GB2081827A - Game devices; mechanism for resisting rotation - Google Patents
Game devices; mechanism for resisting rotation Download PDFInfo
- Publication number
- GB2081827A GB2081827A GB8127363A GB8127363A GB2081827A GB 2081827 A GB2081827 A GB 2081827A GB 8127363 A GB8127363 A GB 8127363A GB 8127363 A GB8127363 A GB 8127363A GB 2081827 A GB2081827 A GB 2081827A
- Authority
- GB
- United Kingdom
- Prior art keywords
- disc
- leaf
- arm
- retracted position
- attached
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F17/00—Coin-freed apparatus for hiring articles; Coin-freed facilities or services
- G07F17/32—Coin-freed apparatus for hiring articles; Coin-freed facilities or services for games, toys, sports, or amusements
- G07F17/3202—Hardware aspects of a gaming system, e.g. components, construction, architecture thereof
- G07F17/3204—Player-machine interfaces
- G07F17/3211—Display means
- G07F17/3213—Details of moving display elements, e.g. spinning reels, tumbling members
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Slot Machines And Peripheral Devices (AREA)
- Pinball Game Machines (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
An amusement or game device of the type which has one or more indicia- bearing rotatable reels which are rotated in response to pulling of a handle is disclosed (see also GB-A 2,069,657) but the present application particularly concerns a mechanism 380 for providing slight resistance to movement of at least one notched disc 34 attached to a said reel subsequently of enablement of the game device and immediately before pulling of the handle: the mechanism 380 comprises an elongated spring member 392 attached to a mounting bracket 384 and having a curved portion 394 providing an edge surface 398. The member 392 normally engages the disc 34 to resist rotation but upon rapid rotation of the disc 34 caused by pulling of the handle, the member 392 is propelled outwardly where it is held in a retracted position by an electrical coil 386. <IMAGE>
Description
1
GB 2 081 827 A
1
SPECIFICATION
Gaming apparatus having manually controllable operating speed
5
The present invention generally relates to amusement or game devices, and more particularly to game devices of the type which have one or more indicia-bearing rotatable reels which are rotated in 10 response to the pulling of an operating handle and which are subsequently stopped at the completion of a play.
According to one aspect of the present invention there is provided apparatus useful in amusement or 15 game device of the type which has at least one freely rotatable disc with a plurality of.recessed notches located along the circumference, for resisting incremental rotation thereof when rotating force is not applied to said disc, comprising: bracket means for 20 mounting said apparatus adjacent the circumference of said disc; and elongated movable member having one end portion attached to said bracket means, the other end being adapted to lightly engage the circumferential edge of said disc and resist rotation 25 of the disc when it is not in a retracted position; means for retaining said member in its retracted position; said member having a surface variation therein for contact by said edge for moving said member out of engagement and toward its retracted 30 position in response to initial rapid rotation of said disc.
According to a further aspect of the invention there is provided apparatus for providing, when engaged, relatively slight resistance to rotational 35 movement of a disc that is free to rotate in at least a first direction on a shaft, the disc being part of an amusement or game device, said apparatus being automatically disengaged in response to rapid rotational force being applied to said disc and compris-40 ing: bracket means for mounting said apparatus adjacent the circumferential edge of said disc; a thin flexible elongated resilient leaf attached to said mounting means at an angle whereby said leaf is normally biased into light contact with said circum-45 ferential edge of said disc when the leaf is not in a retracted position; means for retaining said leaf in its retracted position; said leaf having a surface variation therein for contact by said edge for moving said leaf out of contact and toward its retracted position . 50 in response to initial rapid rotation of said disc.
Amusement or game devices of the type which have at least one indicia-bearing rotatable reels, and preferably at least three of such reels have been in existence for decades and have been the subject of 55 considerable research and development in recent years due to the increased popularity of such devices coupled with changes in basic technology, and particularly the incorporation of electronic technology in such devices. This type of game device was 60 originally a mechanical device and then evolved into an electromechanical device in its operation. However, whether it was only mechanical or electromechanical there has been a common characteristic in the nature of the operation of these devices and that has 65 been that the player pulling a handle which initiates the spinning of the reels has resulted in the reels being subjected to a rotation initiating force that has been generally constant, which meant that the initial speed of rotation or angular velocity that is imparted to the reels has been constant regardless of the speed of pulling or force applied to the operating handle. With the incorporation of electrical components into the devices, such as using an electric or stepping motorfor initiating rotation which was also activated by pulling the operating handle, the initial speed imparted to the reels also remained constant and independent of the force applied to the operating handle by a player.
While players often believe that there is a technique in being able to successfully play the game device, they may be unaware that the speed in which the handle is pulled is actually quite independent of the speed that is imparted to the reels, since the various mechanical mechanisms that have been designed merely result in energy being stored in a spring which is released when the handle is pulled through its entire stroke. It is believed that game devices which contribute to the feeling that the player is at least partially controlling the operation of the device is a very appealing feature for such game devices and has much to do with the popularity of a game device of this type.
Our Patent Application No. 8102301, out of which the present application is divided, claims an apparatus and a mechanism which can be used for driving the reels of a game device of the aforementioned type at a speed which is preportional, at least between limits, to the force applied to the operating handle by the player.
The present invention is especially useful with such game devices embodying preferred features claimed in the above mentioned Application, wherein before pulling the handle the reels are free to rotate at least in one direction with neither the main drive mechanism nor the supplemental drive mechanism nor the indexing mechanism operatively engaged with the reels or shaft. The apparatus of the present invention then prevent creeping of the reels.
