GB2105189A - Inhalation drugs - Google Patents

Inhalation drugs Download PDF

Info

Publication number
GB2105189A
GB2105189A GB08220158A GB8220158A GB2105189A GB 2105189 A GB2105189 A GB 2105189A GB 08220158 A GB08220158 A GB 08220158A GB 8220158 A GB8220158 A GB 8220158A GB 2105189 A GB2105189 A GB 2105189A
Authority
GB
United Kingdom
Prior art keywords
drug
particles
diameter
drug according
sodium cromoglycate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB08220158A
Other versions
GB2105189B (en
Inventor
Terence David Boardman
Raymond Brian Forrester
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisons Ltd
Original Assignee
Fisons Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisons Ltd filed Critical Fisons Ltd
Priority to GB08220158A priority Critical patent/GB2105189B/en
Publication of GB2105189A publication Critical patent/GB2105189A/en
Application granted granted Critical
Publication of GB2105189B publication Critical patent/GB2105189B/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1688Processes resulting in pure drug agglomerate optionally containing up to 5% of excipient

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Otolaryngology (AREA)
  • Medicinal Preparation (AREA)

Abstract

A finely divided inhalation drug, e.g. sodium cromoglycate, comprises a therapeutically effective proportion of individual particles capable of penetrating deep into the lung, characterised in that a bulk of the particles which is both unagglomerated and unmixed with a coarse carrier, is sufficiently free flowing to be filled into capsules on an automatic filling machine and to empty from an opened capsule in an inhalation device. A proportion of the individual drug particles may have a spherical, collapsed spherical or ring doughnut shape.

