check them against a list contained in its own memory or it can compare information on incompatibility obtained from each container memory.
Since each container has associated with it a memory containing information relating to the 35 identity of the chemical in that container it is vital that the containers are not readily refillable by inexperienced personnel. To this end the memory is responsive to the use of the chemical in the container to record the usage of the chemical preferably in an irreversible manner for example by blowing fusible links in an electronically programmable read only memory (EPROM). In this way as say each one tenth of the contents is used a link can be blown and when the tenth fuse 40 has been blown the container will be empty. If the container is illegally refilled the microprocessor will read the EPROM and decide that the container is empty, even though it is full, and will shut down the spraying system. Thus refilling of containers with toxic chemicals which are either harmful or in the wrong concentrations for the particular system is avoided.
Although the present invention is described with reference to a tractor driven spraying system, 45 for which it has particular relevance it may be used in containers for other purposes such as for example paint spraying where a mixture of paints is required at specified percentage rates or in a large computer controlled industrial chemical complex where the addition of some ingredient chemicals must be carefully controlled.
Embodiments of the invention will now be described in relation to a tractor mounted spraying 50 system with reference to the accompanying drawings, in which Figure 1 is a schematic diagram of a first type of a spraying system showing a prior art container; Figure 2 is a vertical section through a spray nozzle shown in Fig. 1; Figure 3 is a schematic diagram of a second type of spraying system showing a prior art 55 container, Figure 4 shows diagrammatically a sprayhead malfunction detector circuit which may form a part of the systems of Figs. 1 and 3; Figure 5 shows diagrammatically a second type of sprayhead malfunction detector circuit; Figure 6 is a diagonal rear perspective view of a tractor mounted spraying system incorporating a container according to the present invention; Figure 6A is a more detailed perspective view of the interconnections between the various modules of the embodiment shown in Fig. 6; Figure 7 is a schematic diagram of the architecture of the electronic hardware within the system of Fig. 6; 2 GB2115317A 2 Figure 7A is a more detailed schematic diagram of the architecture of the electronic components of the system shown in Fig. 7; Figure 8 shows the fluid circuit of the embodiment of Fig. 6 incorporating a plurality of containers according to the present invention; Figure 9 is a vertical section through a container according to the present invention; Figure 10 is a top view of the tractor cab unit shown in Fig. 6; Figure 11 is a side sectional view through an electro-hydraulic connector useful in the system of Fig. 6; Figure 12 is a front view of the socket face of the connector of Fig. 11; Figure 13 is a vertical section through a valved hydraulic connector useful in the system of 10 Fig. 6; Figure 14 is a front view of the socket half of another type of electrical connector useful in the system of Fig. 6; Figure 15 is a front view of the corresponding plug half of the connector of Fig. 14; Figure 16 is a section through the socket half of Fig. 14, in a plane parallel to the face; Figure 17 is a vertical section through a spray nozzle used in the system of Fig. 6; and Figure 18-20 comprise flow charts for exemplary programs to be used in conjunction with the spray control unit microprocessor shown in Fig. 7; and Figure 21 is a flow chart for an exemplary program to be used in conjunction with the display unit microprocessor shown in Fig. 7.
The system of Fig. 1 is mounted on a tractor (not shown). It comprises a demountable container 10 (e.g. of about 25 liters capacity). A male screw-thread coupling 11 of the neck of the container 10 cooperates to give a liquid-tight seal with corresponding female screw-thread coupling 12 carried on the tractor and forming part of the liquid distribution system 13. Liquid delivery system 13 leads from coupling 12 via an electrically operated metering pump 14 to a 25 spray boom 15 carrying a number of nozzles 16. The construction of these is shown in more detail in Fig. 2. Each nozzle is surrounded by an annular electrode 26 (65 in Fig. 2) which is earthed. The body of each nozzle is made of electrically-conducting plastic, and is electrically connected via leads 17 to a junction-box 18, which communicates via high- tension lead 19 with one high voltage output terminal 21 of high-voltage generator 20. Generator 20 is powered 30 from the 1 2-volt tractor battery 22 via the container 10.
Fig. 2 is a detail, in vertical section, of a typical electrostatic sprayhead used in the invention.
It comprises a nozzle 60 having a liquid outlet or mouth 64 in the form of an annular gap between an outer hollow cylinder 61 formed from conductive plastics and an inner solid cylinder 62 formed from conductive plastics. Around nozzle 60, and behind the mouth 64, an annular electrode 65 of bare metal is symmetrically disposed.
The positive pole of the tractor battery 22 is connected, via switch 23, to a contact 24 carried on the tractor. This abuts a contact 25 on the container, which connects via a variable resistance 26 to a contact 27 on the container abutting a contact 28 carried on the tractor.
Contact 28 is connected via lead 29 to an input terminal of generator 20. by a similar arrangement, high impedance pump 14 is powered from battery 22 via container 10. Lead 30 conveys current from battery 22 via switch 23 to a contact 31 carried on the tractor. This abuts a contact 32 on the container, which connects via a variable resistance 36 to a contact 33 on the container which, in turn, abuts a contact 34 on the tractor. Lead 35 connects contact 34 to pump 14.
In operation, the container 10 is supplied from the manufacturer, having been filled with a suitable organic liquid (pesticide or herbicide) formulation and sealed under safe factory conditions. At the factory the variable resistances 26 and 36 are adjusted to values suitable to the liquid in the container. This is conveniently carried out in a way which prevents the customer from subsequently changing the setting; e.g. the resistances 26 and 36 may be adjustable only from inside the container. At the site where spraying is to be carried out, the container 10 is mounted on the tractor, unsealed and coupled to the liquid delivery system 13 via couplings 11 and 12, ensuring that the four sets of contacts 24, 25; 27, 28; 31, 32; 33, 34 are in electrical contact. It will be appreciated that the contacts and the pre-set electrical control apparatus 26, 36 may be located at any convenient location on container, 10 and may comprise an electrical plug and socket assembly. The tractor is then driven past the crops it is desired to spray, and the switch 23 closed. This activates the pump 14 and the generator 20, the output of both being controlled to the desired degree by control of the voltage and/or current supplied to each, which is a function of the setting of resistances 26 and 36. spray is conveyed to nozzles 16 by the action of pump 14, where the spray is charged by direct contact 60 at the potential delivered by generator 20. Spray leaving the nozzles 16 breaks up into electrically charged droplets under the action of the electrostatic field between nozzles 16 and earthed electrodes 26, and is attracted to the plants or earth to be treated.
In the system described above with reference to Fig. 1, the contents of container 10 are 65 sprayed without further dilution. Fig. 3 shows n tractor-mounted system in which dilution takes 65 ir 1 3 GB2115317A 3 place; this however is carried out automatically, without the need for any manual mixing and consequent risk of errors or accidents.
The system of Fig. 3 comprises a reservoir 155 for a diluent (e.g. diesel fuel) for delivering diluent via a tap 156 to a mechanical pump 17 driven by the tractor power take-off. Two containers 158, 159 of generally similar type to that shown in Fig. 1 contain concentrated organic liquid pesticide formulations and are connected via couplings 160, 161 to metering pumps 164, 165 which serve to inject pesticide into the diluent stream at 166, 167. From here the diluted formulation passes to a boom 168 carrying electrostatic sprayheads 169 of the same type as shown in Fig. 1. The sprayheads 169 are connected to one high-voltage terminal of a high-voltage generator 170, powered by the tractor battery 17 1. No provision for varying the 10 output voltage of generator 170 is illustrated, though such may readily be provided if required. Metering pumps 164, 165 are also powered from battery 171 via variable resistances 172, 173 mounted on containers 158 and 159, in the same way as battery 22 powers pump 14 in Fig. 1. In operation, the rate at which pesticide or herbicide from containers 158, 159 is provided to pumps 164, 165 is controlled by the voltage and/or current which, in turn, is controlled by the setting of resistances 172, 173, without the need to make up special formulatins. To spray two different incompatible pesticides, the flows from containers 158 and 159 may be directed to separate sprayheads.
Systems such as that shown in Fig. 3, containing a separate source of diluent, may conveniently be made to flush pesticide out of the nozzles and liquid delivery system, using pure 20 diluent. the system is thereby cleaned for re-use with different pesticides. Such flushing may be made automatic.
In our invention, it is not necessary that flow through the liquid delivery system be determined uniquely by the pre-set control mechanism 172, 173 carried on the container. It is possible, for example, for the pre-set control to determine a base value for the flow rate, 25 corresponding to a standard vehicle forward speed. Means may then be supplied to sense the actual forward speed of the spray vehicle and vary the flow from this standard as necessary so as to compensate for variations from the standard forward speed, in such a way that the amount of pesticide delivered per unit area remains constant over a range of forward speeds. Speed may be sensed by the rotation rate of a vehicle wheel, or by doppler sound or radar measurements. it 30 is also possible to provide means for the spray operator to vary the standard flow rate, e.g. in exceptional circumstances. For example, a crop heavily infested with pests may be usefully sprayed at 150% or 200% of the normal rate; and a lightly infested one at 50% or 75% of the normal rate.
Apparatus may also be provided to detect malfunctioning of the electrostatic sprayheads used 35 in the invention. One such possible means is shown schematically in Fig. 4. In the lead 10 conveying high potential from generator 99 to a particular sprayhead 101, a h ' igh resistance 102 (say 1 megohm) is inserted. Means 103 are provided for sensing the potential drop across this resistance. Using a voltage of about 20 KV, and a liquid charging current of about 2 micro amperes per nozzle, the potential drop across resistance 102 will be about 2 volts. If sprayhead 40 1 becomes wholly or partially blocked, the current will stop or reduce and the voltage will drop correspondingly. If there is a short circuit, e.g. between sprayhead 101 and earthed electrode 104, current and voltage will increase. Accordingly a control circuit 105 is provided to compare the potential drop sensed by means 103 with standard satisfactory limits, and if these are exceeded circuit 105 lights a warning light 106 in the tractor driver's cab. This tells the 45 driver that one sprayhead is not operating correctly (and which it is). In a typical prior art spraying system, sprayhead blockages may go undetected for substantial periods, and lead to crop loss through failure to apply correct rates of pesticide.
A second possible means for detecting malfunctioning is shown in Fig. 5. A probe 110 adjacent a sprayhead nozzle 111 has a charge induced on it which depends on the charge on 50 the liquid leaving the nozzle 111. This charge is sensed by a field- effect (high input impedance) transistor 112. A circuit 113 is provided to compare the charge sensed by the transistor 112 against an appropriate range of standard values, and, if the range is exceeded, to light a warning light 114 in the tractor-d river's cab. Here a nozzle blockage will reduce the charge induced on probe 110, as will any reduction in the voltage supplied to nozzle 111.
If desired, signals from detector means of the type shown in Fig. 4 or Fig. 5 (or both) may be combined, and used to vary the flow through the delivery system until the combined or individual signals are within pre-set limits. Alternatively or additionally, such variations may be used to vary the voltage from the high potential system until the combined or individual signals are within pre-set limits.
In the prior art system shown in Figs. 1 to 5 the preset resistors in container 10 provide only limited information to a control system. The spraying system shown in Figs. 6 to 21 includes a more complicated control system and the container according to the present invention is described with reference to its use in such a complex control system.
Referring first to Figs. 6 and 7, a tractor 200 has mounted on it a modular spraying system 65 4 GB2115317A 4 201 comprising a cab or display unit 202, a radar unit 203 a trailer or spray control unit 204 and a spray boom 205. The trailer unit 24 and the cab unit 202 each contain respective control microprocessors 206, 207 which communicate with each other via a simple serial data link comprising lines 208, 218. The trailer unit 204 further carries demountable containers 209, 210 containing pre-formulated spray chemical and a demountable container 211 containing flushing diluent. Fluid from the containers 209, 210 and 211 may be made to pass through fluid circuit 212 (described in more detail in connection with Fig. 8 below) of electrostatic spraying heads or nozzles 213 mounted on the boom 205.