An amusement or game device embodying the invention will now be described by way of example with reference to the accompanying drawings in which:
Figure 1 is a perspective view of the front and left sides of a substructure of the amusement or game device and particularly illustrates supplemental drive mechanism,
Figure 2 is a perspective view of the front and right sides of the amusement or game device and particularly illustrates the main drive mechanism;
Figure 3 is a side elevation of the right side of the game device shown in Figures 1 and 2, and particularly illustrates the main drive mechanism with the main drive mechanism being shown in a latched and unengaged position;
Figure 4 is another side elevation, similar to Figure 3, and particularly illustrates the main drive mechanism in its initial position of engagement before the operating handle has moved the mechanism;
Figure 5 is a side elevation, similar to Figures 3 and 4, and particularly illustrates the main drive
70
75
80
85
90
95
100
105
110
115
120
125
130
2
GB 2 081 827 A
2
mechanism at the position where the handle has been pulled substantially through its entire stroke;
Figure 6 is a side elevation of a modification of a portion of the main drive mechanism and particular-5 ly illustrates the mechanism during initial engagement;
Figure 7 is a main view of the apparatus shown in Figure 6 as taken generally along the line 7-7 thereof;
Figure 8 is a side elevation with portions shown in 10 cross section of a representative means for stopping one of the rotatable reels and particularly illustrates the same in its latched or disengaged position;
Figure 9 is another side elevation similar to that shown in Figure 8 and particularly illustrates the 15 stopping mechanism in its engaged position, immediately after engagement when the rotational indicia has extended the stopping mechanism in the direction of rotation;
Figure 10 is yet another side elevation of the 20 stopping means and is similar to Figure 8, and particularly illustrates the stopping mechanism immediately after stopping when reaction has caused the mechanism to be moved in an opposite direction relative to that shown in Figure 9;
25 Figure 11 is a cross sectional view of a portion of the stopping means of Figure 8 and is taken generally along the line 11-11 thereof;
Figure 12 is an exploded perspective view of substantially all of the components of the stopping 30 mechanism shown in Figures 8-11;
Figure 13 is a side elevation of the left side of the apparatus embodying the present invention and particularly illustrates the supplemental drive mechanism, with the same being shown in the 35 disengaged and ready position;
Figure 14 is an enlarged side elevation of the supplemental drive mechanism shown in Figure 13 with portions removed for the sake of clarity and particularly illustrates the supplemental drive 40 mechanism in a position where it is unlatched and engaged, but before full activation;
Figure 15 is another side elevation of the supplemental drive apparatus similar to that shown in Figures 13 and 14, but illustrating the mechanism 45 immediately upon completion of operation whereby it is being substantially relatched but not returned to its ready position;
Figure 16 is an exploded perspective view of the major components of the supplemental drive 50 mechanism shown in Figures 13-15 and particularly including a slight modification of a portion of the apparatus thereof;
Figure 17 is a side view of the modification of the supplemental drive mechanism shown in Figure 16; 55 Figure 18 is a bottom view of the modification shown in Figure 17;
Figure 19 is a top plan view of a portion of the apparatus shown in Figures 1 and 2 and particularly illustrates the excessive energy absorbing mechan-60 ism shown together with the main drive mechanism thereof;
Figure 20 is a front view of the major components of the excessive energy absorbing mechanism;
Figure 21 is an end view of the mechanism shown 65 in Figure 20 and is taken generally from the left end thereof;
Figure 22 is an enlarged cross sectional view of the excessive energy absorbing mechanism shown in Figures 19 and 20 and is taken generally along the 70 line 22-22 of Figure 20;
Figure 23 is an exploded perspective view, with portions removed, of the mechanism shown in Figure 20;
Figure 24 is another exploded perspective view of 75 the apparatus shown in Figure 19, with portions removed;
Figure 25 is a side elevation of the mechanism which provides a slight holding force for holding the reels after the game device has been enabled, but 80 before the reels have been rotated and is shown in its latched or disengaged position;
Figure 26 is a side elevation of the mechanism shown in Figure 25 and particularly illustrates the mechanism in its unlatched and engaged position; 85 and,
Figure 27 is a cross sectional view of the mechanism shown in Figure 26 and is taken generally along the line 27-27 thereof.
The described example of the present invention 90 comprises an amusement or game device which is of the type which has a number, preferably at least three rotatable reels, each of which has symbols or other indicia on the outer periphery thereof that are viewed by a player and which provide an indication 95 of a winning combination such as when a combination of identical symbols appear in a viewing window upon completion of a play, i.e., after the game device has been started and the reels have been stopped after a period of spinning or rotation. 100 The game device described includes several unique mechanisms that result from a basic principal of operation that sets the game device of the present invention apart from conventional prior art game devices, namely, that the speed of rotation of the 105 reels upon initiation of play is determined by the player and is in fact a function of the speed with which the player pulls the operating handle, provided the speed is within predetermined limits as will be more fully explained hereinafter.
110 The present invention includes a number of operating mechanisms that are not found in conventional prior art game devices of this type as will be broadly described in connection with Figures 1 and 2, and with other figures as is necessary to provide a broad 115 overview of the game device, it being understood that each of the mechanisms will be described in detail as well. Turning initially to Figures 1 and 2, a substructure 30 is shown which includes three separate reels 32, which show indicia on their outer 120 periphery for viewing by a player. Each of the reels 32 also has fixedly attached thereto a relatively flat disc 34 having a plurality of notches 36 located along the outer edge generally equally spaced around the circumference of the disc. The discs also include a 125 number of apertures 38 which are used to decode the resulting position of each of the reels 32 upon completion of play to determine if a winning combination has occurred. The discs 34 are attached to the reels 32 and the reels 32 are carried by a • 130 common shaft 40 that extends outwardly beyond the
3
GB 2 081 827 A 3
left and right substructure side plates 42 and 44 as shown. The reels are provided with one way rotational clutch bearings (not shown) which enable each of the reel and disc combinations to be driven 5 in the drive rotational direction, but which are free to rotate relative to the shaft in the opposite direction. Thus, once the drive shaft 40 has been driven to initiate rotation of the reels, it can be stopped and the reels will continue to rotate until they are 10 individually or collectively stopped even though the drive shaft 40 may have been previously stopped or substantially slowed in its rotation. The shaft 40 is suitably journaled in bearings in the sides 42 and 44 and the sides are also provided with entry slots 46 to 15 facilitate removal of the shaft 40 and the reels that are operatively connected to it. The substructure 30 is suitably placed in an overall amusement or game device enclosure of generally conventional appearance, and which has an operating handle 48 (see 20 Figures 20,23 and 24) which is located outside the enclosure side wall 50 (see Figure 20).
Pulling of the handle 48 causes movement of a shaft to which a handle is attached to be rotated and this rotational movement is transmitted through a 25 number of mechanisms which result in the shaft 40 being driven at a speed that is proportional to the speed in which the handle 48 is pulled. Thus, in a very real sense, the player can control the initial speed and rotation of the reels 32. Referring again to 30 Figure 2, the shaft 40 carrying the reels 32 is initially driven by amain drive mechanism 60 that is operatively connected through other mechanisms to the operating handle 48 as will be hereinafter described. The main drive mechanism 60 is operable 35 to engage a ratchet wheel 62 that is fixedly attached to the shaft 40 for rotating the same only during the time during which the handle 48 is pulled. Therefore, once the main drive assembly has been engaged, by virtue of a player inserting a coin or otherwise 40 enabling the game device, the subsequent pulling of the handle 48 will result in rotating force being applied via the main drive mechanism 60 and will impart rotation to the ratchet wheel 62 and shaft 40 during the pulling of the handle 48. Once the handle 45 48 has been pulled through its complete stroke, the main drive mechanism 60 automatically disengages and the shaft 40 is thereafter free to rotate without any interference from the main drive mechanism.
In accordance with an important aspect of the . 50 present invention, if the player pulls the handle 48 too slowly so as to not provide a predetermined minimum rotational velocity to the reels during play, then such slow speed of rotation is detected by suitable speed detection circuitry (not shown). The 55 circuitry may comprise a light circuit with a light emitting diode-photo-transistor combination positioned near the disc 34 together with suitable electrical timing circuitry so that if the rotational speed is below a predetermined minimum speed, 60 then a supplemental drive mechanism, indicated generally at 64, and shown in Figure 1 at the leftside of the subassembly 30 is activated, which accelerates the shaft 40 and increases the speed of rotation of the reels. The supplemental drive mechanism 64 65 engages another ratchet wheel 66 attached to the left end of the shaft 40 which is substantially similar to the ratchet wheel 62 located at the opposite end thereof. The supplemental drive mechanism 64 is also adapted to engage the ratchet wheel 66 only during active operation of the supplemental drive mechanism 64 and it also automatically disengages upon completion of its stroke. Thus, both the main drive mechanism and supplemental drive mechanism provide an initial rotating force to the shaft 40 which is essentially momentary and both mechanisms automatically disengage upon the completion of driving force so that the shaft is not affected by them after their operations are completed.