Description

SPECIFICATION Inhalation pharmaceuticals This invention relates to a novel form of drug and to methods for its production and formulation.
In our British Patent No. 1,122,284 we have described and claimed an insufflator device for use in the administration of powdered medicaments by inhalation. With that device, and other devices, e.g. that described in British Patent Specification No. 1,331,216, and European Patent Application No. 813021839 a user inhales air through the device which causes a powder container mounted therein to rotate. Powder within the container is fluidised and dispensed into the air stream which is inhaled by the user. For optimum dispensing it has been found that the powdered medicament particles should be comparatively free-flowing and yet should have an ultimate particle size of less than about ten microns to ensure adequate penetration of the medicament into the lungs of the user.These two requirements are prima facie mutually exclusive, since such fine powders are not usually sufficiently free-fiowing. It has in the past been found that this problem can be mitigated or overcome, e.g. as described in US Patent 4,161,516, by forming the powdered medicament into small soft pellets or soft granules. Both soft pellets and soft granules will fluidise satisfactorily within the container and yet are of sufficiently low internal coherence to break up into finer particles of medicament of a therapeutically effective size in the turbulent airstream around the outside of the container. However the procedure of forming the micronised drug into soft pellets or granules is both difficult and expensive.An alternative means of getting the fine particles to flow and disperse satisfactorily has been to mix them with a coarse carrier, e.g. coarse lactose (see US Patent No. 3,957,965). However with all pharmaceuticals it is desirable to use as pure a form as possible (interalia to avoid any possible adverse reactions by the patient to the excipients) and the presence of the coarse carrier is not therefore desirable.
Furthermore the mixing of the fine drug with the coarse carrier involves the extra expense of the carrier, the possibility of segregation of carrier and drug during transport and storage, and extra process steps which add to the cost of production. Production of both the pelletised material and the blend of fine material with the coarse carrier involves the initial step of micronising the drug. Sodium cromoglycate has been made, for blending with lactose or agglomeration into soft nearly spherical pellets and administration by inhalation, as a micronised dry powder and in this form consists mostly of rods or lath-shaped crystals. In both the pelletised and blended material energy is needed to break up the pellets or to separate the fine drug from the coarse carrier before or during inhalation.Thus in many instances it has also been found that the amount of drug which is available as fine particles in the air stream is dependent on the rate at which air is passed through the inhaler (i.e. the amount of energy imparted to the formulation). This can be particularly disadvantageous when the drug is used to treat patients suffering from conditions affecting their ability to breath.
Thus for many years the production of drugs in a form in which they can flow easily (and therefore be filled readily into capsules) while at the same time being of a sufficiently small particle size to penetrate deep into the lung has presented a problem which has only been capable of resolution by means of complex procedures.
We have now found particles which can penetrate deep into the lung and yet which are sufficiently free flowing to be filled into capsules, and otherwise manipulated, without mixing with a coarse diluent or formation into soft pellets or granules. We have also found that these particles can disperse well from an inhaler at both low and high air flow rates, thus, in certain circumstances, improving consistency of capsule emptying. Furthermore we have found that the new particles can, in general, be coarser than those of the prior art while giving an equivalent proportion of particles capable of penetrating deep into the lung.
According to the invention we provide a finely divided inhalation drug comprising a therapeutically effective proportion of individual particles capable of penetrating deep into the lung, characterised in that a bulk of the particles which is both unagglomerated and unmixed with a coarse carrier, is sufficiently free flowing to be capable of being filled into capsules on an automatic filling machine and to empty from an opened capsule in an inhalation device.
According to the invention we also provide a drug in finely divided and unagglomerated form, wherein a substantial proportion of the individual drug particles have a spherical, collapsed spherical, i.e. where one or both sides of the sphere appear to have been pushed inwards, or toroidal shape, i.e. the shape of a ring doughnut. The ring doughnut shapes may have a hole through the middle or may have a thin membrane filling the hole. In certain cases a population of two or more of spheres, partially collapsed spheres, fully collapsed spheres and ring doughnut shapes is found.
The individual particles should be as rounded and smooth as possible to enable them to be carried easily in an air stream and to flow readily on capsule filling machines. We prefer the majority of the particles not to have sharp or broken edges, and for the particles themselves to be mechanically strong so that they do not break during encapsulation or on their passage from the capsule to the lung. Thus we prefer to avoid hollow sheli particles. We particularly prefer a proportion of the particles, especially when the drug is sodium cromoglycate, to be toroidal in shape. In general the shape of the particles is unrelated to particle size. We have also found that in general the particles have smooth cleavage planes, are relatively non-porous and are of uniform density through each particle.With respect to their strength the particles of the present invention are strongly differentiated from the prior art soft pellets and granules, and with respect to their shape they are strongly differentiated from the prior art micronised material. A low particle density in the material is indicative of fragile particles and is, in general, to be avoided. We prefer the particles to be as uniform as possible in all respects.
The surface texture of the particles will vary according to the particular drug concerned and the techniques used to produce the particles, and can vary from a highly convoluted (brain like) structure to a random fluffy or to a smooth texture. In general we prefer to avoid highly convoluted surface textures.
The roughness of the surface of the particles can be determined by measuring the total surface area of the particle by the Brunauer, Emmet and Teller (BET) method (British Standard 4359 (1969) Part 1) and comparing this with the envelope surface area of the particles as measured by permeametry (Papadakis M.
(1963), Rev. Mater. Construct. Trav. 570,79-81).
We prefer the permeametry: BET ratio to be in the range 0.5 to 1.0, preferably 0.6 to 1.0 and more preferably 0.7 to 0.97 (note a ratio of 1.0 represents a perfectly smooth particle). By way of contrast prior art micronised drugs, e.g. micronised sodium cromoglycate, have a permeametry: BET ratio of about 0.32.
We prefer the particles of the invention to be as strong and as dense as possible. The particle density of the particles (as oppossed to the bulk density) may be measured by a) the petroleum ether method in which a known weight (259) of powder is weighed into a measuring cylinder, a known amount of petroleum ether (50ml) is added and the mixture shaken until all the powder is suspended. The inner walls of the measuring cylinder are washed with a small amount of petroleum ether (1 0ml). Knowing the weight of powder used, the volume of petroleum ether added and the final suspension volume, the particle density can be calculated. or b) the air pycnometer method in which a given amount of powder is placed in a chamber which is hermetically sealed. The volume of the chamber is gradually reduced by a moving piston until a specified pressure is reached.The position of the piston indicates the volume of the powder particles, hence the particle density can be calculated.