The radar speed monitor allows automatic compensation for variations in forward speed to maintain accurate chemical dosage. As shown, this is an add-on unit to the tractor but it is anticipated that built-in radars will become increasingly standard in future tractors.
Each container carries a memory circuit (preferably an integrated microcircuit) coding device 214 which is pre-coded with information and which electrically communicates with trailer microprocessor 206 via data links 215. Microprocessor 206 also communicates with liquid detectors 216 which feed its information via data links 219 and with electrical valves 221 and pumps 228 to which it sends instructions via data links 222, 220, respectively. Microprocessor 206 also sends instructions to nozzles 213 via data link 227 (typically a simple serial -daisy chain- type of link). Of course as will be appreciated, each data link contained wholly or mostly within the environment of the trailer unit housing the CPU 206, containers, liquid pumps, liqud sensors, valves, etc. (e.g. 215, 219, 222 and 220) may actually comprise many separate conductors directed to/from respective ones of the various container coded memory circuits, liquid detectors, valves, metering pumps, etc. The data link which extends therebeyond, (e.g. to the nozzles and boom sections and/or to the cab unit are preferably simple series two wire digital links to minimize the complexity of cabling and connectors necessary to complete the system in the hostile environment of heat, light, humidity, vibration, etc.
Microprocessor 206 is also preferably provided with an internal timer. The cab unit 202 comprises, as well as microprocessor circuits 207, a panel 223 (see Fig. 10) having controls 224 by means of which the tractor driver gives instructions to microprocessor 207 and displays 225 by which the microprocessor 207 passes information to the tractor driver. The radar unit 203 feeds information about tractor speed to the microprocessor 207 via data link 226. 30 Electrical power is supplied to operate all systems from the tractor battery.
It is important to note that each module (cab unit, trailer unit, radar, boom section, spray fluid containers, nozzles, etc.) are interconnected by relatively simple and reliable connectors. Extra boom units or nozzles can be added at any time. And the electronics can be designed (e.g.
programmed) to automatically adjust to such additional components. These interconnections are illustrated in Fig. 6A.
The operator's panel is shown at Fig. 10 and is explained in more detail subsequently. However, an initial overview of the system operation is most easily understood by reference to operator console or---CabUnit-, shown in Fig. 10. There are three main sections: 1) routine controls on the left hand side; 2) monitoring displays in the middle and on the right hand side; and 3) controls to set spraying conditions on right hand side.
On the left hand side the operator's routine controls are to start or prime the system, spray, pause while turning the tractor and to flush after completing the field. The monitoring section indicates the allowed speed range, volume of chemical remaining and any fault or alarm conditions. The right hand section for selection of spray conditions is used to override the recommended applications rate, to select mixes of different chemicals and to record the separations between nozzles (which are operator set as desired by moving and securing individual nozzles to a slide bar on each boom section). A switch selection of the number of connected nozzles may also be provided if provisions are not otherwise made to automatically count the number of spray heads connected into the system at any given time. However, it is anticipated that a given farmer will rarely change these settings. In this case this system operates fully automatically. If the required chemical containers are connected, pressing 11 prime- and then---spray-controls will automatically apply the chemical at the recommended application rate.
In operation the tractor driver switches on the system and selects the desired chemical (e.g.
from container 209) using controls 224. Microprocessor 207 then instructs microprocessor 206 to open the appropriate solenoid valve 221, and to activate the appropriate pump 228 at a basic pumping rate determined by information pre-coded on memory chip 214 associated with container 209. The basic pumping rate is however modified according to data received from radar unit 203. This unit measures tractor forward speed, and communicates it to microproces- 60 sor 206 via microprocessor 207. Microprocessor 206 computes the pumping rates necessary to keep the spray delivery rate per unit area constant at the desired value with changes in tractor speed, and instructs the appropriate pump 228. Microprocessor 206 also activates electrostatic spray nozzles 213 at a basic voltage determined by information pre-coded on the corresponding memory chip 214, and varies this voltage as the pumping rate is changed (the higher the 65 1 GB2115317A 5 pumping rate the higher the voltage) so as to maintain spray electric charge and droplet size within desired limits.
While it might be thought better to use only one CPU and thus simplify and reduce the cost of the required electronic circuits, the present split CPU arrangement has been discovered to be more advantageous for an agricultural spray apparatus of this type. This is so because for example, much more complex communication circuits would otherwise be required between the cab and the trailer units. In this adverse environment, such complex data communication circuits are not only more expensive, they are probably less realiable. Accordingly, it is preferred to provide CPU facilities at both the cab and trailer sites with any required intercommunications being via simple data transmission lines. Thus only a simple two conductor connection, for 10 example, may be required between the cab unit and the trailer unit. In a modular agricultural spraying system of this type, the cost of interconnecting the modules is considered important.
The chosen distributed logic architecture of the electronics minimizes such interconnection costs.
The containers, boom sections, and nozzles communicate with the trailer console which, in turn, communicates to the main processor (in the cab) via a simple two wire serial data link.
The system can be divided into the operator functions that take place in vehicle cab and the functions related to controlling, pumping and sensing the spray liquids from container to nozzle.
These two functions are physically separated by some meters and the design aim is to minimize the wiring between them and to provide easy installation and security of operation. Using one central computer controlling all functions would require 20 to 30 separate connections between 20 cab ans spray system. In order to reduce this, additional electronics are required at each location to -serialize- the data. With low cost processing power available (e.g. in the form of 8-bit microcomputers), it has been determined that distributed microprocessor architecture is the most cost effective and reliable way to achieve a spray system of this type. A microprocessor in the cab unit and in the spray system reduces the connectors to only two data wires between these locations.
A single microprocessor in either the cab or trailer unit may typically require eleven integrated circuit---chips-to carry out all functions. These interface with conventional analog buffers and other 1/0 circuits to drive and sense the spray system elements and display. Dividing the functions between two processors as taught here may, for example, require seven integrated 30 circuits with the spray hardware, and six integrated circuits with the display in the cab---an increase of two integrated circuit chips. This is an increase of about 5% in the cost of the computing circuits against a saving in cable from 30 to 2 conductors, over up to 4 meters. The saving in cable, connectors, and installation dramatically outweigh the increase in the cost of electronics, especially as the environmental requirements in the adverse environment of toxic 35 chemicals, heat, dust, sunlight, etc. may make expensive cable necessary.
The distributed logic architecture is shown generally at Fig. 7 and in more detail at Fig. 7A. In Fig. 7A, it will be seen that the electronic hardware architecture at each individual site (i.e. the cab unit and the trailer unit) is basically a conventioni bus-connected microprocessor electronic data processing system. An important novel feature of the overall architecture is the distribution 40 of logic control circuitry between the cab unit and the trailer unit so as to provide a more reliable and economic agricultural sprayer.
The various individual components shown in Fig. 7A may be purchased commercially and may typically be: 45 TABLE 1
Integrated circuit type Microprocessor 6802 50 Address Decoder 741 LS 138 ROW' 2716 Parallel 1/0 Ports 6821 Serial 1/0 Ports 6551 55 Transistor buffers BD437 Stepper Motor Interface 2N3055 Timer PA6840 60 Opto Isolators 2N33 RADAR unit Plesey POME 20/Dev.
Suitable programs for the microprocessors of Fig. 7A are described below by an operational 65 6 GB2115317A 6 description of the intended system functions and by program flow charts shown at Figs. 18-21.
The cab unit includes the display and control panel, which is connected to the processor as multiplexed 10 X 8 array. The processor implements the operator control sequence and drives the display accordingly. It receives information from the trailer unit about liquid levels, the presence of liquid in the pipes, and the condition of nozzles. It transmits operator commands to the spray trailer unit to control solenoid valves and pumps. It informs the trailer unit of the output of the radar speed measurement system, with which it communicates. The display is shown in Fig. 10.
The trailer unit processor monitors and overwrites the information in the container coding devices. It adjusts the rates of the delivery pump with reference to the set flow rate and 10 information received from the cab unit, (i.e. required delivery rates, nozzle spacing, chemicals selected and vehicle speed). It communicates with and controls the nozzles on the spray boom, monitoring their condition and number, and controlling the high voltage. It communicates their status to the cab unit as described above. The processor interfaces with the trailer unit hardware via an analog control board as should be appreciated.
Various elements of the system will now be described in more detail.
Fig. 8 shows the fluid circuit 212 in more detail. Feeding it are containers 209, 210 of formulated chemical and another container 211 of flushing diluent for cleaning the circuit after use. Each container has a cap 229 containing a memory circuit 214 pre- coded with information relating to the container contents, and including mated mounting apparatus 230 for demounta- 20 bly attaching the container to the system. The container and mount 230 are described in more detail in connection with Fig. 9 below. Liquid can pass from each container to infrared liquid detection deices 216 (which report to trailer microprocessor 206 the presence or absence of liquid) and thence to 2-position 3-way solenoid valves 221. These valves, in the---on-position, connect the adjacentcontainer into fluid circuit 212; in the---off- position, they block passage 25 of fluid into circuit 212 and thus bypass the associated container.
Hence the selected fluid passes via pumps 228 to junction box 231. Pumps 228 are preferably metering gear pumps provided with stepper motors, and are controlled by micropro cessor 206, as are also solenoid valves 221. Alternatively, a non- metering pump may be used in conjunction with a conventional flow metering arrangement. Beyond junction box 231 is a 30 further liquid detection device 217 for reporting the presence or absence of liquid to microprocessor 206. From here, the liquid circuit 212 leads to boom 205 and terminates in nozzles or spray heads 213. At the opposite end of circuit 212 is an air pump 232, also controlled by trailer microprocessor 206, which may be used to clear circuit 212 of liquid.
Operation of the fluid circuit 212 is as follows. The tractor driver selects one chemical to be sprayed (say the chemical in container 209), using controls 224, (alternatively he may select both chemicals for spraying together; if they are compatible) and activates the---Prime-control.
Microprocessor 206 is then instructed to move solenoid valve 221 to the--on-position, so that liquid enters the circuit 212 from container 209 as far as the corresponding pump 228.
Microprocessor 206 also activates the pump 228 to pass liquid through the circuit 212 to liquid 40 detector 217. This reports the presence of liquid to microprocessor 206 which in turn communicates with microprocessor 207 to cause the display 225 to indicate that the system is ready to spray, and turns off the pump 228. The operator now activates a-- -Spray-control on the cab unit 202 and drives the tractor over the terrain it is desired to spray. The radar unit 203 senses the tractors forward speed and, as soon as this is within operation limits, the microprocessor 206 is instructed to start metering pump 228 so as to supply liquid to the boom 205 and nozzles 213.
The compatibility of one chemical with another is a matter for a decision by chemical experts. Information relating to the identity of the chemical in the container is stored in a portion of the memory chip 214. If two containers with different chemicals are connected into the same system then each container will have the identity of its own chemical. Incompatibility can be accomplished in two ways.
Firstly each container memory can also contain a list of incompatible chemicals which can be compared in the microprocessor by a correlation procedure with the identity of the other chemicals and if a match is found the system can be shut down. If the identity of each chemical 55 is stored as a digital number in a known series of digital numbers then the cross correlation of incompatible chemicals is relatively simple.
Secondly the microprocessor could itself contain a list of incompatible chemicals and could interrogate the containers connected to the system and decide on the compatiblity of their contents.