In accordance with yet another aspect of the present invention, an improved mechanism 70 for stopping each of the rotating reels is provided,
which stopping mechanism is also often referred to as an indexing mechanism and which is shown in Figures 1,2,8-12. The mechanism has a stopping member that is inserted into one of the notches 36 upon activation, which stops the disc 34 and associated reel 32. The improved indexing mechanism disclosed herein is particularly useful where the reels are rotated at a high rotational velocity, i.e., higherthan the rotational speeds that have been typically employed in conventional prior art game devices. Although the indexing mechanism disclosed herein is particularly adapted for stopping reels that are rotating at relatively high speed, it is also useful in other game devices of the same general type which have reels that rotate at a relatively lower speed.
While the supplemental drive mechanism is used to increase the speed of rotation in the event the player fails to pull the handle with sufficient speed or force to drive the reels at the predetermined minimum speed, an excessive energy absorption mechanism 72 shown in Figures 19-24 is provided and is operatively connected to the operating handle 48 to absorb excessive energy that may be present if the player pulls the operating handle with extraordinary speed or force. This excessive energy absorbing mechanism is needed to protect the main drive mechanism as well as the indexing mechanism, because of the extraordinary speed that could otherwise be generated by a strong or overzealous player.
Neither the main drive mechanism 60 nor the supplemental drive mechanism 64 is engaged with the shaft 40 except during active operation and considering the fact that none of the indexing mechanisms 70 are also engaged with the discs during spinning and before they are activated and are in fact retracted into a ready position upon enablement of the game device, such as for example when the player inserts a coin in the apparatus. However, during the time after enablement and before the handle 48 is pulled, the reels are relatively free to rotate and are therefore susceptible to any creeping motion that may be caused by a player shaking or striking the game device for example. In accordance with another aspect of the present invention, a mechanism shown in Figures 25,26 and 27 is adapted to provide a slight resistance to any reel movement during this time. The resistance is in
70
75
80
85
90
95
100
105
110
115
120
125
130
4
GB 2 081 827 A
4
fact slight and needs not to be excessive because no force is being applied at this time that would cause any rotating movement. The mechanism is disengaged upon rotation caused by operation of the 5 main drive assembly which automatically causes the mechanism to be placed in a retracted position.
In accordance with an important aspect of the present invention, the detailed construction and operation of the main drive mechanism 60 will now 10 be described in conjunction with Figures 3-5, together with an alternative embodiment of a portion of the mechanism which is shown in Figures 6 and 7. Referring initially to Figure 3, the main drive mechanism is illustrated in its latched or ready state 15 wherein it is essentially out of engagement with the shaft 40 and attached ratchet wheel 62. The ratchet wheel 62 has a number of teeth 76, the radially oriented portions thereof being adapted for engagement by an operative drive surface of the main drive 20 mechanism. Pulling of the handle 48 is effective to cause a leaf spring member 78 to engage a pad or transverse extension 80 of a main drive arm plate 82 of the main drive mechanism afterthe leaf spring member 78 has been angularly moved through an 25 arc of approximately 50" in the counterclockwise direction as shown in Figure 3. The approximately 50° arc of movement that is provided before engagement with the main drive mechanism permits some degree of play in the handle 48 as is desired. It 30 should be appreciated that pulling the handle 48 through a complete stroke generally involves pulling the handle through an arc of approximately 40° to 60°, which, by virtue of mechanical gearing, results in rotation of the main drive mechanism through the 35 aforementioned 50° before engagement followed by approximately 150° of arc before it reaches the end of its arc, so that the 40° to 60° of angular movement of the handle results in a total rotation of about 190° to 210° of movement by the leaf member 78. It 40 should be understood that the aforementioned values of rotational movement are indeed approximate and can be easily modified by changing the relative sizes of gears, wheels and the like.
The drive arm plate 82 is carried by and is freely 45 rotatable on the shaft 40 and rotates around the shaft 40 in response to movement by the leaf spring member 78 engaging the pad 80. The drive arm plate 82 also has another pad 84 which can be contacted by the leaf spring drive member 78 to return the 50 same to its normal rest and ready position shown in Figure 3, although a spring 86 having one end connected to the drive arm plate 82 and its opposite end suitably connected to a bolt 88 associated with the side plate 44 may be provided to bias the drive 55 arm plate 82 toward its rest position. The drive arm plate 82 has a second plate component 90 attached thereto which has a transverse extension or pad 92 for engaging a return bumper pad, indicated generally at 94, which preferably has a rubber or rubber-60 like cushion 96 which contacts the pad 92 upon return. The pad 94 is suitably attached to the side plate 44 and limits the return movement to the position shown in Figure 3.
The drive arm plate 82 (and plate component 90) 65 carry a drive arm 100 which is pivotaily attached to the drive arm plate 82 by a pin member 102. The drive arm 100 has a transverse extension or dog 104 which is engageable with the teeth 76 of a ratchet wheel 62 when the arm 100 is rotated in a counterclockwise direction around the pin member 102. An extension 106 is also provided for contact by a coil spring 108 which bears against the extension 106 as well as against a second pin member 110 which also carries a pivotable armature latch 112 preferably fabricated from a ferromagnetic material. The spring 108 biases the drive arm 100 toward engagement with the ratchet wheel 62, but is held out of engagement in its latched position shown in Figure 3 by a release dog surface 114 that is engaged by the end of the latch 112. The latch 112 is rotatable around the pin member 110 and is a generally right angled member having a surface 116 which is adjacent a coil 118 which is adapted to pivot the latch member 112 in a counterclockwise direction, i.e., attract the portion 116 toward the coil 118 when the coil 118 is energized. When this occurs, the latch 112 is released from the drive arm dog 114 which permits it to move so that its dog 104 will engage one of the teeth 76 of the ratchet wheel 62. The drive arm 100 is shown in the engaged position in Figure 4 afterthe latch 112 has released the drive arm 100 for engagement. A spring 120 is provided to bias the latch 112 in the counterclockwise direction to maintain engagement with the drive arm dog 114. After the dog 104 is engaged with the ratchet wheel 62, then the leaf member 78 engaging the pad 80 of the drive arm plate 82 and rotating the same will drivingly rotate the ratchet wheel 62 and thereby spin the reels 32.
As the leaf spring member 78 rotates the drive arm plate 82 through the complete arc, the pad 92 of the component 90 will approach and eventually contact an end of stroke bumper 122 which has a cushion 124 which actually contacts the pad 92 and limits its counterclockwise movement. However, before it reaches the end of stroke, the outer free end 126 of the drive arm 100 will approach a disengaging pin 128 and by virtue of the contact with the surface 130 of the drive arm 100 will cause the free end 126 to move downwardly as shown in Figure 5, out of engagement with the teeth 76 of the ratchet wheel 62, effectively rotati ngthedrivearm100ina clockwise direction around its pivot pin member 102. As the arm 100 is moved farther away from the ratchet wheel 62, the release dog 114 will clearthe end of the latch 112 which, by virtue of the biasing spring 120, will cause it to again latch the drive arm 100 in the position shown in Figure 3 and as the operating handle 48 is returned to its normal rest position, the leaf member 78 will be rotated in a clockwise direction back to its rest position shown in Figure 3 and the main drive mechanism will again be in its ready position, ready to operate in response to a subsequent play by a player. It should be appreciated that the coil 118 is preferably energized in response to the acceptance of a coin being placed into the game device by the player, although it may be operated in response to a signal that is received after all reels have been stopped, for example, if the device is not of the coin operated type. An important
70
75
80
85
90
95
100
105
110
115
120
125
130
5
GB 2 081 827 A 5
consideration is that the ratchet wheel not be rotating at the time the latch 112 is released.