We prefer the particles, e.g. of sodium cromoglycate, to have a particle density according to the above methods of from about 1.3 to 1.7 and preferably from 1.3 to 1.6 g/cm3.
The micronised material, e.g. sodium cromoglycate, of the prior art has a loose bulk density of about 0.21 g/cm3 and a packed bulk density of about 0.29 g/cm3. In measuring loose bulk density a suitable amount of powder (40g) is poured, at an angle of 45 , into a measuring cylinder (250ml). The volume occupied by the powder in the measuring cylinder when related to the original mass of powder provides the measure of "loose bulk density". If the powder, in the cylinder, is tapped or jolted, e.g. using the Engelsmann Jolting Volumeter, until a stable volume is attained (500 jolts) then the lower volume after jolting when compared with the original mass of powder provides the measure of "packed bulk density".
It is also known, e.g. from British Patent Specification No. 1,549,229 that hard granules of sodium cromoglycate of particle size 60 to 200 microns (measured by sieving) can have higher bulk densities than the micronised material. However these hard granules were not designed for, and indeed would be unsuitable for, inhalation. Surprisingly we have found that the particles of the present invention have a higher bulk density than micronised material, e.g. micronised sodium cromoglycate. We prefer the particles of the present invention to have a loose bulk density of greater than about 0.3 g/cm3, preferably of greater than 0.35 g/cm3, more preferably of from 0.35 to 0.5 gicm3, and most preferably 0.35 to 0.4g/cm3; and a packed bulk density of from about 0.4 to 0.75 g/cm3 and preferably of from 0.55 to 0.6g/cm3.The bulk densities of materials are, in general, relative independent of the particular material used, but are dependent on the shape, size and size distribution of the particles involved.
We prefer the particles of the invention, when they comprise sodium cromoglycate and are intended for administration as a dry powder in, for example, a gelatine capsule to have a moisture content of from 5 to 14, and preferably from 8 to 11% w/w. Before filling into the capsule the powder will tend to be at the lower end of the moisture range, and after filling to be at the upper end of the range. Sodium cromoglycate powders according to the invention may also be made containing very low, e.g. less than 1%, or preferably less than 0.5%, w/w, quantities of water. These very dry powders may be used in pressurised aerosol formulations.
The water contents in this specification are those measured by drying a small sample (1 to 2g) for 15 hours at 105"C in a vacuum oven (less than 5 mm Hg) in the presence of phosphorus pentoxide.
Examples of suitable medicaments include those used for the inhalation treatment of allergic airway diseases such as pharmaceutically acceptable salts of 1,3-bis(2-carboxychromon-5-yloxy)propan-2-ol ; bronchodilators, e.g. isoprenaline, salbutamol, fenoterol, terbutaline, reproterol etc and salts of anyone thereof; antibiotics, e.g. tetracycline; steroids, e.g. beclomethasone dipropionate; enzymes; vitamins and antihistamines. If desired a mixture of medicaments, for example a mixture of sodium cromoglycate and a broncholdilator, such as isoprenaline, terbutaline, fenoterol, reproterol or a salt of any one thereof, may be used. Where a highly active medicament is used which requires a small unit dose the individual particles may comprise the active ingredient together with a suitable diluent, e.g. lactose. The incorporation of the diluent in the particle avoids the possibility of segregation which is possible when individual fine particles of active ingredient are used with separate coarse particles of diluent.
We prefer that at least 50% by weight and preferably more than 90%, of the drug particles are of less than 60 microns, more preferably of less than 40 microns, most preferably of less than 20 microns and especially of less than 10 microns, e.g. less than 8 microns in diameter. We particularly prefer at least 50% of the particles to be of 2 to 6 microns in diameter. In general the smaller the mass mean diameter of the material the higher will be the dispersion of the material, as measured by the test of Example A(a).
Material according to the invention, e.g. sodium cromoglycate, having a median diameter of from 10 to 15 microns can, because of the enhanced aerodynamic properties of the particles, be equivalent in emptying and dispersion properties (see Example A) to micronised (i.e. sub 10 micron) material which has been formed into soft pellets as described in US Patent 4,161,516 or blended with coarse lactose, as described in US Patent 3,957,965.
The particle sizes in this specification are those measured with a Coulter Counter TA11 used in a standard laboratory environment, or the pipette centrifuge. In measuring particles sizes with a Coulter Counter, the sample to be analysed is dispersed in an electrolyte into which dips a glass tube. The glass tube has a 50 to 400 micron hole through the wall thereof with electrodes mounted on either side of the hole in the tube wall.
The tube is immersed sufficiently for the hole and electrodes to be submerged in the liquid. The suspension is made to flow through the hole in the glass tube and as each particle passes through the orifice it displaces its own volume of electrolyte, thus changing the resistance across the hole. This change in resistance is converted into a voltage pulse with an amplitude proportional to the particle volume. The pulses are fed to an electronic counter with an adjustable threshold level such that all pulses above the threshold are counted.
By setting the threshold level at different values it is possible to determine the number of particles falling within given size ranges and thus the proportion of particles in a sample which fall outside a desired particle size range. The Coulter Counter measures the volume of a sphere having the same volume as the unknown material, i.e. it measures a volume diameter.
In measuring particles by the pipette centrifuge (Christison Scientific Equipment Limited) the powder is suspended in a suitable liquid (e.g. n-butanol). The suspended sample is put in a constant speed centrifuge.
Sampies are withdrawn from the centrifuge at selected time intervals. The level of solids in each sample is measured (normally by drying) and the average diameter calculated using an equation derived from Stokes Law (Particle Size Measurement Published by Chapman Hall 3rd Ed. Dr. T. Allen, page 377 et seq.). The pipette centrifuge measures a mass, or Stokes, diameter.
The Coulter counter (with a 100 micron hole) is able to measure particle sizes of from about 2 to 40 microns and the pipette centrifuge is able to measure particle sizes down to about 0.2 microns.
According to the invention we also provide a process for the production of finely divided drug, which comprises atomising and drying a solution of the drug and collecting some or all of the particles which are below 60, preferably below 40, more preferably below 20 and especially below 10 microns in diameter. The particles are preferably of the sizes given above.
Spray or flash drying of materials is well established as a drying technique in the food and other industries, but is scarcely used at all in the pharmaceutical industry. Thus spray drying is routineiy used in the production of coarse particle products such as dried milk, instant coffee and dextran. The use of spray drying techniques to produce very fine powders is not conventional and is unknown in the pharmaceutical field, the normal technique for producing such fine powders being to make, and then micronise, a crystalline drug.
The use of a spray drying technique is advantageous in that it is adapted to suit large batch productions, thus decreasing the amount of quality control required and also in that it may remove the need for recrystalisations and micronisation to get the drug into the desired form.