The container memory 214 can also contain in a preferred embodiment a security code which can be used on initialisation of the system to determine that a correct container has been fitted. If the container has an unaceptable security code then this may mean that the chemical coding has been changed e.g. that the container is too old kor that the chemical is now not accentable.
ii 15. Z z 9.
Thus this security code can be used to prevent usuage of chemicals without changing the 65 7 GB2115317A 7 identity code and also to prevent unauthorised containers being successfully connected to the system.
During spraying, the microprocessor 206 senses the volume of liquid withdrawn from container 209 (by integrating the pumping rate over time). Each time 10% of the liquid capacity of container 209 has been withdrawn, the microprocessor 206 revises the contents of memory 5 circuit 214 on container 209, making a permanent entry (e.g. by severing fusable links in a PROM circuit) in this memory. If the volume of liquid withdrawn from container 209 as permanently recorded in memory 214 should reach 120% of the nominal container capacity, microprocessor 206 is programmed so as not to permit any further pumping- this prevents container 209 being refilled except under factory conditions. Also, when container 209 empties 10 in the course of operation, so that its adjacent liquid sensor 216 begins to register absence of liquid, the microprocessor 206 will make a permanent entry (e.g. by severing fusible links in a PROM circuit) in the memory 214, to prevent further pumping, thus effecting the same purpose.
After spraying the desired target, the driver re-activates the---Spraycontrol, which causes 15 spraying to cease. He may then clean the system out with flushing liquid. Activating the ---Flush-control will cause microprocessor 206 to control the valve associated with container 209 to close and the valve associated with 211 to open. Pump 228 is again activated, and flushing liquid passes for a preset time through the previously used portion of circuit 212 and out through nozzles 213. Finally, microprocessor 206 will close valve 221 by container 211, 20 and activate air pump 232 to pass air through circuit 212 until it is clear of liquid.
The container coding device 214 is preferably a custom-designed fusible link PROM. For example, a standard 32 X 8 Bipolar Fusible Link PROM may be adapted to this use by incorporating conventional 1/0 microcircuits therewith to form a single special purpose or customized integrated circuit especially adapted for this use. It is preferably physically integrated 25 into the cap of every legitmate fluid container and is electrically connected to the trailer unit electronics upon attaching the container for use. The PROM is pre-coded with information pertaining to the chemical during the filling operation. The PROM contents are subsequently irreversibly updated during usage with data representing the remaining volume of liquid. A check should be made when interrogating the container during usage to insure that all precoded information is of a correct and legitimate format. Such a format check may be re-inforced, if desired, by a coded - handshake- exchange of communication between the container and the spray system before usage is permitted. Typical memory allocation for a given container may be:
TABLE 11 35
Read Only a. Handshake security code 8 bits b. Acceptable flow rates, per unit area, minimum, maximum, optimum 12 bits c. High voltage setting 4 bits 40 d. Container size 8 bits e. Chemical type 16 bits f. Formulation data 8 bits ReadlWrite a. Liquid quantity 13 bits 45 The read/write data in container coding device 214 indicates the quantity of liquid left in or so far removed from the container. This is preferably updated in a non-reversible manner. A fusible link PROM is one possible device that may be used. In one possible coding scheme, one bit per increment of quantity stored is used. If 10% increments are used and up to 120% of the 50 potentially available volume is permitted to be used before disabling the sprayer (thus allowing for a margin of error), it follows that 13 bits would be required.
The data required for container coding may, for example, be held in an 80 bit store implemented as a 10 by 8 bit array. It may be conveniently read as 10 serial words of 8 bits each over a synchronous or an asynchronous serial link. Peferably a custom CMOS device could 55 be used (including any required 1/0 interface) for all containers and chemicals. This custom device would have the proper Read Only information inserted on the container filling line. The ---Read/Write- portion of the PROM would be left unwritten so as to indicate a full container. Then, during use, the spray system will write data (by electrically breaking fusible links) as appropriate to represent metered liquid usage. A handheld interrogation unit may be designed if 60 desired to permit a user to read the entire contents of the container coding device.
The container 209 and its connector 230 are shown in more detail in Fig. 9. The container is, in some respects, the cornerstone of the entire spray system. It protects against unauthorized filling; it provides automatic control over critical spray parameters; it provides a closed fluid system which requires no mixing by the farmer; and it is consequently safe to operate. In fact, 65 - 8 GB2115317A 8 the container itself becomes a peripheral part of the data processing portion of the spray system.
The container 209 is shown inverted, having a cap 229 which is of a resilient plastic material which can sealingly grip the edge 223 of the container opening. The cap is fixed with a supply outlet 234 and a vent inlet 235. Inside the supply outlet 234 is a shaped sealed ring 236, formed of rubber or like material. A sealing plate 237 is urged against sealing ring 236 by compression spring 239 the other end of which abuts a circumferential flange 240 within the upper end of outlet 234. Secured inside the vent inlet 235 and extending toward the upper end of the container 209 is an elongate duct 241, at the inner end of which is a spring-loaded ball valve 242, sealing the duct 241 against leakage of fluid form within container 209 but permitting air to enter container 209 when the pressure differential is sufficient ot overcome the 10 spring-loading of ball valve 242. The cap 229 also carries a pre-coded microcircuit chip 214 mounted to communicate via external conductive socket connections 243. The outer edge of cap 229 carries a thread 247, and for transport and storage carries a protective threaded cap lid (not shown).
The container 209 is mounted on the system via the connector 230, shown immediately 15 below it in Fig. 9. This comprises a cover member 244 formed with a flanged edge 245 supporting a freely rotatable threaded collar 246 which can engage with thread 247 to hold cover member 244 and cap 229 tightly together. Cover member 244 is formed with a projecting supply pipe 248 to mate with outlet 234, a projecting vent pipe 249 to mate with vent outlet 235 and female electrical contacts 251 to mate with male sockets 243. Connections 20 215 from contacts 251 to microprocessor 206; supply pipe 248 leads to sensor 216 and thence to liquid circuit 212 while vent pipe 249 leads out into the atmosphere. Pipe 248 projects to a height sufficient so that, sealing plate 237 is lifted off sealing ring 236 so liquid can flow out around the edges of plate 237 (which for this purpose are preferably partly cut away) into pipe 248.
Each nozzle preferably also includes an integrated circuit 1/0 device to perform the following 1/0 operations at each nozzle site:
a) Communication with the Trailer Unit on a serial line in a---daisychainconfiguration with the other nozzle devices. This allows the Trailer Unit to automatically count the number of nozzles or spray heads attached to it and to control and monitor them over a very simple connection.
b) Control of high voltage by driving a high voltage transformer and diode/capacitor stack to maintain droplet size with flow variation.
c) Monitoring of spray condition and detection of faults.
d) Drive to a solenoid valve for boom section isolation.
A top view of the cab unit 202 is shown in Fig. 10. This connects to the radar unit 203 via demountable plug and socket connection 252 and to the microprocessor 206 into the trailer unit 204 via demountable plug and socket connection 253. Unit 202 incorporates microprocessor 207 (not visible in Fig. 10) which operates the displays 225 shown on the panel 223. It is actuated by input from the radar unit 203, the panel controls 224 and input from the microprocessor 206 in the trailer unit via connection 253. Of course microprocessor 207 also transmits control information to microprocessor 206 via connection 253.
The displays 225 are light-emitting diode units (LEDs), coloured distinctively either yellow or red, and operable by microprocessor 207 to give either a steady light or to flash. Each LED 225 is provided with an adjacent label to show the tractor operator its function.
The spray controls are grouped on the left of panel 223. They comprise three actuating buttons 255, 256, 257 labelled respectively---Spray/Pause-,---Prime-and--- Flush---. Button 255 is associated with a yellow LED 258 labelled---Pause/Ready---; button 257 is also connected with LED 260 as well as with a red LED 261 labelled---Required-- -. Four yellow LEDs 262 grouped together and labelled -Spraying- complete the spraying controls/display corn 50 plex.
At top centre of the panel 223, the speed of the tractor is shown by a horizontal row 263 of 8 yellow LEDs 264, beginning and ending with red LEDs 265, 266. This row is labelled ---Speed-below and---Range-above. Each yellow LED 264 is labelled with the speed it represents (in miles per hour from 2 to g). Red LEDs 265 and 266 are labelled---Low-and ---High---respectively At centre of the panel below the---Speed-display is the---Level-display comprising two left and right parallel verical columns 267 and 268 each of 10 yellow LEDs 269, each terminating in a red LED 270. Above each column 267, 268 and slightly displaced from it is a red LED 270. LEDs 271 are labelled---Checkcontainer fitting---. The left array 267 is labelled---Spray-60 while the right is labelled---Flush---. The arrays are graduated from--- Full-at the top, through ---Half-to---low-opposite the lowest yellow LEDs 269 and the red LEDs 271 are labelled ---Empty---.
Below the---Level-display, at lower centre of the panel 223 are four red LEDs 272 grouped together and labelled "Alarm".
c I:- 9 GB2115317A 9 At top right of the panel 223, the -Nozzle Spacingcontrol comprises a knob 273 having a pointer 274 which may be set by manual rotation to any of seven positions labelled -A through---G-.
Below the -Nozzle Spacing- control at right centre of pannel 223, the--Port-control/display complex comprises a 3 X 5 array of LEDs, in five vertical columns 274 through 278. LEDs in 5 centre column 276 are unlabelled (they relate to the flushing liquid) while columns 274, 275, 277 and 27 are numbered 1 through 4. The top row of LEDs in the array is labelled ---Selected---;the second row---Container---;the third---Display---. A control knob 279 may be set by manual rotation to indicate any one of the 4 columns 274 etc. Below knob 279 is a depressible button control 280 labelled---Select---. A single red LED 281 to the left of button 10 280, labelled -Invalid mix- completes the---Port-control display complex.
At lower right of panel 223 is the---SprayRate- control/display complex. This comprises a row 281 of seven yellow LEDs, forming a scale labelled from left to right, with application rates they represent (e.g. 7, 10, 15, 20, 30, 40, 50 fluid ounces per acre). Beneath row 281 are a pair of depressible button controls 282, 283 each labelled with an arrow pointing up or down 15 scale.
Finally, along the lower edge of panel 223 is the---BoomControlcontrol/display complex.
This comprises a spaced linear array of five depressible button controls 284 each associated with a yellow LED 285. The outer buttons 284 are labelled---Left-and "' Right- appropriately, and the centre button 284 is labelled---Centre---.
A master switch 286 provides power to the display and controls.
In operating, the tractor driver first switches on the master switch 286. This activates the displays 225. The actual state of the displays 225 will now depend on the state of the system.
In this description it will be assumed that all switches are off. The--Level-display will then show no light in column 267, but will indicate the level of flushant liquid in container 211 by 25 the number of LEDs 269 which are lit. Alternatively if container 211 is missing or not properly fitted, the corresponding red LED 271 is lit. If all is in order, the driver sets the nozzle spacing as required by rotating knob 273 and selects the required boom sections by depressing one or more of buttons 284. After depressing each button 284 the adjacent yellow LED 285 comes on to confirm the boom section is selected. To cancel selection the button 284 is depressed again 30 and the LED 285 goes out. Now a spray container (e.g. 209) is selected by rotating the control knob 279 to the appropriate control column (say 274) and depressing - Select- button 280. In column 274 all three LEDs are lit; the top LED indicating that container 209 has been selected; the centre LED that it is connected to the system; and the bottom LED that it is registering on the spray display (column 267). column 267 now registers the liquid level in container 209. If 35 (alternatively) the container 209 is badly fitting or absent, the red LED 271 above column 267 will light and the lower LED in column 274 will flash. If (alternatively) container 209 is empty, the centre LED in column 274 will flash, and the appropriate red LED 270 in the---Level display will light. If the container 209 is nearly empty, the top LED in column 274 will flash, as well as a low level being shown in the---Level-display.
If the operator wishes to check the level in a second container (say 210) he may turn knob 279 so that it it indicates the appropriate column (say 275). The bottom LED in column 275 then lights, while the bottom LED in column 274 goes out (the other two LEDs in 274 however remaining lit). The display in column 26 7 now changes to show the level in container 210.