A modification of the main drive mechanism is shown in Figures 6 and 7 and includes a second 5 drive arm 100'which is very similar in shape and operation to the previously described drive arm 100, with the primary difference being that it has a extension or dog 104' that is spaced from the drive arm dog 104 by a small distance. The drive arm 100' 10 is pivotable around the pin 102 independently of the pivoting action of the drive arm 100 so that upon release by the latch 112, both of the drive arms will be biased toward engagement and depending upon the precise angular position of the ratchet wheel 62, 15 one orthe other of the dogs 104,104'will engage one of the teeth 76 of the ratchet wheel 62. When the drive plate 82 has been rotated through the complete arc, the pin 128 will engage both of the drive arms 100 and cause the latch 112 to relatch both of the 20 drive arms 100,100' into the position shown with respect to the drive arm 100 in Figure 3. The additional drive arm may be desirably included in the main drive mechanism to insure that engagement is achieved by the dog 104 or 104' rather than 25 to possible "bounce" radially outwardly relative to the ratchet wheel 62 upon initial rotation of the drive arm plate 82.
To stop the rotating wheels once they have been rotated by the main drive mechanism 60 or possibly 30 by the main drive mechanism 60 followed by the supplemental drive mechanism 64, one of the index mechanisms 70 is provided for each reel and one of the indexing mechanisms 70 is shown in Figures 8-12 of the drawings. Referring initially to Figure8 35 which shows the indexing mechanism 70 in its normal or ready state, it stops the rotating reels by being released at the appropriate time where-upon a stop roller member 140 carried by a pin 142 engages one of the notches 36 of the disc 34. Because the disc 40 34 may be rotating at an extremely high speed, or at least higher than has been generally previously experienced by conventional prior art game devices of the type described herein, stopping the disc 34 and reels 32 may result in considerable shock 45 because of the higher speed and the stopping may result in a reaction in the opposite direction after initial engagement by the stop member 140, i.e., in a clockwise direction which is opposite that shown by the arrow 144.
. 50 To cushion or otherwise absorb some of the shock that is experienced during initial engagement by the stop roller member 140 as well as to absorb the reaction in the opposite direction, the indexing mechanism is provided with shock absorbing capa-55 bility. Moreover, the structural mass that is actually moved to engage the stop member 140 with one of the latches is minimized as a result of the unique design compared with many conventional indexing mechanisms so that it will rapidly fully enter a notch 60 36 in a way whereby the disc will be readily stopped without the stop member bouncing along the edge and entering a notch that may be several notches removed from the notch which was initially encountered. By virtue of the small amount of mass that is 65 moved during the engagement of a notch, it can rapidly enter a notch and fully engage the same to stop the disc 34.
Turning initially to Figure 8, the indexing mechanism 70 is shown to have an elongated indexing slide arm 146 which is slideably secured to a mounting bracket 148 at its lower end and its upper end is shown to have a bifurcated end portion with one side 150 being integral with the lower portion of the index slide arm 146, the other side 152 (see Figure 12) being of generally similar shape and attached to the first side 150 by a number of fasteners 154 which may be screws, rivots or the like. The bifurcated end has a transverse extension 156 with a pair of apertures 158 and 160 (see Figure 12) for receiving suitable connecting pins for holding other components that will be hereinafter discussed. The aperture 158 is generally in line with the longitudinal direction of the index slide arm 146 and a pin 162 holds one end of a flat elongated link 164, the opposite end of which is connected to one end of the pin 142 that carries the stop roller member 140. An aperture 166 is located at a position similar to that of the aperture 158, but in the other side 152 of the bifurcated end of the slide arm 146 and it receives a pin (not shown) for holding an index pivot arm 170 in which the other end of the pin 142 carrying the stop roller member 140 is also secured. The link 164 and pivot arm 170 therefore pivot around the pins 162 and 166 and are thereby adapted to rotate in a counterclockwise direction into engagement with a notch, when the index pivot arm 170 is released.
The pivot arm 170 has an extension 172 to which one end of a tension spring 174 is attached, the opposite end thereof being connected to an aperture 175 in the bifurcated side 152. The spring 174 acts on the pivot arm 170 and biases the same toward engagment with the disc 34. The pivot arm 170 has a dog 178 which is engaged by a transverse extension 180 of a latch member 182 that is carried by and is pivotally attached to the extension 156 by a pin 184. The latch 182 is preferably fabricated of a ferromagnetic material and has a second transverse extension 186 for interaction with an operating coil 188 that will attract the extension 186 of the latch 182 and cause the same to rotate in a clockwise direction as shown in Figure 8 when the coil is energized through electrical leads 190. The latch 182 has an extension 192 which provides a surface edge for contact by one end of a spring 194, the opposite end of which bears upon an edge of the transverse extension 156. The spring 194 is wrapped around the pin 184 and biases the latch in the counterclockwise direction so that the extension 180 will be maintained in contact with the dog 178 of the pivot arm 170 to hold the pivot arm in its latched position shown in Figure 8.
Once the coil 188 is energized and thereby attracts the latch 182 causing it to be moved in the clockwise direction, the extension 180 will disengage the dog 178 and permit the pivot arm to move toward the disc 34 so that the stop roller member 140 can engage a notch and stop the disc and associated reel. Tofacilitate rapid movement of the pivot arm 170, its overall weight is preferably minimized and to this end, a circular portion 196 is removed from the
70
75
80
85
90
95
100
105
110
115
120
125
130
6
GB 2 081 827 A
6
center portion thereof.
Once the pivot arm has been released and the stop roller member 140 has engaged a notch, as shown in Figure 9, the momentum of the disc 34 will be in the 5 direction of rotation which is counterclockwise which will result in a force being applied to the indexing mechanism 70 in the direction of the arrow 198. It should be appreciated that the orientation of the stop member 140 when engaged is generally in 10 line with the longitudinal direction of the index slide arm 146 so that the force is applied in the longitudinal direction of the slide arm 146 as is desired. In this regard, the index slide arm 146 is mounted on the mounting plate 148 so that it is generally aligned 15 tangentially of the circumference of the disc 34 at the location of the particular notch where the stop member 140 will be engaged.