Any suitable form of atomiser can be used. Atomisation results from an energy source acting on liquid bulk. Resultant forces build up to a point where liquid break-up and disintegration occurs and individual spray droplets are created. The different atomisation techniques available concern the different energy forms applied to the liquid bulk. Common to all atomisers is the use of energy to break-up liquid bulk.
Centrifugal, pressure and kinetic energy are used in common forms of atomiser. Sonic and vibratory atomisers are also used. Specific atomisers which may be mentioned include rotary atomisers, e.g. those involving vaned wheels, vaneless discs, cups, bowls and plates; pressure atomisers, e.g. those involving pressure nozzles, centrifugal pressure nozzles, swirl chambers and grooved cores; kinetic energy or pneumatic atomisers, e.g. those involving two or three fluids, or internal or external mixing; and sonic energy nozzles, e.g. involving sirens or whistles. We prefer to use kinetic or pneumatic energy atomisers particularly two fluid pressure or syphon or sonic nozzle atomisers.In general two fluid pressure nozzles tend to produce powders having more desirable characteristics than two fluid syphon nozzles and two fluid pressure nozzles also tend to give more reproducible results and use less energy.
The atomiser can be used in a spray or flash drying apparatus.
The conditions of operation of the apparatus and storage of the solution (e.g. pH and temperature) should clearly not be such as to degrade the drug, or introduce impurities, or biological contamination, into the drug.
The spray drying apparatus preferably comprises the atomiser, a main chamber, one or more (e.g. two) cyclones, a bag filter and, if desired or necessary to maximise recovery, a terminal wet scrubber or electrostatic precipitator. The particle collection system is designed to capture the desired size range of particles and also to maximise the yield. All over and under size material may be recovered and recycled or put to other uses.
The solution of the drug may be in any suitable solvent, e.g. water from a water soluble drug. The concentration of the drug in the solvent may vary over a wide range, e.g. in the case of sodium cromoglycate from 1 to 25, preferably 5 to 20, and especially 10 to 15 % w/v. In general we prefer to use a high concentration of drug as the volume and energy requirements of the atomisation and drying process are thereby diminished. To avoid possible blockage of the atomisation device and to avoid the incorporation of unwanted impurities it is desirable to filter the solution immediately before it is passed to the atomiser. The particle size of the product tends to increase with concentration, but not rapidly, and in general concentration is not controlling with respect to particle size.
The temperature of the air inlet and outlet to the spray drier main chamber may vary over a wide range (the range being dependent on the product being dried, the solution through put and the final moisture content required) and suitable temperatures may be found to suit each drug and solvent by simple routine experiment. In the case of aqueous solutions (of for example sodium cromoglycate), we have found that an air inlet temperature of from 160 to 350"C, preferably from 180 to 230"C, and an outlet temperature of from 70 to 250 C and preferably of from 70 to 120 C are suitable.
The temperature of the solution to be fed to the spray drier will vary with the drug and the solvent to be used. In general we prefer to use a temperature at which the solution can be stored for a long period in large batches without degradation. As high a temperature as possible comensurate with stability is desirable to reduce solution viscocity and provide energy to the drying process.
The air flow rate, direction into the spray drier, the temperature of the air and the rate of feed of solution to the spray drier can be optimised by simple experiment. All of the parameters in the spray drying process interrelate and can be adjusted to produce the desired product.
Gases other than air, e.g. nitrogen, can be used if desired. The use of an inert gas will be advantageous when an inflamable solvent or a readily oxidisable drug is used. The gas used, e.g. air or nitrogen, may, if desired, be recycled to avoid loss of entrained drug and/or to conserve energy and the inert gas.
The particle size of the product will be set by the concentration of the feed solution, the rate of feed to the spray drier, the means of atomising the solution, e.g. the type of atomiser and the pressure of the air, and solution to be dried, the temperature and temperature gradient within the drier and, to a small extent, the air flow in the drier. The particle size and air fow will then dictate where the desired product is collected and the means of collection.
The particle size of the product tends to remain fairly constant with liquid flow rate through the atomiser, but to decrease the increasing air pressure up to a limiting pressure, e.g. of about 11Kg cm-2. The range of air pressure suitable will naturally depend on the atomisation device used, but we have found that air pressures of from about 2Kg cm-2 to 11KG cm-2 are in general effective, e.g. with a 0.4mm orifice syphon two fluid nozzle. In order to achieve reproducible results we prefer to maintain a constant air flow to the dryer and appropriate airflow control devices may be used if desired.
The cyclone or cyclones used to collect the dried particles are of conventional design, but adapted to collect finer particles than is normal. Thus the pressure differential across the cyclones, the combination of two or more cyclones and the design of the particular cyclones used may be adjusted to enable capture of the fine particles. The bag filter used to collect the finest material is of conventional design and is readily available. The filter medium within the bag filter preferably has a high capture efficiency for particles of approximately 0.5 microns in diameter and greater. A particularly suitable medium is a polytetrafluoroethylene membrane supported on a polypropylene or polyester cloth, e.g. a needle felt cloth. Any electrostatic precipitator, or wet scrubber, used will also be of conventional design.
The product may be classified, e.g. sieved or air classified, to remove over and under sized material. The over and under sized material may be recycled or used for other purposes.
The final product may be put up in any suitable form of container such as a capsule or cartridge. Where it is desired to use the product in association with other ingredients such as colourants, sweeteners or carriers such as lactose, these other ingredients may be admixed with the particles of the invention using conventional techniques or may be incorporated in the solution to be spray dried. We prefer the particles of the invention to contain medicament and water only. Mixtures of two or more different particles according to the invention, e.g. of sodium cromoglycate and a bronchodilator, such as isoprenaline sulphate or tertbutaline sulphate, may be made and filled into suitable containers.
According to our invention we also provide a method of application of a medicament, e.g. sodium cromoglycate, to a patient by way of inhalation, the medicament being dispersed into an air stream, characterised in that an opened, e.g. pierced, container, e.g. capsule, containing particles according to the invention is rotated and vibrated in an air stream which is inhaled by the patient. The rotation and vibration may conveniently be produced by any one of a number of devices, e.g. the device of British Patent Specification No. 1,122,284.
The particles according to the invention may also be used in pressurised aerosol formulations (together with propellant gases, e.g. a mixture of two or more of propellants 11, 12 and 114, preferably with a surface active agent, e.g. sorbitan trioleate) or may be formed into soft pellets, e.g. as described in US Patent Specification No. 4,161,516, or may be used for application to the skin. Sodium cromoglylcate is known to be of use in the treatment of a wide variety of conditions, e.g. asthma and hay fever.