If the operator wishes to spray a mixture of chemicals from containers 209 and 210 he may 45 now press button 280 again. If the chemicals in containers 209 and 210 are compatible (so that they may safely be sprayed together without damage to crops or spraying apparatus), the top LED in column 275 will light; if not, it will remain unlit and the - Invalid MixLED 281 will light.
Assume the operator wishes to spray from container 209 only, so that all three LEDs in 50 column 274 are on, and no other -Selected- LEDs are on in column 274-7. Three LEDs will now be on in row 281 of the---SprayRatedisplay. Two steady lights indicate the maximum and minimum permissible spray rate for the chemical selected. A third flashing light shows the spray rate currently selected. The operator adjusts this to a desired value within the maximum and minimum range by pushing buttons 282 or 283 to increase or decrease the selected spray 55 rate stepwise as may be required. Chemical and spray rate have now been selected.
The operator next turns his attention to the spray control on the left of panel 223. If the liquid circuit 232 is empty, the yellow LED 259 will be lit, indicating--- PrimeRequired---. The operator therefore presses button 256. As a result, LED 259 goes out and LED 260 lights, indicating ---Primein Progress---. Microprocessor 206 activates pump 228 to cause liquid to flow from container 209 into circuit 232 down as far as nozzles 213. When this is complete, microprocessor 207 turns off LED 260 and lights LED 258 indicating--- Pause/Ready---. At this stage, two LEDs 264 are lit in row 263 of the---Speed-display. These indicate minimum and maximum forward speeds between which the system can apply the selected chemical at the selected rate.
GB2115317A 10 As the operator drives the tractor over the crop to be sprayed, the actual speed is indicated by a LED 264 flashing in row 263. When the speed is within range, and the tractor is on the right path, the operator presses---Spray-button 255. Then LED 258 goes out and the four LEDs 262 light, indicating -Spraying- while voltage and spray liquid pass to the nozzle 213 and spraying begins. To stop spraying for short periods (e.g. to turn the tractor) the operator presses button 255 again whereupon LEDs 262 go off and LED 258 comes on. Spraying is then restarted by a futher touch on button 255.
During spraying, microprocessors 206 and 207 continuously monitor tractor speed and change the speed of pump 228 to maintain a constant application rate of chemical per unit area. At the same time they adjust the voltage supplied to nozzles 213 as flow rate changes so 10 as to maintain particle size and charge of the spray droplets within appropriate limits. If the tractor speed is not kept within the necessary limits shown in row 263, one of red LEDs 265, 266 will come on, indicating -high- or---Low-as appropriate. If the tractor speed remains outside range for longer than a short preset time, spraying ceases, LEDs 262 are extinguished and red---Alarm-LEDs 272 come on, flashing.
When the desired spraying is complete, spraying is stopped by pressing button 255 to show -Pause/Ready- by LED 258; after a preset time LED 258 extinguishes and LED 261 lights indicating---FlushRequired---. The operator presses button 257 initiating the flush sequence while LED 261 goes out and LED 260 lights, indicating---Flushin Progress-- -. Microprocessor 206 closes valve 221 to isolate container 209 from circuit 212 and opens valve 221 to connect 20 flush container 211 into circuit 212. Pump 228 is activated, draining flushant liquid around circuit 212 and out through nozzles 213. After a suitable volume of flushant has been introduced into the system, valve 212 is closed and air pump 232 is activated to empty circuit 212 of flushing liquid. When liquid detector 217 reports no liquid, after a short preset time to allow liquid to clear the nozzles, pumps 228 and 232 are switched off, LED 260 goes out and 25 LED 259 comes on, indicating---PrimeRequired---. Master switch 286 may now be switched off, to close down the system.
Elements in the spray circuit 212 such as pumps, valves, sensors, etc. are conveniently connected together by dual purpose fluid and electrical connectors. A suitable type of connector is shown in Figs. 11 and 12. The connector arrangement comprises two bodies 287 and 288 30 which are adapted to abut along their faces 289 and 290 and be secured together. The first body 287 is provided with a hole 291 which extends through the body 287 and the end of which is a projecting duct portion 292 from the face 289. The other end is provided with a stub pipe 293 for receiving a flexible liquid hose (not shown). Four smaller holes 294 are also provided, in each of which is fitted an elongate electrically conductive strip 295. One end 296 35 of each strip projects from the body 287 so as to be readily connectable to an insulated electrical conductor (not shown) while the other end 297 projects from the face 289.
The second body 288 is also provided with a hole 297 which extends through the body 288 and is provided with a stub pip 298 for a flexible liquid hose (not shown). Four further holes 299 are provided in each of which is located an electrical socket 300 having an elongate strip 40 portion 301 extending out of the body 288 for connection to an insulated electrical conductor (not shown). The hole 297 is adapted to receive the duct portion 292 and a sealing ring 302 is located in hole 297 so as to make a sealed joint with duct portion 292. Similarly the sockets 300 are adapted to receive the ends 297 of the strips 295 and the two bodies 287, 288 can be pushed together until faces 289, 290 abut.
It is often convenient to form the insulated conductor and the flexible liquid hose emerging from body 287 (or from body 288) integrally with one another. It may also be convenient, for connecting together certain parts of the system, to include ball valves in the liquid connector orifices to prevent liquid leakage on disconnection.
A double ball valve which serves to shut both orifices on disconnection is shown in Fig. 13. 50 This comprises two bodies 303, 304 each having a through duct 305, 306 respectively and each having a stub pipe 307, 308 for connection to a flexible hose (not shown). In the duct 305 is located a ball 309 which is urged towards a conical seal 310 by a spring 311. Between seat 310 and the right end of the duct 305, the diameter of duct 305 is reduced, housing loosely a moveable valve actuator 313, movement of which is restricted by two shoulders 314, 55 415 formed inside duct 305. Extending from each end of valve actuator 313 are stems 316, 317.
The end of duct 305 extends through a cylindrical projecting portion, thereby sealing duct 305. The valve actuator 313 is at the same time urged by ball 309 toward shoulder 315. The body 304 is also provided with a ball 318 urged toward a conical seat 319 by a spring 320, 60 the left end of duct 306 having a diameter which will accept the projecting portion of body 303. An annular seal 323 is located inside the left end of duct 306. When bodies 303, 304 are not abutting, the ball 318 seating on seat 319 seals duct 306 against leakage. When the two bodies 303, 304 are pushed together, however, the projecting portion 322 enters end 324 of duct 306 and stem 317 contacts ball 318. Soring 320 is stitfer than spring 311 and valve 65 n 0.
GB2115317A actuator 313 is accordingly moved within duct 305 until stem 316 contacts ball 309 and displaces it from seat 310. After further movement the actuator 313 is stopped by shoulder 314, and further approach of bodies 303, 304 causes stem 317 to move ball 318 off seat 319. In consequence, when bodies 303, 304 are fully mated, both ball valves are open. On separating, the action of springs 311, 320 seals both valves again to prevent leakage.
In certain parts of the system, in particular the array of nozzles 213 mounted on boom 205, it may be desirable to attach or remove devices (in particular, nozzles) in series without breaking the electrical circuit. For example, if the preferred serial---daisychain- data communication link is used for the nozzles, the series -daisy chain- should remain unbroken even if a given nozzle is disconnected or a given connection socket is never used. Figs. 14-16 illustrate an electrical 10 connector which carries out this function automatically. The connector comprises first and second bodies 325, 326 which may be joined so that their respective faces 327, 328 abut.
Extending through the body 325 are four electrical conductors 329 with first ends terminating at face 327 in the form of sockets. The second ends of the conductors 329 (not shown) are attached to separate electrical conductors. Mounted in a recess 330 in body 325 is an 1 electrically conductive hairspring 331 having extended legs 332, 333 which are urged into contact with two of the conductors 329. A moveable plate 334 also located in recess 330 is provided with a lug 335 which engages leg 333 so that plate 334 is urged therby into the position shown in Fig. 14. A hole 336 is formed through plate 334 and a similar hole 337 in body 325, but the two holes 336, 337 are slightly out of alignment when plate 334 is in the 20 position shown in Fig. 14.
Body 326 is similarly provided with four conductors 338 extending therethrough to project from face 328 being disposed so as to mate with the sockets of conductors 329 in face 327. A tapered projection 339 also projects from face 328. When the two bodies 325, 326 are brought together so that faces 327, 328 abut, the projecting conductors 339 enter the sockets 25 of conductors 329 and the tapered projection 339 enters hole 337, and also hole 336 in plate 334. This brings holes 337 and 336 into alignment, sliding plate 334 into the position shown in Fig. 16. In this position leg 335 has pulled leg 333 out of contact with conductor 329.
When the two bodies are separated, leg 333 returns to the position abutting conductor 339 that is shown in Fig. 14. It will be seen that when the connector is incorporated in an electrical 30 circuit, the leads attached to conductors 329 will be electrically bridged when the bodies 325, 326 are not joined, while joining the bodies breaks the bridge.
For many purposes relating to the invention it may be convenient to use connections using more than one, or all, of the features of the connections shown in Figs. 11 - 16.
The design of a nozzle 213 as used in this embodiment of the invention is shown in more detail in Fig. 17. The nozzle assembly is in two parts: an upper low- voltage housing 340 and lower high-voltage nozzle-carrier 341.Housing 340 comprises an electrohydraulic connector 400 of the type illustrated in Figs. 11 - 16, for connection of the nozzle 313 into liquid circuit 232 and for providing electrical connections with microprocessor 207, a low voltage power source (the tractor battery) and with earth. The connector 300 is joined flexibly to the main 40 body 342 of the low voltage housing 340. This carries an integrated circuit 343 which serves as interface with microprocessor 206 and a spring-loaded ball valve 344 seals a central liquid delivery orifice. The external cylindrical surface of body 342 is threaded to receive the upwardly extending threaded skirt 401 of nozzle carrier 341. This comprises a central delivery tube 346 which mates sealingly with the central delivery orifice of housing 342, having an upwardly 45 extending central finger 347 for opening ball valve 344.
In the lower part of tube 346 is positioned a conductive cylinder 348 to form a nozzle 351 having an annular spray orifice 349. Spaced from the orifice 349 is a dependent insulating skirt 350 which protects the nozzle 351 from accidental contacts. Supported within skirt 350 coaxial with tube 346 and cylinder 348 above the level of orifice 349 is a metal annulus 352 coaxial 50 with tube 346 and cylinder 348. Annulus 352 serves as a fieldintensifying electrode, and is connected to earth via contact 353 in carrier 341 which abuts contact 354 in housing 340.
Around the upper part of tube 346 is disposed a conventional toroidal high voltage generator 355 of the type using a diode split transformer. The output voltage of generator 355 is fed to cylinder 348 via a suitable conductor. The output voltage of generator 355 is controlled by the 55 input signal fed to it from microcircuit chip 343 via contacts 357 on carrier 341 and contacts 358 on housing 340. Means not shown adjustably secure the housing 340 firmly to a mounting bar on boom 203 (see Figs. 6, 7) at any desired spacing. It is usually necessary that the nozzle 213 should be in a fixed orientation at a fixed distance above the crop. 60 If nozzle 213 fails in use it may readily be replaced either as a whole, or by unscrewing (the 60 threaded connections may be of a -quick connectvariety requiring less than a full turn to effect connection or disconnection) nozzle-carrier 341. In this embodiment the nozzle's flow capacity can be increased or reduced merely by changing unit 341 for another unit having a larger or smaller orifice 349. Other embodiments may readily be visualized in which flow capacity may be adjusted by relatively rotatable splined cylinders abutting end-to-end. Such a 65 12 GB2115317A 12 valve could be set manually or automatically by operation of microprocessor 206.
The radar unit (see Fig. 6) comprises conventional means for emitting a microwave beam of known frequency forwardly and downwardly in the direction of motion of the tractor, with means for detecting that part of the beam reflected back to the unit and comparing its frequency with that of the emitted beam. The frequency difference is a measure of the tractor speed 5 (Doppler effect) and the information thus obtained is fed to microprocessor 207.
Microprocessors 206, 207 (see Fig. 7) are conveniently of the 6802 type. This is a standard 8-bit processor, of fully adequate capacity, which interfaces with standard memory products and a wide variety of peripheral circuits. Each microprocessor 206, 207 has a computer board with central processing unit, read only memory and 3 or 4 peripheral circuits. The use of two linked 10 microprocessors in the cab unit 202 and trailer unit 204 gives a system with much less complicated and hence cheaper interconnections between the cab and trailer units.