To cushion the initial shock that is experienced by the index mechanism 70, the index slide arm 146 is 20 provided with the capability of being moved along a path aligned with the longitudinal direction thereof and in both directions from the rest position which is illustrated in Figure 8. Upon engagement of the stop member with a notch as is shown in Figure 9, the 25 slide member 146 can move upwardly as shown in Figure 9 and it can also move downwardly as may be experienced by initial recoil or reaction to the stopping and the downward movement of the slide member 146 is particularly illustrated in Figure 10. 30 The sliding movement of the index slide arm 146 is permitted by the manner in which the arm 146 is attached to the mounting plate 148. More particularly, the lower portion of the index slide arm 146 has a pair of transverse elongated extensions 200 and 202, 35 with the latter fitting within an elongated slot 204 of the mounting plate 148. The slide arm 146 also carries a pin 206 which fits in a shorter elongated slot 208 of the mounting bracket, the ends of which provide a stop surface which limits the extent of 40 sliding movement of the index slide arm 146.
To provide resistance to the sliding movement and to maintain the index slide arm 146 in a centered position, a pair of centering arms 209 and210are provided, with one end of each of the centering arms 45 being rotatably attached to the mounting bracket 148 with pins 212. The opposite ends of the centering arms also have attachement pins 214 to which a tension spring 216 is connected and the spring acts to keep the centering arms biased toward one 50 another. A pin 218 is attached to the mounting plate 148 and is adapted to contact the sides of both centering arms 209 and 210 when the slide arm is in the rest or centered position as shown in Figure 8. When force is applied which tends to move the index 55 slide arm 146 upwardly as shown in Figure 9, the pin 206 will engage the centering arm 208 and force it away from the pin 218 against the resistance provided by the spring 216.
In the event the action of the disc 34 reacts to the 60 movement and produces a force in the downard direction on the index slide arm 146, it will cause the lower slide arm 210 to be moved away from the pin 218 by means of the slide arm pin 206 acting on the edge thereof as shown in Figure 10 and the force of 65 the spring 216 will resist downward movement of the index slide arm 146. The spring 216 will then return the centering arm 210 into contact with the pin 218 and the slide arm will again be at its rest position. Since the upward force will generally be much greater than the reactive downward force, a supplemental and stronger resistance to such movement may be provided. In this reagard, a bracket 220 may be attached to the mounting plate 148 and have an extension 222 to which a compression spring 224 may be attached for engagement with a transverse flange 226 of the index slide arm 146. Thus, as the index slide arm is moved upwardly in the direction of the arrow 198 shown in Figure 9, the spring 224 will come in contact with the transverse flange 226 and provide added resistance to further upward movement.
To remove the index pivot arm 170 from the disc 34 afterthe disc has been fully stopped to thereby permit the player to again play the game apparatus, the index pivot arm 170 is provided with an extension 230 that is adapted to be contacted by a reset mechanism that includes a reset arm 232 having a roller 234 at the outer end thereof. The reset arm is secured to a shaft 236 that preferably extends substantially the fuII width of the substructu re 30 with each indexing mechanism 70 having a reset arm 232 located immediately adjacent to it. When the reset mechanism is activated, it will move in the counterclockwise direction around the shaft 236, contact the reset extension 230 moving it in a clockwise direction around the pin 162 and thereby pivot the index pivot arm into latching engagement with the latch extension 180 and thereby latch the same in its retracted position shown in Figure 8. The reset mechanism that drives the shaft 236 is shown in Figure 3 to include a reset arm 238 attached to the shaft 236 with the arm 238 being biased by a tension 240 for maintaining the arm in the position shown and the other end of the arm 238 is connected to a link 242 by a pin 244, the other end of the link being connected to a plunger 246 by a pin 248, the plunger 246 being a part of a solenoid 50 which is energized via lines 252. When the solenoid is energized the plunger is pulled to the right which causes the plunger 246, link 242, arm 248 to be moved to the right as shown which causes the shaft 236 to be rotated in a counterclockwise direction as is required for the resetting action.
As previously mentioned, in the event that the player pulls the handle with insufficient force or speed to cause the reels to initially rotate at a speed that is below the predetermined minimum speed, then such event will be detected by suitable speed detection means associated with at least one of the reels orthe shaft 40. If the reels are detected to be moving too slowly, the supplemental drive mechanism 64, shown broadly in Figure 1, and in detail in Figures 13 through 16, will be activated. The supplemental drive mechanism 64 is shown in its ready or rest position in Figure 13, initially engaged with the ratchet wheel 66 in Figure 14 and at the end of its power stroke in Figure 15. An exploded perspective of the mechanism is shown in Figure 16 and an alternative embodiment of a portion of the apparatus is shown in Figures 17 and 18.
70
75
80
85
90
95
100
105
110
115
120
125
130
7
GB 2 081 827 A
7
Referring again to Figure 13, the supplemental drive mechanism has a drive plate 260 that is carried by and is freely rotatable relative to the shaft 40. The drive plate 260 carries a ratchet pawl 262 that is 5 attached thereto by a pin 264 around which it can rotate. The pawl 262 has a transverse extension 266 for engagement with the teeth of the ratchet wheel 66 when the pawl 262 is rotated in a clockwise direction into said engagement. However, the pawl 10 262 has a dog 268 that is engaged by a transverse extension 270 of a pawl latch 273 that is also carried by and is attached to the drive plate 260 by a pin 274. The pawl latch 272 has a coil spring 276 that normally biases the pawl latch in a clockwise 15 direction, i.e., so that the extension 270 normaly is biased into engagement with the dog 268 of the ratchet pawl 262. The ratchet pawl 262 is also biased toward the ratchet wheel 66 by a coil spring 278 which has one end bearing against the ratchet pawl 20 262 and the opposite end bearing againsttheedgeof the drive plate 260 as shown in Figures 14 and 15. Thus, from the foregoing, it should be appreciated that when the latch 272 is operated so that the extension 270 separates from the dog 268, then the 25 ratchet pawl 262 wiil be biased to move in a clockwise direction around the pin 264 which will cause the extension 266 to engage the teeth of the ratchet wheel 66.
To unlatch the ratchet pawl 262, the latch 272 has a 30 transverse extension 280 which is engaged by an extendable plunger 282 of a solenoid 284, the opposite end of the plunger 284 having a flange 286 against which a compression spring 288 bears to normally bias the plunger toward its retracted 35 position as shown in Figures 13 and 15. The solenoid ' 264 is suitably attached to the substructure side plate 42. When the solenoid is energized, the plunger 282 is forced upwardly as shown in the drawings into contact with the extension 280 and rotates the latch 40 272 in a counterclockwise direction around pin 274, thereby releasing the extension 270 from the dog 268 so that the spring 278 biases the ratchet pawl into engagement with the ratchet wheel 66.
To drive the drive plate after the ratchet pawl 262 45 has engaged the ratchet wheel as shown in Figure 14, a drive arm 292 is provided which has a pair of elongated slots 294 which receive a pair of generally horizontally disposed pins 296 which guide the drive arm 292 so that it slides along a generally horizontal . 50 path. The drive arm 292 is operatively connected to the drive plate 260 by a pin 300 that engages an upwardly directed slot 302 located in the drive arm 292. The drive arm 292 is preferably secured to the side wall 42 by locking washers orthe like attached 55 to the pins 296 and the open slot 302 enables much of the supplemental drive arm assembly to be removed when the shaft 40 carrying the reels and the like is removed.