From another aspect the invention also provides a capsule, cartridge or like container containing particles according to the invention, optionally in association with other particles. We prefer the container to be ioosely filled to less than about 80% by volume, preferably less than about 50% by volume, with the particles of the invention. The particles are preferably not compacted into the container. We prefer the container, e.g.
capsule, to contain from 10 to 100 mg, e.g. about 20mg, of the particles.
The invention will now be illustrated by the following Examples in which all parts and percentages are by weight unless otherwise stated.
EXAMPLE 1 The active compound (A) was dissolved in a solvent, normally water, to a concentration B (% w/v). This solution flowed under pressure or vacuum to the atomiser. At the atomiser the solution temperature was normally greater than 50"C. Conditions of atomisation (C) and of droplet drying (D) were preset and remained constant throughout the run. The powder was captured in the drying chamber, in two cyclones (firstly a Vantongeren Buell AC 130 cyclone of diameter 22 cm and height 74 cm and secondly a high efficiency Stairmand formula cyclone of diameter 14 cm) and finally in a bag filter which had as the filter media polytetrafluoroethylene lined polypropylene. At the end of each run the contents of each collection vessel was weighed (E) and sized (F) (Coulter Counter Model TA11).
a) Varying active ingredients Using a concentration (B) of 10% w/v in water, and atomisation conditions (C) a pressure two fluid nozzle (0.4mm orifice), a solution flow rate of 65ml min-1 and an atomisation pressure of 27 x 103Kg m-2 the results shown in Table 1 were obtained.
Note - Electron micrographs (see Figures 1 to 4) showed.
Salbutamol Sulphate - smooth spheres Terbutalene Sulphate - "orange peel" spheres Isoprenaline Sulphate - smooth spheres 4,6-Dioxo-1 0-propyl-4H,6H-pyrano[3,2-g] pyran-2,8-dicarboxylic acid disodium salt "orange peel" spheres with surface cracks Sodium Cromoglycate Sodium Cromoglycatel ) "doughnut", spheres and other active ingredients) collapsed spheres b) Varying atomisation Techniques Active ingredient (A) - Sodium Cromoglycate.
Conditions used and results obtained are given in Tables 2 and 2a.
Two fluid syphon nozzle - CT (London) Ltd. CT Type J1A 16/50 (4mm orifice) Two fluid pressure nozzle - CT (London) Ltd. CT Type J1 1 Ultrasonic nozzle - Ultrasonics Ltd, 035 H Sonicore nozzle Swirl Air nozzle - Delevan Ltd - Swirl Air Nozzle Type 32163-1 c) Variation ofpowder collection techniques The powder is collected in the drying chamber, cyclones and a bag filter.
Active ingredient A - Sodium Cromoglycate.
Conditions used and results obtained are given in Tables 3 and 3a.
Powder Capture Equipment Main chamber (MC) size - 13 cu ft (give metric equivalent) Cyclone A - Stairmand High Efficiency Cyclone (Diameter 14cm) Cyclone B - Vantogeren Buell AC 130 Cyclone (Diameter 22cm, Height 74cm) Cyclone C - Stairmand High Efficiency Cyclone (Diameter 11.9cm) Bag Filter (BF) - 1.86 M2 polytetrafluoroethylene lined polyester d) Variation of droplet drying time Droplet drying time is dependent upon both the temperatures used in drying, i.e. air inlet temperature, the residence time in the drying chamber (normally this is as a result of drying chamber size) and level of evaporation required. Residence time can be changed by modifying the drying air flow rate but this results in a significant change in efficiency of capture within the latter cyclones. Table 4 indicates the range of drying conditions used.Increased residence time (i.e. slower drying) produced improved particles with improved performance.
Electron micrographs of a selection of the above powders are shown in the accompanying Figures. Figures 11 and 12 are electron micrographs of, respectively pelletised sodium cromoglycate, and micronised sodium cromoglycate and are included for comparison purposes only. In each of Figures 1 to 12 the magnification and an approximate scale is given.
TABLE 1 Drying Conditions (D) Powder Recovered E/F Run Inlet Outlet Air Flow Main Cyclone Cyclone Electron No. Active Ingredient (A) Temp. Temp. Rate Chamber B A Micrograph C C m s-1 micron volume figure No median diameter 1. Sodium Cromoglycate 195 100 0.034 2.0/- 80/7.5 18/3.4 2. Terbutalene Sulphate 202 102 0.034 -/- 83/4.3 17/4.0 1 (B cyclone) 3. Salbutamol Sulphate 204 105 0.034 -/- 78/4.1 22/2.7 4. Isoprenaline Sulphate 201 100 0.034 33/- 34/6.5 33/3.3 5. 4,6-Dioxo-10-propyl 4H,6H-pyrano[3,2-g] pyran-2,8-dicarboxylic acid disodium salt 200 100 0.034 7/16.5 78/6.2 15/4.1 2 (B cyclone) 6. Sodium Cromoglycate (100)/ Terbutalene Sulphate (0.522) w/w 200 101 0.034 8/- 75/6.6 17/3.6 3 7. Sodium Cromoglycate (100)/ sulbutamol Sulphate (0.5220 w/w 220 88 0.034 17/- 58/7.4 25/4.2 8.Sodium Cromoglycate (100)/ Isosprenaline Sulphate (0.5220 w/w 205 106 0.034 13/19.0 75/7.0 12/3.2 4 9. Sulbutamol Sulphate* (1.6)/ Lactose (100) w/w 200 100 0.034 7/- 93/7.8 (cyclone C) * Cyclone configuration changed to MC/C/BF.
TABLE 2 Atomisation Conditions (C) Drying Conditions (D) Power Recovered E/F Solution Solution Atomisation Inlet Outlet Air Flow Main Cyclone Cyclone Bag Electron Run Atomiser Conc Feed Rate Pressure Temp. Temp. Rate Chamber B A Filter Mlcrograph No. Type % w/v Ls-1 x 10-3 kgm x 10 C C m s-1 micron volume Flgure No median diameter 10. Slotted Disc 10 0.57 23000 220 134 0.034 * 81/15 9/5.2 5(B 11. Slotted Disc 10 0.48 rpm 214 130 0.034 20/- 78/22 2/4.0 cyclone) 12. Holed Disc 10 0.70 220 118 0.034 32/- 65/17 3/4.3 13. Inverted Cup 10 0.50 215 127 0.034 21/24 79/17.7 6(B 14. Two Fluid 5 0.33 150.7 238 125 0.034 1/- 79/4.5 31/2.8 49/- cyclone) Syphon 15. Nozzle 20 1.33 150.7 205 94 0.034 26/15.5 12/7.4 62/3.1 16. 10 0.90 56.4 210 108 0.034 7/- 70/8.5 23/3.0 17. 10 0.63 105.7 225 113 0.034 5/- 34/4.7 31/2.9 30/2.1 7(A 18.Two Fluid 15 0.37 28.2 190 132 0.034 8/29 62/6.8 30/3.7 cyclone) 19. Pressure 10 0.33 28.2 200 95 0.034 12/- 77/9.2 11/3.5 20. Nozzle 10 1.52 18.3 210 104 0.034 24/- 74/16.0 2/4.0 21. 4mm orifice 10 0.42 39.5 203 137 0.034 5/25 53/10 33/3.4 9.3/0 22. Two Fluid 10 1.33 36.6 205 95 0.034 13/- 77/10.5 10/3.2 23. Pressure 10 1.17 21.1 205 90 0.034 12/- 79/9.2 9/4.2 Nozzle 5mm orifice 24. Ultrasonic 10 1.47 35.2 210 87 0.034 6/- 82/9.8 12/3.3 Nozzle 25. Swirl Air 15 1.17 49.3 200 90 0.034 13/- 79/14.5 8/ Nozzle *Chamber contents showedincomplste drying.
TABLE 2a Run Dispersion Coulter Particle Density Moisture Emptying BET Peramea- Permeatmery No. (see Exam- particle g/cm g/cm lsee Exam- metry BET ratio ple AC) size ple Ao) Air Pycn- petro- Loose Packed ometer leum Ether %w/w volume % w/w % mkg-1 x 10 median diameter 10. 12.6 15 - - - - - 86 - - 10. 41.4 5.2 - - - - - 80 - - 11. - 22 1.35 1.45 0.42 0.58 7.0 - 0.62 0.496 0.79 12. - 17 - - 0.43 0.63 - 88 - - 12. 40.0 4.3 - - - - - 65 - - 13. - 17.7 1.56 - 0.50 0.74 5.5 88 0.48 0.33 0.69 14. - 2.9 - - - - - 57 - - 15. 8,6 15.5 - - - - - 93 - - 17. 21.4 2.8 1.59 1.66 0.34 0.48 8.5 59.2 2.42 1.25 0.52 20. - 24 1.33 1.45 - - - 98 - - 23. 19.6 9.2 - - - - - 92 - - 23. 26.1 4.2 1.50 1.55 0.31 0.43 - 28 1.75 1.1 0.63 24. 12.3 14.5 - - - - 6.9 96.3 - - 25. 24.4 9.5 - - - - - 96 - - - Atomisation Conditions (C) Drying Conditions (D) Powder Recovered (E/F) Run Powder SolutionSolution Atomi- Inlet Oulet Air Flow Main Cyclone Cyclone cyclone Bag No. Capture sation Equipment Atomiser Cone Feed Rate Pressure Temp. Temp. Rate Chamber A B C Filter Configuration Type volume % w/v Ls- x 10- Kgm-x10 C C m s- median diameter microns 26. MC/A/B/BF Two Fluid 10 1.17 105.7 210 95 0.034 3/- 87/9.6 10/4.2 Syphon Nozzle 27. MC/BF Nozzle 10 1.27 105.7 215 98 0.034 14/17 86/5.2 28. MC/B/A/BF Nozzle 10 0.88 105.7 218 112 0.034 3/- 40/2.9 35/6.4 22/2.0 29. MC/BF Two/Fluid 10 1.5 18.3 180 80 0.034 50/- 50/13.5 Pressure 30. MC/BF Nozzle 10 0.42 33.8 190 120 0.034 4/23 96/5.2 4mm 31. MC/B/A/BF Orifice 10 1.52 18.3 210 104 0.034 24/- 3/4.0 73/16 32. MC/C/BF 10 0.9 35.2 195 95 0.034 11/ 86/6.5 3/33.MC/BF Two Fluid 10 1.73 16.2 185 74 0.034 61/ Pressure 34. MC/B/A/BF Nozzle 10 1.16 21.1 205 90 0.034 12/- 9/4.2 79/9.2 5mm 35. MC/C/BF Orifice 15 1.23 26.8 222 102 0.034 16/- 86/11.5 TABLE 3a Run Dispersion Pipette Coulter Particle Density Bylk Density Moisture Emptying BET Peramea- Permeametry No. (see Exam- Centrifuge particle g/cm g/cm (see Exam- metry BET ratio ple Ac) particle size ple Ab) size Air Pycn- Petro- Loose Packed Packed ometer Lelum Ether %w/w mass volume %w/w % mkg-x10 median median diameter diameter 26. 