The system may comprise customized integrated circuits of two kinds; those (214) in the containers 209 etc and those (343) in the nozzles 213. The former is a memory circuit (possibly including 1/0 interface circuits) pre-coded with information (range of application rates, voltage, 15 compatibility with other chemicals, etc) relating to the chemical when the container 209 is filled at the factory. It may also include a security code. Chip 343 in the nozzle unit preferably includes an 1/0 device and communicates with microprocessor 206 in trailer unit 204, which is thereby enabled to count the number of nozzles 213 attached for spraying. Chip 343 preferably also controls the nozzle voltage via the generator 355. And, it could also be used to monitor the 20 manner in which the nozzle sprays (by means, for example, of devices such as those shown in Figs. 4 and 5), to drive a solenoid valve to isolate parts of boom 205 or to change effective orifice sizes, etc. Chip 214 may be designed, for example, to store about 80 bits of information as tabulated previously.
This exemplary spray system incorporates these sensors a) speed sensor; b) liquid presence sensor; c) spray presence sensor (and/or nozzle failure sensor); and d) flowmeter (not required for self metering gear pump).
Compensation for tractor speed variations is preferably made dependent upon the output of a 30 radar unit after studying the nature of the errors in radar and other systems. Conventional speed monitors using a wheel, while capable of the required resoluiton, have fixed offset errors due to slipping or diameter errors. The operator is required to enter the actual circumference and an error may also occur here, In contrast the radar requires no operator setting and once set correctly on the tractor gives true speed indication. A further consideration is that future tractors 35 are likely to have radars fitted by the manufacturers as standard. The cost of a wheel unit and an OEM radar unit are comparable making radar the preferable choice for this sensor requirement.
The liquid presence sensor has two functions in the system. It is used to check the presence of liquid during the priming cycle and to give a positive indication that a chemical container has 40 emptied. In neither case is a quantitive signal required. A suitable electro-optic sensor is presently preferred. That is, a sensor where indicent light (for example, conducted in a light fiber) is passed through the liquid medium and the reflected or residual transmitted light is then sensed (again, for example, via a light conducting fibre) to obtain an indication of fluid presence.
Nozzle failure may be detected and indicated to the operator as explained with respect of Figs. 45 4 and 5. However a suitable electro-optic sensor similar to the liquid presence sensor may also be used. The design of the nozzle allows for the rapid replacement of the lower section or complete nozzle, (see Fig. 17), and for incorporation of a fibre optic spray presence sensor.
The nozzle control electronics transmits a failure indication to the trailer unit which is then sent on to the main controller. An additional red light may be employed to indicate that a nozzle 50 failure has occurred. It would be possible to indicate which nozzle by an additional LED array but, to maintain the modular concept of the system, a single signal light on the display is to be preferred with an LED on the actual nozzle housing indicating which nozzle has failed. The user should carry a spare unit and could replace the unit in a few seconds.
To maintain control over the true liquid application rate per unit area the volume of liquid 55 delivered to the booms must be precisely known. For a gear pump with a high volumetric efficiency the delivered volume is given by the angular rotations of the pump which in turn is given by the number of steps of the stepper motor. This is referred to as self metering mode. If higher volumetric efficiency is desired, an alternative pump and motor combination may be used with an additional flow meter. High resolution is desirable as this decreases the time response of 60 the system and increases spraying accuracy.
-Nozzle- is generally used in describing the embodiment of Figs. 7 et. seg. to mean a complete high voltage generator and nozzle assembly. The use of a custom 1/0 integrated circuit to act as a communication interface to the main control microprocessor was described earlier. The same integrated circuit would geni rc,te the low voltage control signals for the high 65 T a, 13 GB2115317A 13 voltage generator.
The design concept for nozzle assembly is shown to Fig. 17. Several important features of the design are as follows:
a) two part construction; b) flexible connection to boom unit using basic electro-hydraulic connector; c) lower section contains electrostatic nozzle and high voltage transformer, (removes in quarter turns for quick field replacement); d) upper section contains low voltage electronic and data interface; e) spray sensor e.g. optic link to lower section (not shown); f) spray fault signal LED in upper section (and W transmits fault signal to display console) (not 10 shown) g) permits automatic nozzle count via daisy chain data line (part of custom IC function which, in effect, instructs arithemetic unit of trailer unit controller to set appropriate pumping rates); and h) permits automatic signalling of state of viscous restrictor in fluid path. (Manual or automatic selection of restrictor to suit application rate range).
A description of the presently preferred embodiment for the computer programs for micropro cessors 206 and 207 follows based on the flow charts of Figs. 18-21.
As previously explained, the preferred embodiment utilizes a microprocessor both in the display unit and in the spray control so as to reduce the necessary communication wiring 20 between the two units to only two wires. Preferably, data is passed in this conduit in serial form, as a repetitive sequence. conventional input/output registers and communication circuits are provided for both receiving and transmitting information in this form at both units.
The display unit processor periodically scans the status of the operatorcontrolled switches (or of the content of data registers reflecting same) and, if appropriate, formats digital control words 25 for transmission to the spray control unit. The spray unit, in turn, periodically scans the status of its various peripheral units and formats status-indicating /control words for transmission to the display unit processor. Such formatted digital communication words are then periodically and repetitively transmitting between the units so as to complete the communication link.
Repetitive transmission are preferred so that successive transmission of the same data may be 30 compared before action is taken to thus enhance the overall reliability of the system operation. If a received word is faulty in its parity or synchronization bits or if two successive transmissions of the same word do not have the same -address- or if fault with the received word is in any other way detected, a request for reptition words is transmitted back to the source of the information which requests a repeat of the earlier transmitted information. If the communication process fails 35 out of synchronization, the display unit is caused to transmit the first word of a new sequence while the spray unit controller cycles through the bit sequence until a matching -addressfield is discovered. Thereafter, both units commence a normal communication cycle in synchronization. Since such communication processes and appparatus are believed conventional in the art of digital communications, no further detail is believed necessary.
The main or executive program loop for the spray control unit is shown in Fig. 18. Here, at power on- or "reset", initializing steps 500 and 502 are performed so that all internal data registers and peripherals associated with the spray control processor are properly initialized.
Thereafter, the fluid detectors are interrogated at 504, the containers are interrogated and updated at 506 and the boom and nozzle structures are similarly interrogated at 508. A wait 45 loop at 510 is entered for 10 seconds. If any interrupts are detected within that 10 second interval, then the main loop is reentered at task 504 shown in Fig. 18. On the other hand, if no interrupts are received for a 10 second period, then this indicates a possible fault condition and, accordingly, spraying is stopped at task 512 and control is transferred back to the main loop so that the current status of the spray control unit and its connected peripherals can be updated so 50 that current information will be available for eventual transmission to the cab unit.
The spray control unit is programmed so as to include the two interrupt routines depicted at Figs. 19 and 20. The non-maskable interrupt routine shown in Fig. 19 is entered whenever a communication word is received from the display ynit. After initial entry of this routine, a test is made at 514 to insure that the word is of correct format (e.g. parity). If not, task 516 is entered 55 where the communication circuits are resynchronized before a normal exit from this routine is made. On the other hand, if the received word has the correct form, then a check is made at 518 to see if the addresses of two successive words match. If not, then this is also an indication that the communication circuits need to be resynchronized at 516 (which will include an instruction to the cab unit to repeat the transmission that has been attempted) before a normal 60 exit from this routine is made.
If the tests at 514 and 518 are both successively passed, then the received word from the display unit is stored at 520 and a previously formatted communication word is transmitted back to the display unit. A test is made at 524 to see if the control word that has thus successively been received by the spray control unit is the last intended word in what may be a 65 14 GB2115317A 14 sequence of such control words that must be interpreted in context before further action is taken. If not, a normal exit is made as shown in Fig. 19 so as to permit the transmission of the next word in the sequence. When the last word in the sequence has been received as tested at 524, then the spray control unit calculates the speed/flow and speed/EHT (extra high tension voltage) if spraying is in progress at 526. Suitable action is taken based upon these calculations and upon the received control data at 528. Finailly, any internal time-outs are detected at 530 so that any appropriate housekeeping action scheduled to occur at such a time-out may be taken before a normal exit form this routine occurs.
The maskable interrupt routine shown in Fig. 20 is enabled while spraying and is normally triggered every 3 milliseconds. It is used for measuring fluid flow and for adjusting the pump speed and high voltage drive. After initial entry, the flow counter register is updated at 532 to reflect the current fluid consumption and flow parameters. A test is made at 534 to see if it is yet time to adjust the spray parameters (adjustments may only be permitted at predetermined time intervals so as to prevent undue oscillation). If not, a fault light is set a 536 if the flow count is detected as being out of range, otherwise a normal exit is made. On the other hand, if it is time to adjust the spray parameters, then the pump speed is adjusted at 538 and the high voltage drive circuits are adjusted at 540 before a normal exit from this routine. The update of flow counters at step 532 may typically include the purposeful fusing of a fusible link in a PROM associated with the container if it is detected that sufficient fluid has been used.
An exemplary program for the display unit is shown in Fig. 21. After power on- or---reset-20 events, initialization tasks 600, 603 and 604 are performed. Here, any internal registers, peripherals, etc. are properly initialized and, in the preferred embodiment all lamps are displayed for 4 seconds at task 604 so that the operator may make a check on the operability of the lamp display units. Thereafter, task 606 is entered which causes the transmission of the word then in the output register to the spray control unt. At 608, a test is made to see if the radar unit is connected. If not, then the appropriate pattern of display lights is activated at 610 and control is returned to task 612 at the top of Fig. 21 where a control word is received from the spray unit.
A test is made at 614 to see is this if the last word in an intended sequence of such control words. If not, then another word is transmitted to the spray control unit at 606. If it is the last word in a sequence, then it is stored and proper action is taken at task 616. Thereafter, new 30 data for transmission to the spray control unit is formatted into the proper output registers at task 618.
If a radar unit is connected to the unit, then after test 608, the output of the radar is read at task 620 and the average speed is calculated. A test is then made at 622 to see if the communication link is working. If it is, all available status information is displayed at 624, appropriate action is taken on any command buttons that may be pressed by the operator at 626 and appropriate action is taken at 628 on any internal time-outs that may have occurred.
Appropriate speed limits are calculated at 630 and, if desired, control action may be taken if the actual speed of the vehicle is outside these limits (not shown in Fig. 21). If the communication link is not working, only the speed is displayed at task 632 before control is transferred back to 40 the top of Fig. 21 where further attempts may be made to activate the communication link.
The container may be easily modified to be connected into other systems and the connections to the memory circuit can be modified to accept different connectors. The information contained in the memory may be modified to suit a variety of operating conditions as required. The memory circuit may be moulded into part of the container or affixed thereto or it may as shown be placed in a closure for the container.