Thus, when the drive arm 292 is pulled to the left it 60 will rotate the drive plate 260 in a clockwise direction and impart rotating force to the ratchet 60 and therefore the shaft 40. A solenoid 304 is also suitably mounted to the side 42 and it has a retractable plunger 306 that is connected to the drive arm by a 65 pin 308 orthe like so that energization of the solenoid 304 will pull the link and drive arm to the left as shown in the drawing. As the movement continues, the bottom surface 310 of the ratchet pawl 262 will contact a ramp surface 312 of a bracket 70 314 as shown in Figure 15 and will effectively rotate the ratchet pawl 262 in a counterclockwise direction so as to retract the extension 266 out of engagement from the ratchet wheel 66 toward the end of the stroke of the drive arm 292 and will thereby cause 75 the latch to again engage the dog 268 and hold the ratchet pawl 262 in a latched position as shown in Figure 13. Atension spring 316 has one end attached to the pin 308 and the other end attached to a suitable aperture in the bracket 314 and the spring 80 316 provides force tending to move the drive arm 292 back to its rest or ready position as shown in Figure 13. When the latch is relatched, and the drive plate is moved back to its rest position, the latch extension 280 is again in position to be contacted by 85 the plunger 282 of the solenoid 284 for subsequent operation.
The exploded perspective shown in Figure 16 includes a modification to the supplemental drive mechanism shown in Figures 13-15, which modifica-90 tion is also shown in detail in Figures 17 and 18. it essentially involves a second ratchet pawl 262' having a transverse extension 266' and a latch dog 268', with both of the ratchet pawls 262 and 262' being adapted to engage the ratchet wheel 66 when 95 the pawl latch 272 is released. As is best shown in Figure 17, the ratchet pawl 262' has a somewhat shorter length so that the extension 266' is spaced from the extension 266 of the other ratchet pawl,
with the spacing being approximately half the 100 distance between adjacent teeth of the ratchet 66. This insures that upon release of the pawl latch, one of the extensions 260 or 266' will immediately engage a tooth and drive the ratchet as is desired, rather than perhaps bounce away from the ratchet. It 105 is appreciated that both of the ratchet pawls 262 and 262' are biased toward the ratchet wheel 66.
In accordance with yet another important aspect of the present invention and as previously mentioned, the game device as embodied herein has an exces-110 sivve energy absorption mechanism 72 shown in detail in Figures 19-24 for effectively limiting the maximum speed in which the reels may be rotated in response to an overzealous pull of the handle 48. Before describing the details of the energy absorp-115 tion mechanism 72, the interconnection of the operating handle 48 with the main drive mechanism will be briefly described in conjunction with the exploded perspective view of Figure 24, together with the plan view of Figure 19. The handle 48 is 120 connected to a shaft 320 (not shown in Figure 24) which is connected via the energy absorbing mechanism 72 to a drive sprocket 322 that drives a smaller driven sprocket 324 via a chain 326. The driven sprocket 324 is fixedly attached to a shaft 328 125 which is in turn connected to a resistance imparting mechanism 330 which will be briefly hereinafter described, and the shaft 328 also carries a bracket 332 to which the leaf spring member 78 is attached for driving the main drive mechanism 60. 130 While the resistance mechanism 330 generally
8
GB 2 081 827 A
8
absorbs some of the energy, its primary purpose is to impose a feeling of resistance to a player pulling the handle to simulate the feel of prior art game devices which were essentially mechanical, and 5 which were of the type wherein pulling of the handle sorted energy into a spring mechanism that was released at the end of the handle stroke. The resistance mechanism is of the type which has a pair of circular discs 334 and 336, one of which is secured 10 to the shaft 338, the other of which is fixed against rotating movment with a leather circular pad 338 being sandwiched between the discs 334 and 336. A compression spring 340 is positioned to bias the discs 334 and 336 together, with the leather pad 338 15 providing the resistance to relative rotating movement between the two discs. The spring 334 has one end bearing against the disc 334 and its opposite end bearing against a circular bracket 342 that is also preferably attached to the shaft 328. 20 The excessive energy absorption apparatus 72 is best shown in Figures 20-23 and generally comprises an elongated lever arm 350 fixedly attached to the shaft 320 so that rotation of the shaft 320 also rotates the lever arm 350 and a second lever arm 352 is fixed 25 to the left end portion of the shaft 340 by a bolt 354 orthe like so that it is also fixedly attached thereto and rotates when the shaft 320 is rotated. The second iever arm 252 has a transverse extension 356 which engages an end 358 of a rather large coil 30 spring 360 that is positioned around the shaft and the spring 360 has its opposite end 362 bearing upon a pin 364 that is attached to the drive sprocket 322. The pin 364 also extends beyond the opposite side of the sprocket 322 and engages the lever arm 350. It 35 should be appreciated, however, that the pin 364 may comprise two angularly displaced pins or extensions from the sprocket rather than the single pin as shown since the principle of operation would be identical in such event. The spring 360 is prefer-40 ably given one or more turns so that it normally biases its upper end 262 against the pin 364 and therefore against the lever arm 350. As is best shown in Figures 21 and 22, the opposite end 358 fitting in a slot 366 in the transverse extension 356. To maintain 45 the spring 360 in a nice cylindrical shape, a shaping cylinder 368 fabricated of plastic orthe like and having an outside diameter slightly smaller than the inside diameter of the coil spring 360 is provided and it is maintained in concentric relation with the shaft 50 360 by three positioning pins 370 located on the sprocket 322 and by similarly positioned pins 372 connected to the second lever arm 352.
During operation, it should be appreciated that by virtue of the fact that the drive sprocket 322 is freely 55 rotatable about the shaft 320, it is rotated in response to pulling of the handle by the lever arm 352 and spring 360 contacting the pin 364. The drive arm 350 also bears against the pin 364 and prevents the spring 360 from unwinding, but as the handle is 60 moved to the right as shown in view of Figure 21, the entire mechanism shown therein will rotate in a clockwise direction around the shaft 320, provided the handle is not moved with extraordinary speed. However, in the event of an overzealous pull of the 65 handle, the lever arm 350 will move relative to the spring end 362 and pin 364 and may separate from the pin 364 and excessive energy will be absorbed by the spring 360. In this manner, the drive sprocket 322 will sustain the entire force of the handle pull transmitted to it, which will thereby protect the main drive mechanism as is desired.
It is evident from the foregoing description of the main drive mechanism 60 and the supplemental drive mechanism 64 that neither of these mechanisms is operatively engaged with the shaft or discs 34 except momentarily during the active driving of them. Similarly, the indexing mechanism 70 is not engaged with the disc 34 after it has been reset upon completion of a play. Moreover, afterthe player has . inserted a coin or otherwise enabled the play of the device, there is no contact with the shaft 40 or discs 34 by any of these three mechanisms until the handle 48 is pulled. Therefore, the reels are free to creep orturn underthe influence of vibration of the game device, such as by shaking, pounding by the player orthe like. Such creeping movement of the reels is undesirable for the reason that the player may attempt to rotate the reels so that a winning combination of symbols on the reels would be exposed and he may thereafter try to persuade the operators of a gaming establishment that he has won. For this reason, a mechanism is provided to prevent this creeping movement of the reels during this time period and the mechanism is shown in detail in Figures 25,26 and 27.