25.4 - 4.2 - - - - - 91 - - 27. 8.3 - 17.0 - - - - 95 - - 28. - 1.7 2.0 - - - - - 95 - - 29. 17.1 - 13.5 - - - - - 97 - - 31.. - 24.0 1.33 1.45 - - - 98 - - 32. 20.6 8.5 - - - - - 93 - - 33. 20.0 - 14.0 - - - - - 97 - - 34. 19.6 - 9.2 - - - - - 92 - - 26.1 - 4.2 1.56 4.55 0.31 0.43 - 98 1.75 1.12 0.64 35. 20.9 - 11.5 - - - - 8.1 92.9 - - - TABLE 4 Atomisation Conditions Drying Conditions Run Atomiser Solution Solution Atomisation Inlet Outlet Air Flow Electron No. Type Cone. Feed Rate Pressure Temp. Temo. Rate Micrograph Figure %w/v Ls-x10- Kgm-x10 C C m S- 36. Two Fluid 20 1.67 176.2 165 88 0.034 Syphon 37. Nozzle 5 0.48 55.0 345 254 0.034 38. Two Fluid 10 0.67 35.2 305 122 0.034 10(1st Pressure cyclone) Nozzle 4mm 39.Orifice 10 1.28 23.3 140 60 0.034 EXAMPLE 2 The experiment was carried out using a spray drier which had a main chamber and a single cyclone. (Main chamber 0.37m3, cyclone Stairmand High Efficiency design with diameter 1 19mm). Atomisation was achieved using a two fluid pressure nozzle with orifice diameter 0.44mm. With an aqueous sodium cromoglycate feed solution concentration of 15 % w/v, an air flow rate of 0.034M3s-' and other conditions set out in Table 5, the results shown in Tables 5, 5a and 5b were obtained. Table 5b gives test results when the powders produced according to this Example have been filled into hard gelatine capsules.
TABLE 5 Atomisation Conditions (C) Drying Conditions (D) Powder Recovered E/F Run Solution Feed Atomisation Inlet Outlet Main Cyclone No. Rate Pressure Temp Temp Chamber Ls-' x 10-3 Kgm-2x 103 "C "C %/Micron Volume Median Diameter 40. 1.33 27.5 190-200 70-80 33/- 67/13.0 41. 1.58 21.2 220-230 85-95 40/- 60/14.7 42. 1.43 25.4 195-200 80-90 20/- 80/13.8 43. 1.50 24.0 195-204 75-85 33/- 67/13.7 44. 1.58 22.6 190-200 70-80 36/- 64/14.0 45. 1.50 24.0 195-205 80-90 34/- 66/16.5 TABLE 5a Powder data Test Run Number 40 41 42 43 44 45 Moisture % w/w 8.8 9.7 8.4 9.8 9.8 9.5 Particle Size:: Volume median diameter microns 13.0 14.7 13.8 13.7 14.0 16.5 %w/w6microns 10 8 9 8 8 7 %w/w30 microns 4 7 8 8 8 15 Loose Bulk Density g/cm3 0.39 0.38 0.39 0.38 0.36 0.37 Packed Bulk Density g)cm3 0.58 0.56 0.58 0.57 0.57 0.59 TABLE 5b Capsule Data Test Run Number 40 41 42 43 44 45 Moisture Content % wlw Powder when in the capsule 12.1 11.9 12.2 12.2 13.3 13.2 Capsule shell 13.9 14.2 13.3 13.5 13.1 13.0 Total mg/capsule 11.8 11.9 11.9 11.6 11.6 11.5 Emptying Test % wlw (See Example Ab) Mean 95.4 96.4 97.1 97.2 97.4 96.2 Range 87.3-99.1 92.6-99.3 93.1-100 95.5-98.9 92.7-100 94.3-98.2 Dispersion mg/capsule (See Example Ac) 5.32 4.03 4.74 4.97 4.28 3.12 EXAMPLE 3 Pressure nozzle The trial was carried out using a spray drier having a main chamber and a single cyclone.
This experiment was used to demonstrate that the pressure nozzle was capable of providing small particles and establishing the order of magnitude of pressure required to produce particles with an average mass mean diameter of less than 10 microns. An atomiser pressure of 2.1 xl 06 Kgm2, a feed concentration of 6% w/v of aqueous sodium cromoglycate, an air inlet temperature of 230"C and an air outlet temperature of 120"C was used. The resulting powder had particles of size 11 microns mass mean diameter with a particle bulk density similar to that of micronised powder, but with a tapped bulk density twice that of micronised powder. The powder was satisfactory in the capsule emptying test.
The appearance of the powder under the light microscope was of uniform spheres or collapsed spheres with negligible fractured particles.
EXAMPLE A The drug is dispensed from a gelatine capsule 6.4 mm in diameter and having two holes 0.8mm in diameter in a shoulder thereof mounted in a device (commercially available under the Registered Trade Mark 'Spinhaler') according to British Patent No. 1,122,284 having a drawn wire shaft 2.03mm diameter journalled in a hard nylon bearing tube 13mm long and having an internal diameter of 2.08mm at its inner end (i.e. that end housing the free end of the shaft) and of 2.44mm at its other end.
The particles are preferably such that when put up in gelatine capsules 6.4mm in diameter each containing 20mg of the particles they meet the criteria set out in the tests below: (a) Dispersion test The filled capsules are mounted in the capsule holder of the powder insufflator (having the specific dimensions set out immediately above) of British Patent Specification No. 1,122,284 and pierced to produce two holes of 0.8mm diameter in a shoulder of the capsule. The dispersion of the medicament in the cloud delivered by the insufflatoris determined using a ntodified version of the multistage liquid impinger described in British Patent Specification No. 1,081,881.The modifications incorporated in the present design are the addition of an extra impingement stage, and of a glass tube with a right angled bend approximately mid-way along its length. The extra impingement stage was added prior to the three stages described in British Patent Specification No. 1,081,881 and consists essentially of a jet of internal diameter 2.5cm and a collection plate of diameter 5cm designed to give an effective cut-off of approximately 12 microns at an air flow rate of 60 litres per minute. The glass tube, also of internal diameter 2.5cm abutts the external end of the jet of the extra stage. The insufflator is inserted into the upper, horizontal end of the glass tube and air drawn through at 60 litres per minute for 30 seconds. At least five capsules are treated in this manner and the results are averaged. The weight of the medicament collected on each stage of the impinger, on the glass tube, and on a filter paper positioned after the final stage is determined spectrophotometrically after solution in an appropriate volume of distilled water (or by any other appropriate method).
The particles disperse satisfactorily if an average total for each capsule of at least 0.5 mg, preferably at least 2.5mg and most preferably at least 5.0mg of the particles are found on a combination of the last two stages and filter paper of the multi-stage liquid impinger.
(b) Emptying test The filled capsules are mounted in the capsule holder of the powder insufflator (having the specific dimensions set out above) of British Patent Specification No. 1,122,284 and pierced to produce two holes of 0.8mm diameter in a shoulder of the capsule. The insufflator is placed in a device adapted to suck air through it for 2.5 seconds, the air flow rate at no time exceeding 60 litres per minute, and being held at 60 litres per minute for at least 2 seconds. The capsule mounted in the insufflator is subjected to 4 sucks as described and the weight of the material remaining in the capsule is determined. The above procedure is repeated 20 times and the average of the results determined.
The capsules empty satisfactorily if an average of at least 50%, preferably at least 75% and most preferably at least 90% by weight of the material has emptied from each capsule.
(c) Dispersion Single Stage Impinger In a further refinement, the multistage liquid impinger of Example Aa) was simplified to give a single stage liquid impinger, consisting of a single impingement assembly with a filter downstream. The impingement assembly consisted of a vertical jet of internal diameter 1.9cm and a collection plate of diameter 3.8cm. At the upper end, the jet was bent through an angle of 90" and the insufflator was attached to the distal end of this horizontal portion. The impingement characteristics of this single stage device were intended to be such that material reaching the filter of this device is similar in particle size to that reaching the final two stages and filter of the multistage liquid impinger of Example Aa). The percentage of material reaching the filter of the device is determined.
In all samples of sodium cromoglycate prepared by the techniques exemplified above at least some of the particles were of toroidal (ring doughnut) shape.