Claims (10)

1. A container having associated with it at least one memory device in which a record of the contents of the container is stored, said memory device being addressable such that the record 50 of contents may be altered during use of the container to maintain a record of the remaining contents of the container.
2. A container as claimed in claim 1 in which the memory device when altered is irreversible.
3. A container as claimed in claim 2 in which the memory device comprises a plurality of 55 fusible links and in which the record of the remaining contents of the container is maintained by successively fusing ones of said plurality of fusible links.
4. A container as claimed in any one of claims 1 to 3 in which the container is adapted to be connected to a system which distributes the contents of the container.
5. A container as claimed in any one of claims 1 to 4 in which the memory device is preset 60 with a security code which prevents unauthorised containers being connected to the system.
6. A container as claimed in claim 4 in which the distribution of the contents of the container is organised under the control of a microprocessor which is responsive to alter the record of the contents of the memory in dependence on the volume of the contents removed from the container. 65 5- GB2115317A
7. A container as claimed in claim 6 in which the memory device is preset with the identity of the contents of the container stored in digital form in a predetermined series.
8. A container as claimed in claim 7 in which the memory device is additionally preset with information relating to the incompatibility of the contents of the container with other chemical substances in the predetermined series such that the microprocessor will not allow mixing of incompatible chemicals.
9. A container as claimed in claim 4 in which the system which distributes the contents is a spraying system includes means for electrostatically charging the spray produced by the spray head and in which the system is designed to be vehicle mounted, said microprocessor being powered by the vehicle electrical supply and being responsive to inputs from the operational variables of said vehicle to control the outflow of contents from the container.
10. A container as claimed in claim 1 in which the memory device is attached to a closure forming part of the container.
Printed for Her Majesty's Stationery Office by Burgess & Son (Abingdon) Ltd-1 983. Published at The Patent Office, 25 Southampton Buildings, London, WC2A l AY, from which copies may be obtained.
GB08302588A 1982-02-05 1983-01-31 Container with memory Expired GB2115317B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8203395 1982-02-05