Afterthe reels and discs have been stopped by operation of the indexing mechanism and preferably after a coin has been inserted into the game device or has otherwise been enabled for a subsequent play, the mechanism, indicated generally at 380, is released for engagement with the outer periphery of the disc 34. The mechanism 380 is mounted to a channel bracket 382 by a mounting bracket 384 that carries an electrical coil 386 having electrical leads 388 connected to a suitable control circuit and the mounting bracket has a flange 390 to which a spring member 392 is attached. The spring member 392 is preferably made of a ferromagnetic material so that it can be attracted by operation of the coil 386 when moved within its influence and it is shown in its disengaged or ready position in Figure 25. In this position, the spring member 392 is defected and is being held in response to the energization of the coil 386. Upon enablement of the game device, the coil 386 is deenergized which permits the resilient spring . member 392 be released and it then assumes the position shown in Figure 26 where it is in contact with the edge of the disc 34. A slight curved portion 394 is provided near the outer end thereof and an additional mass may also be provided at the end, in the form of a small square ferromagnetic plate 396. The curved portion 394 is adapted to provide an edge surface 398 which can be contacted by the edge of the disc 34 upon driving by the main drive mechanism so as to propel it outwardly thereof toward the coil 386 where it comes under the influence thereof and is thereafter held during spinning of the reel. As best shown in Figure 27, the bracket 384 is connected to the channel bracket 382 so as to be coplanar with the disc and suitable
70
75
80
85
90
95
100
105
110
115
120
125
130
9
GB 2 081 827 A
9
spacers 400 and screws 402 connect the bracket 384 to the channel bracket 382 in conventional manner.
From the foregoing, it should be appreciated that an improved game device has been shown and 5 described which has many desirable attributes, including permitting a player to have operating control in a game device of the type described which has not been possible in conventional prior art game devices. Moreover, many of the mechanisms dis-10 closed herein while being particularly suited in combination in the game device described herein, are useful when employed with conventional game devices of this type, i.e., those devices which may not have the reel speed directly controlled in propor-15 tion to the speed in which the operating handle is pulled. In this regard, the indexing mechanism 70 has desirable attributes that are conductive to use in conventional game devices, and the supplemental drive mechanism may be useful as a drive mechan-20 ism for a conventional type of game device, rather than to merely increase the speed of rotating reels as is disclosed in the preferred embodiment herein.
Claims (6)
1. Apparatus useful in an amusement or game device of the type which has at least one freely rotatable disc with a plurality of recessed notches located along the circumference, for resisting in-
30 cremental rotation thereof when rotating force is not applied to said disc, comprising: bracket means for mounting said apparatus adjacent the circumference of said disc; an elongated movable member having one end portion attached to said bracket means, the 35 other end being adapted to lightly engage the circumferential edge of said disc and resist rotation of the disc when it is not in a retracted position; means for retaining said member in its retracted position; said member having a surface variation 40 therein for contact by said edge for moving said member out of engagement and toward its retracted position in response to initial rapid rotation of said disc.
2. Apparatus as defined in Claim 1 wherein said 45 elongated movable member comprises a thin flexible resilient leaf that is attached to said mounting means at an angle whereby said resilient leaf is normally lightly engageable with said edge when the same is not retracted.
50
3. Apparatus as defined in Claim 2 wherein a piece of ferromagnetic material is attached to the free end of said leaf to increase the attractive force between said leaf and said electromagnet.
4. Apparatus as defined in Claim 3 wherein said 55 retaining means comprises an electromagnet for holding said leaf in its retracted position when said leaf is moved into close proximity thereto and said electromagnet is energized.
5. Apparatus as defined in Claim 2 wherein said 60 surface variation comprises a curved depression in the free end of said leaf, the depression being adapted to engage the outer portions of said circumferential edge between adjacent notches, said outer portion being adapted to contact the interface be-65 tween said depression and the general plane of the leaf at the outer end of the depression for moving said leaf out of engagement and into said retracted position in reponseto initial rapid ratation of said disc.
70
6. Apparatus for providing, when engaged, relatively slight resistance to rotational movement of a disc that is free to rotate in at least a first direction on a shaft, the disc being part of an amusement or game device, said apparatus being automatically 75 disengaged in response to rapid rotational force being applied to said disc and comprising: bracket means for mounting said apparatus adjacent the circumferential edge of said disc; a thin flexible elongated resilient leaf attached to said mounting 80 means at an angle whereby said leaf is normally biased into light contact with said circumferential edge of said disc when the leaf is not in a retracted position; means for retaining said leaf in its retracted position; said leaf having a surface variation therein 85 for contact by said edge for moving said leaf out of contact and toward its retracted position in response to initial rapid rotation of said disc.
Printed for Her Majesty's Stationery Office, by Croydon Printing Company Limited, Croydon, Surrey, 1982.
Published by The Patent Office, 25 Southampton Buildings, London, WC2A1 AY. from which copies may be obtained.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11921780A | 1980-02-07 | 1980-02-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
GB2081827A true GB2081827A (en) | 1982-02-24 |
GB2081827B GB2081827B (en) | 1983-07-06 |
Family
ID=22383158
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8102301A Expired GB2069657B (en) | 1980-02-07 | 1981-01-26 | Gaming apparatus having manually controllable operating speed |
GB8127364A Expired GB2081828B (en) | 1980-02-07 | 1981-01-26 | Games devices indexing mechanism for stopping disc |
GB8127365A Expired GB2080924B (en) | 1980-02-07 | 1981-01-26 | Gaming apparatus having manually controllable operating speed |