Claims (42)

1. A finely divided inhalation drug comprising a therapeutically effective proportion of individual particles capable of penetrating deep into the lung, characterised in that a bulk of the particles which is both unagglomerated and unmixed with a coarse carrier, is sufficiently free flowing to be filled into capsules on an automatic filling machine and to empty from an opened capsule in an inhalation device.
2. An inhalation drug in finely divided and unagglomerated form, wherein a substantial proportion of the individual drug particles have a spherical, collapsed spherical or ring doughnut shape.
3. A drug according to Claim 2 which contains sodium cromoglycate and wherein the particles are of ring doughnut shape.
4. A finely divided inhalation drug, wherein the permeametry: BET ratio, as hereinbefore defined, is in the range 0.5 to 1.0.
5. A drug according to Claim 4, wherein the ratio is from 0.6 to 1.0.
6. A drug according to Claim 5, wherein the ratio is from 0.7 to 0.97.
7. A drug according to any one of the preceding claims, wherein the particle density is from 1.3 to 1.7 g cm3.
8. A drug according to Claim 7, wherein the particle density is from 1.3 to 1.6 g/cm3.
9. A drug according to any one of the preceding claims, having a loose bulk density of greater than 0.3g/cm3. 3
10. A drug according to Claim 9 having a loose bulk density of greater than 0.35g/cm3.
11. A drug according to Claim 10 having a loose bulk density of from 0.35 to 0.5g/cm3.
12. A drug according to any one of the preceding claims having a packed bulk density of from 0.4 to 0.75g/cm3.
13. A drug comprising sodium cromoglycate, wherein more than 90% of the drug particles are less than 60 microns in diameter and the drug has a loose bulk density of greater than 0.3g/cm3.
14. A drug comprising sodium cromoglycate, wherein more than 90% of the drug particles ae less than 60 microns in diameter and the drug has a packed bulk density of from 0.4 to 0.75g/cm3.
15. A drug according to any one of the preceding claims, which is sodium cromoglycate and contains from 5 to 14% w/w of water.
16. A drug according to Claim 15, which contains from 8 to 11% w/w water.
17. A drug according to any one of Claims 1 to 14, which is sodium cromoglycate and contains less than 1% w/w of water.
18. A drug according to Claim 17, which contains less than 0.5% w/w of water.
19. A drug according to any one of the preceding claims which comprises a mixture of sodium cromoglycate and a bronchodilator.
20. A drug according to any one of the preceding claims, wherein at least 50% of the drug particles are less than 60 microns in diameter.
21. A drug according to Claim 20, wherein at least 50% of the drug particles are less than 40 microns in diameter.
22. A drug according to Claim 21, wherein at least 50 % of the drug particles are less than 20 microns in diameter.
23. A drug according to Claim 22, wherein at least 50% of the drug particles are less than 10 microns in diameter.
24. A drug according to Claim 23, wherein at least 50% of the drug particles are less than 8 microns in diameter.
25. A drug according to any one of Claims 20 to 24, wherein more than 90% of the drug particles are of the diameter specified.
26. A drug according to any one of the preceding claims, wherein at least 50% of the particles are from 2 to 6 microns in diameter.
27. A drug according to any one of the preceding claims containing drug and water only.
28. A drug according to any one of Claims 1 to 26, wherein the individual particles contain both drug and diluent.
29. A drug according to Claim 1 and substantially as hereinbefore described in any one of Examples 1 to 3.
30. A drug according to Claim 1 and substantially as shown in any one of Figures 1 to 10.
31. A capsule or cartridge which is filled to less than 80% by volume with a drug according to any one of Claims 1 to 30.
32. A pharmaceutical formulation comprising a drug according to any one of Claims 1 to 30.
33. A process for the production of a finely divided drug according to any one of Claim 1,2,4, 13 or 14, which comprises atomising and drying a solution of the drug and collecting some or all of the particles which are below 60 microns in diameter.
34. A process according to Claim 33, wherein the atomisation is effected by a two fluid nozzle atomiser or a syphon sprayer.
35. A process according to Claim 34, wherein the atomisation is effected by a two fluid pressure nozzle, a two fluid syphon nozzle or a two fluid sonic nozzle.
36. A process according to any one of Claims 33 to 35, wherein the atomisation and drying is carried out in a spray drying apparatus comprising an atomiser, a main chamber and at least one cyclone or bag filter.
37. A process according to any one of Claims 33 to 36, wherein the drug is sodium cromoglycate and the concentration of sodium cromoglycate in an aqueous solution to be dried is from 1 to 25% w/w.
38. A process according to Claim 37, wherein the concentration of sodium cromoglycate is from 5 to 20%.
39. A process according to Claim 38, wherein the concentration of sodium cromoglycate is from 10 to 15%w/v.
40. A process according to any one of Claims 23 to 39, wherein the air inlet temperature to the drying chamber is from 160" to 350"C, and the air outlet temperature is from 70" to 250"C.
41. A process according to Claim 33 and substantially as hereinbefore described in any one of Examples 1 to 3.
42. A drug produced by a process according to any one of Claims 33 to 41.
GB08220158A 1981-07-24 1982-07-12 Inhalation drugs Expired GB2105189B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB08220158A GB2105189B (en) 1981-07-24 1982-07-12 Inhalation drugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB8122846 1981-07-24
GB08220158A GB2105189B (en) 1981-07-24 1982-07-12 Inhalation drugs

Publications (2)

Publication Number Publication Date
GB2105189A true GB2105189A (en) 1983-03-23
GB2105189B GB2105189B (en) 1985-03-20

Family

ID=26280237

Family Applications (1)

Application Number Title Priority Date Filing Date
GB08220158A Expired GB2105189B (en) 1981-07-24 1982-07-12 Inhalation drugs

Country Status (1)

Country Link
GB (1) GB2105189B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2232891A (en) * 1989-05-17 1991-01-02 Fisons Plc Pharmaceutical nedocromil composition for inhalation
LT4553B (en) 1996-05-08 1999-10-25 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US6524555B1 (en) 1995-04-14 2003-02-25 Smithkline Beecham Corp. Metered dose inhaler for salmeterol
US6532955B1 (en) 1995-04-14 2003-03-18 Smithkline Beecham Corporation Metered dose inhaler for albuterol
US6546928B1 (en) 1995-04-14 2003-04-15 Smithkline Beecham Corporation Metered dose inhaler for fluticasone propionate
US7790145B2 (en) 1997-09-29 2010-09-07 Novartis Ag Respiratory dispersion for metered dose inhalers
US7994197B2 (en) 2007-02-11 2011-08-09 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US8080236B2 (en) 2002-04-17 2011-12-20 Nektar Therapeutics Uk, Ltd Particulate materials
US9700529B2 (en) 2002-05-03 2017-07-11 Nektar Therapeutics Particulate materials
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition
US10798955B2 (en) 2000-11-09 2020-10-13 Nektar Therapeutics Compositions of particulate coformulation

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582728B1 (en) 1992-07-08 2003-06-24 Inhale Therapeutic Systems, Inc. Spray drying of macromolecules to produce inhaleable dry powders
US6509006B1 (en) 1992-07-08 2003-01-21 Inhale Therapeutic Systems, Inc. Devices compositions and methods for the pulmonary delivery of aerosolized medicaments
KR100419037B1 (en) 1994-03-07 2004-06-12 넥타르 테라퓨틱스 Methods of delivery of insulin through the lungs and their composition
US6290991B1 (en) 1994-12-02 2001-09-18 Quandrant Holdings Cambridge Limited Solid dose delivery vehicle and methods of making same
NZ306281A (en) 1995-04-14 1999-07-29 Glaxo Wellcome Inc Metered dose inhaler with part or all internal surfaces coated with fluorocarbon polymers for dispensing beclomethasone dipropionate
US20030203036A1 (en) 2000-03-17 2003-10-30 Gordon Marc S. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US7442388B2 (en) 2000-05-10 2008-10-28 Weers Jeffry G Phospholipid-based powders for drug delivery
US7871598B1 (en) 2000-05-10 2011-01-18 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery and methods of use
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
US7575761B2 (en) 2000-06-30 2009-08-18 Novartis Pharma Ag Spray drying process control of drying kinetics
DE60227691D1 (en) 2001-11-01 2008-08-28 Nektar Therapeutics SPRAY DRYING PROCESS
CA2468958C (en) 2001-12-19 2012-07-03 Nektar Therapeutics Pulmonary delivery of aminoglycosides
GB0216562D0 (en) 2002-04-25 2002-08-28 Bradford Particle Design Ltd Particulate materials
AU2003302329B2 (en) 2002-12-30 2010-01-07 Novartis Ag Prefilming atomizer
US8012457B2 (en) 2004-06-04 2011-09-06 Acusphere, Inc. Ultrasound contrast agent dosage formulation

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2232891B (en) * 1989-05-17 1993-02-03 Fisons Plc Pharmaceutical composition
GB2232891A (en) * 1989-05-17 1991-01-02 Fisons Plc Pharmaceutical nedocromil composition for inhalation
US6524555B1 (en) 1995-04-14 2003-02-25 Smithkline Beecham Corp. Metered dose inhaler for salmeterol
US6532955B1 (en) 1995-04-14 2003-03-18 Smithkline Beecham Corporation Metered dose inhaler for albuterol
US6546928B1 (en) 1995-04-14 2003-04-15 Smithkline Beecham Corporation Metered dose inhaler for fluticasone propionate
LT4553B (en) 1996-05-08 1999-10-25 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
US7790145B2 (en) 1997-09-29 2010-09-07 Novartis Ag Respiratory dispersion for metered dose inhalers
US10798955B2 (en) 2000-11-09 2020-10-13 Nektar Therapeutics Compositions of particulate coformulation
US8080236B2 (en) 2002-04-17 2011-12-20 Nektar Therapeutics Uk, Ltd Particulate materials
US8470301B2 (en) 2002-04-17 2013-06-25 Nektar Therapeutics Particulate materials
US8828359B2 (en) 2002-04-17 2014-09-09 Nektar Therapeutics Particulate materials
US9616060B2 (en) 2002-04-17 2017-04-11 Nektar Therapeutics Particulate materials
US10251881B2 (en) 2002-04-17 2019-04-09 Nektar Therapeutics Particulate materials
US10188614B2 (en) 2002-05-03 2019-01-29 Nektar Therapeutics Particulate materials
US10945972B2 (en) 2002-05-03 2021-03-16 Nektar Therapeutics Particulate materials
US9700529B2 (en) 2002-05-03 2017-07-11 Nektar Therapeutics Particulate materials
US8148377B2 (en) 2007-02-11 2012-04-03 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US9833451B2 (en) 2007-02-11 2017-12-05 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US8119639B2 (en) 2007-02-11 2012-02-21 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US7994197B2 (en) 2007-02-11 2011-08-09 Map Pharmaceuticals, Inc. Method of therapeutic administration of DHE to enable rapid relief of migraine while minimizing side effect profile
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition

Also Published As

Publication number Publication date
GB2105189B (en) 1985-03-20

Similar Documents

Publication Publication Date Title
US4590206A (en) Inhalation pharmaceuticals
GB2105189A (en) Inhalation drugs
US5260306A (en) Inhalation pharmaceuticals
US3957965A (en) Sodium chromoglycate inhalation medicament
US4009280A (en) Powder composition for inhalation therapy
US4161516A (en) Composition for treating airway disease
US3634582A (en) Pharmaceutical compositions
AU635616B2 (en) Aerosol carriers
AU694863B2 (en) Process for the preparation of respirable particles
FI65547C (en) FOERFARANDE FOER FRAMSTAELLNING AV FOER INHALERING AVSEDDA MJUKA DINATRIUMKROMOGLYKATPELLETAR
US3860618A (en) Chromone
GB1569611A (en) Pelletised or granular medicament formulation
JP2008533055A (en) Inhalant
JPH035483A (en) Pharmaceutical composition
CA1116516A (en) Medicament composition in soft pellet or granule form
WO2002100378A2 (en) Process for the preparation of a particulate material
CA1144862A (en) Composition
JPH0142950B2 (en)

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19940712