Publications (3)

Publication Number Publication Date
GB8302588D0 GB8302588D0 (en) 1983-03-02
GB2115317A true GB2115317A (en) 1983-09-07
GB2115317B GB2115317B (en) 1985-07-10

Family

ID=10528145

Family Applications (2)

Application Number Title Priority Date Filing Date
GB08302588A Expired GB2115317B (en) 1982-02-05 1983-01-31 Container with memory
GB08302674A Expired GB2114412B (en) 1982-02-05 1983-02-01 Vehicle mounted spraying system

Family Applications After (1)

Application Number Title Priority Date Filing Date
GB08302674A Expired GB2114412B (en) 1982-02-05 1983-02-01 Vehicle mounted spraying system

Country Status (19)

Country Link
US (1) US4629164A (en)
EP (2) EP0086061B1 (en)
JP (2) JPS58193255A (en)
AT (1) ATE27944T1 (en)
AU (1) AU569245B2 (en)
BR (1) BR8300558A (en)
CA (2) CA1199419A (en)
CZ (1) CZ63983A3 (en)
DE (1) DE3372202D1 (en)
DK (1) DK161958C (en)
ES (1) ES8500769A1 (en)
GB (2) GB2115317B (en)
GR (1) GR77383B (en)
HU (1) HU189220B (en)
IE (1) IE54378B1 (en)
IL (1) IL67722A0 (en)
MX (1) MX158371A (en)
NZ (1) NZ203170A (en)
ZA (1) ZA83535B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2186273A (en) * 1986-02-10 1987-08-12 Instance Ltd David J A container
GB2225125A (en) * 1988-11-16 1990-05-23 Sundstrand Corp Turbine monitoring system
DE19610589A1 (en) * 1996-03-18 1997-09-25 Duerr Gmbh & Co Process and system for supplying paint to a coating system

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2115316A (en) * 1982-02-05 1983-09-07 Ici Plc Fluid container
GB2129663B (en) * 1982-11-13 1985-12-18 Ciba Geigy Ag Spraying unit
GB8318673D0 (en) * 1983-07-11 1983-08-10 Ici Plc Containers
DE3500885A1 (en) * 1985-01-12 1986-07-17 Amazonen-Werke H. Dreyer Gmbh & Co Kg, 4507 Hasbergen ELECTRONIC SYSTEM FOR AGRICULTURAL DISTRIBUTION MACHINE
GB8525021D0 (en) * 1985-10-10 1985-11-13 Janock Ltd Injection sprayers
IT1214977B (en) * 1985-12-05 1990-01-31 Rossato Eride FLUODYNAMIC JACK PROVIDED WITH MECHANICAL SAFETY DEVICE, IN PARTICULAR FOR PANTOGRAPH LIFTING BRIDGES FOR VEHICLES.
HU198116B (en) * 1986-11-06 1989-08-28 Debreceni Mezoegazdasagi Spraying machine particularly for area-proportional spreading spray liquor
US4975647A (en) * 1987-06-01 1990-12-04 Nova Biomedical Corporation Controlling machine operation with respect to consumable accessory units
JP2652174B2 (en) * 1987-11-17 1997-09-10 ヤンマー農機株式会社 Pest control machine
GB2213031A (en) * 1987-12-02 1989-08-09 J D Campbell & Sons Limited Metering pesticides
JPH01159071A (en) * 1987-12-16 1989-06-22 Toyo Noki Kk Controlling device for spreading quantity of boom sprayer
WO1990000974A1 (en) * 1988-07-25 1990-02-08 Siemens Aktiengesellschaft Arrangement for printing devices for monitoring printing medium containers
JPH0220970U (en) * 1988-07-27 1990-02-13
DE3833581A1 (en) * 1988-10-03 1990-04-05 Hundt & Weber METHOD FOR WETING OBJECTS, LIKE TOOLS OR WORKPIECES, WITH A LIQUID, LUBRICANT, COOLANT OR ADHESIVE, AND APPARATUS FOR CARRYING OUT THE METHOD
FR2639507B1 (en) * 1988-11-28 1991-05-10 Barlet Christian METHOD AND DEVICE FOR THE PROGRAMMED SPREADING OF AN ACTIVE PRODUCT ON THE SOIL SURFACE
US5222666A (en) * 1990-12-21 1993-06-29 Gnutel Robert A Lawn mower pesticide fogger
JPH04316856A (en) * 1991-04-17 1992-11-09 Chinon Ind Inc Detector for ink residual quantity of ink jet printer
GB2261208A (en) * 1991-10-09 1993-05-12 Oliver Benjamin Johnson Spirit measure counter
US5283613A (en) * 1993-02-19 1994-02-01 Xerox Corporation Monitoring system with dual memory for electrophotographic printing machines using replaceable cartridges
RU2123778C1 (en) * 1993-03-31 1998-12-27 Текнома Agricultural movable spraying apparatus
FR2714572B1 (en) * 1994-01-03 1996-02-09 Caruelle Device for controlling an agricultural sprayer.
FR2703267B1 (en) * 1993-03-31 1995-07-07 Caruelle AGRICULTURAL SPRAYING APPARATUS.
EP0711110A1 (en) * 1993-07-30 1996-05-15 Hardi International A/S A valve control for a fertilizer spreader
NL9302219A (en) * 1993-12-20 1995-07-17 Gerritse Beheer Bv Holder with identification device
US6065824A (en) * 1994-12-22 2000-05-23 Hewlett-Packard Company Method and apparatus for storing information on a replaceable ink container
US5699091A (en) * 1994-12-22 1997-12-16 Hewlett-Packard Company Replaceable part with integral memory for usage, calibration and other data
US5636799A (en) * 1995-01-13 1997-06-10 Clark Equipment Company Frame mounted isolated motor driven electrostatic spray system
US6130695A (en) * 1995-04-27 2000-10-10 Hewlett-Packard Company Ink delivery system adapter
US6236907B1 (en) 1995-05-30 2001-05-22 Ag-Chem Equipment Co., Inc. System and method for creating agricultural decision and application maps for automated agricultural machines
US6074042A (en) * 1997-06-04 2000-06-13 Hewlett-Packard Company Ink container having a guide feature for insuring reliable fluid, air and electrical connections to a printing system
US6322205B1 (en) 1997-01-21 2001-11-27 Hewlett-Packard Company Ink delivery system adapter
US7188918B2 (en) * 1997-01-21 2007-03-13 Hewlett-Packard Development Company, L.P. Ink delivery system adapter
WO1998050765A1 (en) 1997-05-07 1998-11-12 E.I. Du Pont De Nemours And Company Measuring and dispensing system for solid dry flowable materials
US6010210A (en) * 1997-06-04 2000-01-04 Hewlett-Packard Company Ink container having a multiple function chassis
EP0994779B1 (en) * 1997-06-04 2003-04-02 Hewlett-Packard Company, A Delaware Corporation Ink delivery system adapter
US5992975A (en) * 1997-06-04 1999-11-30 Hewlett-Packard Company Electrical interconnect for an ink container
US5947392A (en) * 1997-09-12 1999-09-07 Noroson Corporation Two-component metering and mixing system for electrically conductive coating material
US6387184B1 (en) * 1998-01-09 2002-05-14 Fastar, Ltd. System and method for interchangeably interfacing wet components with a coating apparatus
DK1254776T3 (en) * 1998-05-18 2004-05-03 Seiko Epson Corp Ink-jet printer apparatus and ink cartridge
CA2430629C (en) 1998-11-11 2007-01-02 Seiko Epson Corporation Ink-jet printing apparatus and ink cartridge
JP2000218818A (en) 1998-11-26 2000-08-08 Seiko Epson Corp Ink container and printer using the same
CN1294022C (en) 1999-10-12 2007-01-10 精工爱普生株式会社 Ink for ink-jet printer
DE10011734A1 (en) * 2000-03-10 2001-09-13 Machf Gebr Douven B V Procedure for operation of spray device entails using computer and sensor for recording spray operation, and at least one operating component is activated or deactivated automatically depending upon operating information recorded
CA2379725C (en) 2001-04-03 2007-06-12 Seiko Epson Corporation Ink cartridge
US6606571B2 (en) * 2001-10-12 2003-08-12 Deere & Company Microwave flow sensor for a harvester
US7469844B2 (en) 2002-11-08 2008-12-30 S.C. Johnson & Son, Inc. Diffusion device and method of diffusing
US7028861B2 (en) * 2003-12-16 2006-04-18 Joseph S. Kanfer Electronically keyed dispensing systems and related methods of installation and use
JP4715115B2 (en) * 2004-06-23 2011-07-06 ブラザー工業株式会社 Ink filling method
US7389943B2 (en) 2004-06-30 2008-06-24 S.C. Johnson & Son, Inc. Electromechanical apparatus for dispensing volatile substances with single dispensing mechanism and cartridge for holding multiple receptacles
US7621426B2 (en) 2004-12-15 2009-11-24 Joseph Kanfer Electronically keyed dispensing systems and related methods utilizing near field frequency response
US7803321B2 (en) 2005-03-18 2010-09-28 Ecolab Inc. Formulating chemical solutions based on volumetric and weight based control measurements
US7622073B2 (en) 2005-04-12 2009-11-24 S.C. Johnson & Son, Inc. Apparatus for and method of dispensing active materials
US7793839B2 (en) 2006-08-07 2010-09-14 Smart Wave Technologies Corporation System enabling the exchange of information between products
EP2073017B1 (en) 2006-10-10 2016-08-03 ARKRAY, Inc. Cartridge, residual liquid removing method, and automatic analyzer
US8320751B2 (en) 2007-12-20 2012-11-27 S.C. Johnson & Son, Inc. Volatile material diffuser and method of preventing undesirable mixing of volatile materials
US8240508B2 (en) 2008-12-29 2012-08-14 Gojo Industries, Inc. Low cost radio frequency identification (RFID) dispensing systems
GB201004810D0 (en) * 2010-03-23 2010-05-05 St Microelectronics Res & Dev Improvements in or relating to optical navigation devices
USD639923S1 (en) 2010-04-15 2011-06-14 S.C. Johnson & Son, Inc. Dispensing device
US8602069B2 (en) 2010-05-20 2013-12-10 Ecolab Usa Inc. Solid chemical product dilution control
EP3697110A1 (en) 2012-01-08 2020-08-19 ImagiStar LLC Portable item containers which identify missing and/or extra container contents
CA2885861C (en) * 2012-09-24 2021-05-25 Mega Corp, Inc. Digital spray control system
US9393586B2 (en) * 2012-11-21 2016-07-19 Nordson Corporation Dispenser and method of dispensing and controlling with a flow meter
US9847265B2 (en) 2012-11-21 2017-12-19 Nordson Corporation Flow metering for dispense monitoring and control
US20140252111A1 (en) * 2013-03-08 2014-09-11 Raven Industries, Inc. Auto flush-rinse for chemical injection
US9877426B2 (en) 2013-03-12 2018-01-30 Cnh Industrial America Llc Agricultural implement with automated recognition of chemical tote contents
US9700854B2 (en) 2013-03-15 2017-07-11 Ecolab Usa Inc. Chemical dilution system
BR102014010612A2 (en) * 2014-05-02 2017-02-21 Máquinas Agrícolas Jacto S A spray electronic controller
US10219506B2 (en) * 2014-06-10 2019-03-05 Cnh Industrial America Llc Device and method for detecting blockages in an agricultural sprayer
US9766105B2 (en) * 2014-07-02 2017-09-19 Cnh Industrial America Llc Device and method for detecting blockages in an agricultural sprayer
US9615506B2 (en) * 2014-11-10 2017-04-11 Cnh Industrial Canada, Ltd. System for monitoring and controlling product distribution in an agricultural system
US9579678B2 (en) 2015-01-07 2017-02-28 Nordson Corporation Dispenser and method of dispensing and controlling with a flow meter
EP3072376A3 (en) * 2015-03-26 2016-11-23 Basf Se Method and vehicle for applying an agrochemical mixture to a working area of a field
JP7110169B2 (en) * 2016-07-11 2022-08-01 バイエル・クロップサイエンス・アクチェンゲゼルシャフト intelligent nebulization system
US10369585B2 (en) * 2017-07-24 2019-08-06 Cnh Industrial America Llc Automatic rinse system for an agricultural sprayer
US20210291130A1 (en) * 2020-03-23 2021-09-23 Miles Allen Watson Fluid Injection System

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006396A (en) * 1974-01-18 1977-02-01 Motorola, Inc. Universal battery charging apparatus
US3877645A (en) * 1974-05-28 1975-04-15 Dickey John Corp Apparatus for spraying liquid product
GB1507149A (en) * 1975-05-16 1978-04-12 Allman & Co Ltd Spraying equipment
CA1020502A (en) * 1975-10-09 1977-11-08 Frank J. Fortino Beverage dispensing apparatus and method
DE2550930A1 (en) * 1975-11-13 1977-05-26 Klaus Hackenberger Woodworking control and alignment appts. using conducting markings - has contact sensing device to scan marking on article surface
US4090408A (en) * 1976-10-12 1978-05-23 Hedrick Geoffrey S Fluid quantity indicator
US4193356A (en) * 1978-01-20 1980-03-18 The Lely Corporation Spray monitoring device and implement
US4220998A (en) * 1978-04-24 1980-09-02 Kays Sandra E Electronic liquid application rate monitoring system
CY1287A (en) * 1978-09-26 1985-07-05 Ici Plc Electrostatic spraying of liquid
US4272019A (en) * 1978-10-17 1981-06-09 Halaby Jr Samuel A Fluid sprayer apparatus and method
GB2039202A (en) * 1979-01-12 1980-08-06 Curtis Long Dev Ltd A control system for an agricultural spraying machine or the like
US4357670A (en) * 1979-03-02 1982-11-02 E. Allman & Company Limited Devices for testing spraying nozzles
JPS5640721A (en) * 1979-09-12 1981-04-17 Esu Hedoriku Jiefuri Fluid quantity indicator
US4296472A (en) * 1979-10-01 1981-10-20 Rockwell International Corporation Non-intrusive fluid measuring system
FR2466944A1 (en) * 1979-10-15 1981-04-17 Lestradet M C J VEHICLE EQUIPPED WITH A DEVICE FOR SPREADING A LIQUID
JPS6027494Y2 (en) * 1979-12-11 1985-08-19 株式会社クボタ Boom sprayer jet pressure adjustment device
EP0031649B1 (en) * 1979-12-21 1984-09-26 Imperial Chemical Industries Plc Containers and holders therefor for use in electrostatic spraying
US4401274A (en) * 1980-03-20 1983-08-30 Imperial Chemical Industries Plc Containers for use in electrostatic spraying
GB2073052B (en) * 1980-03-20 1983-12-07 Ici Ltd Electrostatic spraying
JPS617822Y2 (en) * 1980-03-31 1986-03-10
US4349882A (en) * 1980-08-22 1982-09-14 Veeder Industries Inc. Liquid level measuring system
GB2084322B (en) * 1980-09-18 1984-08-30 Avery Hardoll Ltd Fluid measuring system
DE3270700D1 (en) * 1981-02-12 1986-05-28 Ici Plc Agricultural spraying apparatus and containers for use therewith
US4392611A (en) * 1981-05-15 1983-07-12 Dickey-John Corporation Sprayer control system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2186273A (en) * 1986-02-10 1987-08-12 Instance Ltd David J A container
US4801929A (en) * 1986-02-10 1989-01-31 Instance David John Container having audible closure removal signalling
GB2186273B (en) * 1986-02-10 1990-02-14 Instance Ltd David J A container
AU598230B2 (en) * 1986-02-10 1990-06-21 David John Instance A container
GB2225125A (en) * 1988-11-16 1990-05-23 Sundstrand Corp Turbine monitoring system
US5033010A (en) * 1988-11-16 1991-07-16 Sundstrand Corporation Turbine engine monitoring system
DE19610589A1 (en) * 1996-03-18 1997-09-25 Duerr Gmbh & Co Process and system for supplying paint to a coating system

Also Published As

Publication number Publication date
JPS58193755A (en) 1983-11-11
ES519522A0 (en) 1984-11-01
EP0086061B1 (en) 1987-06-24
DK48883D0 (en) 1983-02-04
US4629164A (en) 1986-12-16
MX158371A (en) 1989-01-27
DK48883A (en) 1983-08-06
JPS58193255A (en) 1983-11-10
JPH0470952B2 (en) 1992-11-12
EP0086061A1 (en) 1983-08-17
ZA83535B (en) 1983-11-30
GB2114412B (en) 1986-02-05
GB2115317B (en) 1985-07-10
NZ203170A (en) 1986-05-09
AU1084183A (en) 1983-08-11
GB8302674D0 (en) 1983-03-02
IE54378B1 (en) 1989-09-13
GB8302588D0 (en) 1983-03-02
DE3372202D1 (en) 1987-07-30
CZ63983A3 (en) 1995-02-15
ATE27944T1 (en) 1987-07-15
BR8300558A (en) 1983-11-08
IL67722A0 (en) 1983-05-15
ES8500769A1 (en) 1984-11-01
GB2114412A (en) 1983-08-24
DK161958C (en) 1992-02-10
JPH0431939B2 (en) 1992-05-27
AU569245B2 (en) 1988-01-28
CA1199419A (en) 1986-01-14
HU189220B (en) 1986-06-30
IE830221L (en) 1983-08-05
DK161958B (en) 1991-09-02
EP0086075A1 (en) 1983-08-17
GR77383B (en) 1984-09-11
CA1217547A (en) 1987-02-03

Similar Documents

Publication Publication Date Title
US4629164A (en) Container with memory
US4467961A (en) Container and spraying system
US4553702A (en) Spraying system
US4580721A (en) Fluid container
EP0086029B1 (en) Fluid container
US4121767A (en) Mobile agricultural sprayer with additive concentration control
US5638285A (en) System for dispensing dry agricultural chemicals
US5328093A (en) Water-based plural component spray painting system
CA1187584A (en) Container and spraying system
Slaughter et al. Intelligent herbicide application system for reduced herbicide vegetation control: phase II-commercialization
CA2112294A1 (en) Material container with memory

Legal Events

Date Code Title Description
732 Registration of transactions, instruments or events in the register (sect. 32/1977)
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19970131