GB8127363A Expired GB2081827B (en) | 1980-02-07 | 1981-01-26 | Game devices mechanism for resisting rotation |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8102301A Expired GB2069657B (en) | 1980-02-07 | 1981-01-26 | Gaming apparatus having manually controllable operating speed |
GB8127364A Expired GB2081828B (en) | 1980-02-07 | 1981-01-26 | Games devices indexing mechanism for stopping disc |
GB8127365A Expired GB2080924B (en) | 1980-02-07 | 1981-01-26 | Gaming apparatus having manually controllable operating speed |
Country Status (15)
Country | Link |
---|---|
JP (1) | JPS56119281A (en) |
AR (1) | AR230787A1 (en) |
AU (1) | AU6662581A (en) |
BE (1) | BE887253A (en) |
BR (1) | BR8100415A (en) |
DE (1) | DE3102122A1 (en) |
DK (1) | DK53081A (en) |
ES (5) | ES499174A0 (en) |
FR (1) | FR2475662A1 (en) |
GB (4) | GB2069657B (en) |
IT (1) | IT1170695B (en) |
NL (1) | NL8100491A (en) |
NO (1) | NO810407L (en) |
PT (1) | PT72442B (en) |
SE (1) | SE8100330L (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE31464E (en) * | 1980-10-01 | 1983-12-20 | Sperry Corporation | Damped apparatus for quick-stopping rotating members |
JPS5851776U (en) * | 1981-10-06 | 1983-04-08 | 株式会社 北電子 | Slot machine stop arm mounting structure |
JPS59218178A (en) * | 1983-05-24 | 1984-12-08 | 株式会社エル・アイ・シー | Reel rotary speed variable apparatus of electromotive throttle machine |
JPS6012085A (en) * | 1983-06-30 | 1985-01-22 | 株式会社エル・アイ・シー | Electromotive throttle machine |
GB2148038B (en) * | 1983-10-13 | 1987-01-14 | Jpm | Gaming or amusement-with-prizes machines |
GB2218558A (en) * | 1988-05-14 | 1989-11-15 | Rodolfo Bacaicoa Castellanos | Coin freed gaming machine |
ZA997373B (en) * | 1999-04-21 | 2000-06-06 | Aruze Corp | Gaming machine. |
US6367949B1 (en) | 1999-08-04 | 2002-04-09 | 911 Emergency Products, Inc. | Par 36 LED utility lamp |
CN110654775B (en) * | 2019-09-30 | 2021-11-26 | 精海联科(宁波)智能设备有限公司 | Chain type stepping feeding mechanism |
CN110697336B (en) * | 2019-09-30 | 2021-07-02 | 精海联科(宁波)智能设备有限公司 | Chain type stepping feeding method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1071992B (en) * | 1959-12-24 | Günter Wulff-Apparatebau, Berlin-Haiensee | Starter clutch for recirculating units in self-collecting gaming machines | |
US2180029A (en) * | 1937-11-04 | 1939-11-14 | Alfred R Babcock | Game apparatus |
US2190845A (en) * | 1938-06-03 | 1940-02-20 | Nitzberg Milton | Game apparatus |
US2189051A (en) * | 1938-09-07 | 1940-02-06 | Lion Mfg Corp | Lever lock mechanism |
DE1721153U (en) * | 1956-02-07 | 1956-04-26 | Max Rose | KIDS PLAY MACHINE. |
DE1260216B (en) * | 1957-03-21 | 1968-02-01 | Guenter Wulff Appbau | Starter coupling for circulating bodies in self-collecting gaming devices |
GB1081107A (en) * | 1964-11-25 | 1967-08-31 | English Numbering Machines | Improvements in or relating to pawl mechanisms |
AU507270B2 (en) * | 1975-01-28 | 1980-02-07 | Bell-Matic A/S | Slot machine |
US4239225A (en) * | 1978-12-18 | 1980-12-16 | Bally Manufacturing Corporation | Rotatable disc stop apparatus |
-
1981
- 1981-01-21 SE SE8100330A patent/SE8100330L/en not_active Application Discontinuation
- 1981-01-23 DE DE19813102122 patent/DE3102122A1/en not_active Ceased
- 1981-01-26 GB GB8102301A patent/GB2069657B/en not_active Expired
- 1981-01-26 GB GB8127364A patent/GB2081828B/en not_active Expired
- 1981-01-26 GB GB8127365A patent/GB2080924B/en not_active Expired
- 1981-01-26 BR BR8100415A patent/BR8100415A/en unknown
- 1981-01-26 GB GB8127363A patent/GB2081827B/en not_active Expired
- 1981-01-27 BE BE0/203617A patent/BE887253A/en not_active IP Right Cessation
- 1981-01-27 AU AU66625/81A patent/AU6662581A/en not_active Abandoned
- 1981-02-02 NL NL8100491A patent/NL8100491A/en not_active Application Discontinuation
- 1981-02-03 PT PT72442A patent/PT72442B/en unknown
- 1981-02-04 JP JP1451381A patent/JPS56119281A/en active Pending
- 1981-02-05 IT IT47731/81A patent/IT1170695B/en active
- 1981-02-06 NO NO810407A patent/NO810407L/en unknown
- 1981-02-06 FR FR8102355A patent/FR2475662A1/en not_active Withdrawn
- 1981-02-06 DK DK53081A patent/DK53081A/en not_active Application Discontinuation
- 1981-02-06 ES ES499174A patent/ES499174A0/en active Granted
- 1981-05-28 ES ES502555A patent/ES502555A0/en active Granted
- 1981-05-28 ES ES502554A patent/ES8204197A1/en not_active Expired
- 1981-05-28 ES ES502553A patent/ES8204196A1/en not_active Expired
- 1981-05-28 ES ES502556A patent/ES8204199A1/en not_active Expired
- 1981-10-28 AR AR287260A patent/AR230787A1/en active
Also Published As
Publication number | Publication date |
---|---|
ES8204198A1 (en) | 1982-04-01 |
ES502554A0 (en) | 1982-04-01 |
IT1170695B (en) | 1987-06-03 |
GB2081827B (en) | 1983-07-06 |
ES502553A0 (en) | 1982-04-01 |
AR230787A1 (en) | 1984-07-31 |
GB2080924A (en) | 1982-02-10 |
IT8147731A1 (en) | 1982-08-05 |
BR8100415A (en) | 1981-08-11 |
ES502556A0 (en) | 1982-04-01 |
JPS56119281A (en) | 1981-09-18 |
ES8204199A1 (en) | 1982-04-01 |
ES8205473A1 (en) | 1982-06-01 |
FR2475662A1 (en) | 1981-08-14 |
NO810407L (en) | 1981-08-10 |
DE3102122A1 (en) | 1981-12-10 |
DK53081A (en) | 1981-08-08 |
GB2081828A (en) | 1982-02-24 |
PT72442A (en) | 1981-03-01 |
SE8100330L (en) | 1981-08-08 |
NL8100491A (en) | 1981-09-01 |
IT8147731A0 (en) | 1981-02-05 |
PT72442B (en) | 1982-03-12 |
GB2069657B (en) | 1983-06-02 |
ES502555A0 (en) | 1982-04-01 |
ES8204197A1 (en) | 1982-04-01 |
GB2080924B (en) | 1983-09-28 |
ES499174A0 (en) | 1982-06-01 |
BE887253A (en) | 1981-05-14 |
ES8204196A1 (en) | 1982-04-01 |
AU6662581A (en) | 1981-08-13 |
GB2081828B (en) | 1983-08-10 |
GB2069657A (en) | 1981-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4440036A (en) | Gaming apparatus having manually controllable operating speed | |
GB2081827A (en) | Game devices; mechanism for resisting rotation | |
GB2073447A (en) | Variable speed gaming device | |
US4430903A (en) | Gaming apparatus having manually controllable operating speed | |
US4427196A (en) | Rotatable reel indexing having shock absorbing capability | |
GB1584275A (en) | Game machines | |
US4358114A (en) | Reel spin mechanism | |
US4443209A (en) | Gaming apparatus having manually controllable-operating speed | |
JP2972895B2 (en) | Hitting and launching device for electric game machines | |
US4190359A (en) | Copier document handling system | |
KR830001561B1 (en) | Entertainment | |
CA1115303A (en) | Mechanical slot machine | |
US4741532A (en) | Reel drive device for slot machine | |
GB2052824A (en) | Gaming machines | |
CA1131358A (en) | Mode changing apparatus for a tape recorder | |
JP2992444B2 (en) | Launcher of a ball-and-ball game machine | |
US2619348A (en) | Chance controlled target game device | |
CA1075732A (en) | Game having balls projected towards sequenced openings | |
JPS5851005Y2 (en) | Front inserter | |
JPH0445752Y2 (en) | ||
JPH0421570Y2 (en) | ||
US3152414A (en) | Display devices | |
JPH0426126Y2 (en) | ||
AU5999580A (en) | Improvements in an amusement device | |
JPS5935078B2 (en) | Rotating drum drive device in vending machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |