GB2070642A - Ferritic iron-aluminium- chromium alloys - Google Patents

Ferritic iron-aluminium- chromium alloys Download PDF

Info

Publication number
GB2070642A
GB2070642A GB8006738A GB8006738A GB2070642A GB 2070642 A GB2070642 A GB 2070642A GB 8006738 A GB8006738 A GB 8006738A GB 8006738 A GB8006738 A GB 8006738A GB 2070642 A GB2070642 A GB 2070642A
Authority
GB
United Kingdom
Prior art keywords
alloy
aluminium
chromium
iron
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB8006738A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Firth Brown Ltd
Original Assignee
Firth Brown Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firth Brown Ltd filed Critical Firth Brown Ltd
Priority to GB8006738A priority Critical patent/GB2070642A/en
Publication of GB2070642A publication Critical patent/GB2070642A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Abstract

A ferritic alloy of iron, chromium and aluminium containing:- 10 to 25% Chromium 1 to 10% Aluminium 0 to 0.15% Carbon 0 to 3% Silicon 0 to 2% Manganese 0 to 5% Nickel, the nickel content not however being so great as to produce significant amounts of a second phase, up to 2% of rare earth metals selected from Yttrium, Hafnium, Zirconium, Cerium and Lanthanum, And from 0.1 to 2% Titanium, the balance being iron and incidental amounts of the other alloying elements. The alloy may be used for resistance heating elements, furnace construction, or as a knitted wire catalyst support in motor vehicle exhaust systems.

Description

SPECIFICATION Ferritic iron-aluminium-chromium alloys The present invention relates to ferritic alloys of iron, chromium and aluminium containing a significant amount of titanium.
Ferritic iron-chromium-aluminium alloys are known and are in use particularly in environments where resistance to oxidation is of importance. These alloys tend to have a relatively large ascast grain size which is detrimental to the subsequent working of the alloy into forms in which it can be utilised.
We have now found that the as-cast grain size of such alloys can be reduced and their hot working properties improved by the addition of a small amount of titanium.
According, the present invention provides a ferritic alloy or iron, chromium and aluminium containing: 10 to 25% chromium 1 to 10% aluminium O to 0.15% carbon O to 3% silicon O to 2% manganese O to 5% nickel, the nickel content not however being so great as to produce significant amounts of a second phase, up to 2% of rare earth metals selected from yttrium, hafnium, zirconium, cerium and lanthanum, and from 0.1 to 2% titanium, the balance being iron and incidental amounts of the other alloying elements.
Preferably the alloys contain from 1 3 to 18% chromium.
Preferably the alloys contain from 1 to 6% aluminium e.g. about 4.5%.
The percentage of nickel is chosen so that it is not so great within the range quoted above as to produce significant amounts of a second phase taking into account the amounts chosen for each of the other ingredients of the alloy. Preferably, the amount of nickel does not exceed 0.5%.
It is known that addition of yttrium can improve the oxidation resistance of iron-chromiumaluminium alloys and accordingly, in one preferred aspect of the invention, the alloys contain yttrium in an amount up to 1%. Other rare earth metals may be used in a similar way to improve the oxidation resistance of the alloys and accordingly, it is alternatively preferred to provide hafnium in an amount up to 1%, zirconium in an amount up to 2% or more preferably in an amount up to 1% or the commercially avaiable alloy known as mischmetall in an amount up to 1%. Naturally, the principal ingredients of mischmetall, cerium and lanthanum may be used individually if desired.
The presence of incidental amounts of molybdenum, copper, tungsten and cobalt above the impurity level can be tolereated provided these elements are not present in excess. Other elements such as sulphur, phosphorus and vanadium may be present as impurities but are not desirable.
The alloys may be manufactured by the processes normally used for making alloys of this general type. For instance, the alloys may be made by induction melting, either in air or using inert atmospheres or vacuum as appropriate, cast into ingots and subsequently forged or rolled into billet or slab prior to working down to strip, bar, wire or any other commercially saleable form.
In a typical process for producing an iron-chromium-aluminium steel of the invention, a primary charge consisting of iron, ferro-chromium and suitable scrap if avaiable would be introduced into a high frequency induction furnace with a basic lining, e.g. a 6 ton furnace. The first slag would be removed when the metal is clean melted, a clean reducing slag made up and sufficient aluminium added to approximate to the composition desired. An analysis sample would be taken and the composition adjusted by suitable final additions of chromium and/or aluminium. The temperature would be adjusted and the appropriate amount of ferro-titanium added. As soon as this was melted in, the metal would be tapped into a ladel and then teemed into ingots of around 1 ton in weight.The ingots would then be suitably forged to a desired size or alternatively to blooms which might subsequently be rolled to billet or slab for bar wire or strip production.
The invention will be illustrated by the following example. Alloys according to the invention were prepared having the composition shown below.
Sample % Chromium % Aluminium % Titanium % Hafnium A 14.2 4 0.27 Nil B 15.9 48 0.34 0.46 For the purpose of comparison, two alloys not in accordance with the invention were prepared having the composition shown below.
Sample % Chromium % Aluminium % Titanium % Hafnium C 12.6 4.3 Nil Nil D 14.1 4.6 Nil 0.53 The cast structure of titanium-containing alloys A and B was compared with the reference materials C and D. It was noted that the addition of titanium had a marked effect on the crystallisation pattern. modifying the coarse columnar crystals of the normal product and giving a more uniform crystal distribution across the section.
Ingots of the steels were hot worked and it was noted that those containing titanium (A and B) possessed added ductility and less proneness to surface rupture. Their resistance to cracking under thermal stress was enhanced. The net effect of these changes in practice would be a higher yield of servicible billet or slab with a lower conversion cost and lower rectification charges.
The resistance of these four steels to oxidation was compared by the foilowing scaling test procedure.
Specimens some " (13 mm) in diameter by 14111 (30 mm) long were machined from bar and ground to a 1 20 grit finish. They were washed and cleaned in alchohol prior to test.
The test was a relatively short duration but involved cycling between ambient and test temperature. The test chamber was an alumina tube 2" (50 mm) internal diameter in which the sample was positioned across an open ended alumina boat. Heating was by means of the concentric electric furnace, the temperature being measured by reference to a noble metal thermo-couple, the hot junction of which was immediately above the specimen. The test atmosphere was produced by burning natural gas using excess air over that required for combustion, the flow rates being 1.4 cubic foot and 1.14 cubic foot (0.04 and 0.4 cubic metres) per hour respectiveiy for gas and air.The combustion product, a mixture of nitrogen, oxygen carbon dioxide and steam was pre-heated to test temperature before passing through the test chamber; test temperature was established prior to inserting the sample so that heating was rapid. Each test cycle was for six hours, after which the specimens were removed from the test chamber and cooled in a closed container so that any oxide scale which became detached was collected. When cold, the specimen was weighed, together with any detached scale and then scrubbed with a stiff bristle brush to remove any loosely adhering oxide prior to re-weighing to get the starting weight for the next cycle.The whole procedure was repeated for a total of seven cycles and the total gain in weight, that is the sum of the individual gains, expressed as milligrams per square centimetres for the 42 hour period, using the original surface area for the untested specimen, was taken as the scaling index.
The scaling indexes found for the four steels tested at 1200"C were as follows: A 233 B 0.56 C 403 D 0.99 It can be seen that the addition of titanium to a steel in the absence of hafnium (comparing A and C) results in a marked increase in oxidation resistance. It can also be seen that the increase in oxidation resistance is still brought about when titanium is added to a hafnium containing iron chromium aluminium alloy (comparing B and D) although in this case the addition of hafnium has brought about a very large increase in oxidation resistance in itself.
Suitable fields of application for steels according to the invention are those in which resistance to oxidation at high temperature is required. Examples of such uses are in the provision of electric furnace winding material or resistance heating wire generally and in the provision of knitted wire catalyst supports e.g. for use in vehicle exhaust systems for reducing emissions.
Another field in which such properties are of value is in the construction of furnaces, for instance fluid bed combustion furnaces.

Claims (11)

1. A ferritic alloy of iron, chromium and aluminium containing: 10 to 25% chromium 1 to 10% aluminium O to 0.15% carbon O to 3% silicon O to 2% manganese O to 5% nickel, the nickel content not however being so great as to produce significant amounts of a second phase, up to 2% of rare earth metals selected from yttrium, hafnium, zirconium, cerium and lanthanum, and from 0.1 to 2% titanium, the balance being iron and incidental amounts of the other alloying elements.
2. An alloy as claimed in claim 1 containing from 13 to 18% chromium.
3. An alloy as claimed in claim 1 or claim 2 containing from 1 to 6% aluminium.
4. An alloy as claimed in any preceding claim containing about 4.5% aluminium.
5. An alloy as claimed in any preceding claim containing less than 0.5% nickel.
6. An alloy as claimed in any preceding claim containing from 0.2 to 0.5% nickel.
7. An alloy as claimed in any preceding claim containing yttrium in an amount up to 1%.
8. An alloy as claimed in any one of claims 1 to 6 containing hafnium in an amount up to 1%.
9. An alloy as claimed in any one of claims 1 to 6 containing zirconium in an amount up to 2%.
10. An alloy as claimed in claim 9 containing zirconium in an amount up to 1%.
11. An alloy as claimed in any one of claims 1 to 6 containing mischmetall in an amount up to 1%.
1 2. An alloy as claimed in claim 1 substantially as hereinbefore described in the Example.
GB8006738A 1980-02-28 1980-02-28 Ferritic iron-aluminium- chromium alloys Withdrawn GB2070642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB8006738A GB2070642A (en) 1980-02-28 1980-02-28 Ferritic iron-aluminium- chromium alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8006738A GB2070642A (en) 1980-02-28 1980-02-28 Ferritic iron-aluminium- chromium alloys

Publications (1)

Publication Number Publication Date
GB2070642A true GB2070642A (en) 1981-09-09

Family

ID=10511742

Family Applications (1)

Application Number Title Priority Date Filing Date
GB8006738A Withdrawn GB2070642A (en) 1980-02-28 1980-02-28 Ferritic iron-aluminium- chromium alloys

Country Status (1)

Country Link
GB (1) GB2070642A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870046A (en) * 1987-04-24 1989-09-26 Nippon Steel Corporation Rolled high aluminum stainless steel foil for use as a substrate for a catalyst carrier
GB2224288A (en) * 1988-11-01 1990-05-02 British Steel Plc Improvements in and relating to hafnium-containing alloy steels
EP0387670A1 (en) * 1989-03-16 1990-09-19 Krupp VDM GmbH Ferritic-steel alloy
DE4016385A1 (en) * 1989-05-20 1990-11-22 Tohoku Special Steel Works Ltd ELECTROMAGNETIC, STAINLESS STEEL, HIGH CORROSION RESISTANCE
FR2647122A1 (en) * 1989-05-22 1990-11-23 Commissariat Energie Atomique FERRITIC STAINLESS STEEL CONTAINING, IN PARTICULAR, ALUMINUM AND TITANIUM
EP0429793A1 (en) * 1989-11-28 1991-06-05 Nippon Steel Corporation Heat-resistant stainless steel foil for catalyst-carrier of combustion exhaust gas purifiers
US5160390A (en) * 1990-09-12 1992-11-03 Kawasaki Steel Corporation Rapidly solidified fe-cr-al alloy foil having excellent anti-oxidation properties
EP0511699A1 (en) * 1991-04-29 1992-11-04 General Motors Corporation Aluminium-coated iron-chromium foil containing additions of rare earths or yttrium
DE4231511A1 (en) * 1992-09-21 1994-03-24 Schott Glaswerke Die and stamp for pressing glass articles - made from oxide dispersion strengthened (ODS) superalloys based on iron@ or nickel@
US5427601A (en) * 1990-11-29 1995-06-27 Ngk Insulators, Ltd. Sintered metal bodies and manufacturing method therefor
GB2285058A (en) * 1993-12-24 1995-06-28 Ceramaspeed Ltd Alloy for radiant electric heater
WO2001000896A1 (en) * 1999-06-24 2001-01-04 Krupp Vdm Gmbh Fe-cr-al alloy
DE102004016333A1 (en) * 2004-04-02 2005-10-27 Webasto Ag Heating unit burner with an impact disk made by injection molding located in the combustion chamber in the flame region useful in metallurgical production
US20190106774A1 (en) * 2016-04-22 2019-04-11 Sandvik Intellectual Property Ab Ferritic alloy
CN112981273A (en) * 2019-12-18 2021-06-18 韩电原子力燃料株式会社 Ferritic alloy and method for manufacturing nuclear fuel cladding tube using the same
CN113403449A (en) * 2021-06-11 2021-09-17 山西太钢不锈钢股份有限公司 Production method for wide steel strip iron-chromium-aluminum continuous casting slab rare earth alloying

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870046A (en) * 1987-04-24 1989-09-26 Nippon Steel Corporation Rolled high aluminum stainless steel foil for use as a substrate for a catalyst carrier
GB2224288A (en) * 1988-11-01 1990-05-02 British Steel Plc Improvements in and relating to hafnium-containing alloy steels
EP0370645A1 (en) * 1988-11-01 1990-05-30 Avesta Sheffield Limited Improvements in and relating to hafnium-containing alloy steels
GB2224288B (en) * 1988-11-01 1992-05-13 British Steel Plc Improvements in and relating to hafnium-containing alloy steels
EP0387670A1 (en) * 1989-03-16 1990-09-19 Krupp VDM GmbH Ferritic-steel alloy
DE4016385A1 (en) * 1989-05-20 1990-11-22 Tohoku Special Steel Works Ltd ELECTROMAGNETIC, STAINLESS STEEL, HIGH CORROSION RESISTANCE
FR2647122A1 (en) * 1989-05-22 1990-11-23 Commissariat Energie Atomique FERRITIC STAINLESS STEEL CONTAINING, IN PARTICULAR, ALUMINUM AND TITANIUM
EP0399905A1 (en) * 1989-05-22 1990-11-28 Commissariat A L'energie Atomique Stainless ferritic steel containing in particular aluminium and titanium
EP0429793A1 (en) * 1989-11-28 1991-06-05 Nippon Steel Corporation Heat-resistant stainless steel foil for catalyst-carrier of combustion exhaust gas purifiers
US5160390A (en) * 1990-09-12 1992-11-03 Kawasaki Steel Corporation Rapidly solidified fe-cr-al alloy foil having excellent anti-oxidation properties
US5427601A (en) * 1990-11-29 1995-06-27 Ngk Insulators, Ltd. Sintered metal bodies and manufacturing method therefor
EP0511699A1 (en) * 1991-04-29 1992-11-04 General Motors Corporation Aluminium-coated iron-chromium foil containing additions of rare earths or yttrium
DE4231511A1 (en) * 1992-09-21 1994-03-24 Schott Glaswerke Die and stamp for pressing glass articles - made from oxide dispersion strengthened (ODS) superalloys based on iron@ or nickel@
GB2285058A (en) * 1993-12-24 1995-06-28 Ceramaspeed Ltd Alloy for radiant electric heater
GB2285058B (en) * 1993-12-24 1997-01-08 Ceramaspeed Ltd Radiant Electric Heater
WO2001000896A1 (en) * 1999-06-24 2001-01-04 Krupp Vdm Gmbh Fe-cr-al alloy
DE102004016333A1 (en) * 2004-04-02 2005-10-27 Webasto Ag Heating unit burner with an impact disk made by injection molding located in the combustion chamber in the flame region useful in metallurgical production
DE102004016333B4 (en) * 2004-04-02 2006-08-31 Webasto Ag Heater burner with a baffle plate
US20190106774A1 (en) * 2016-04-22 2019-04-11 Sandvik Intellectual Property Ab Ferritic alloy
CN112981273A (en) * 2019-12-18 2021-06-18 韩电原子力燃料株式会社 Ferritic alloy and method for manufacturing nuclear fuel cladding tube using the same
CN113403449A (en) * 2021-06-11 2021-09-17 山西太钢不锈钢股份有限公司 Production method for wide steel strip iron-chromium-aluminum continuous casting slab rare earth alloying
CN113403449B (en) * 2021-06-11 2022-09-20 山西太钢不锈钢股份有限公司 Production method for wide steel strip iron-chromium-aluminum continuous casting slab rare earth alloying

Similar Documents

Publication Publication Date Title
GB2070642A (en) Ferritic iron-aluminium- chromium alloys
EP0035369B1 (en) Ferritic iron-aluminium-chromium alloys
CH375903A (en) Niobium alloy
CA1066922A (en) Heat-resistant allow for welded structures
US2838395A (en) Niobium base high temperature alloys
WO2003029505A1 (en) Ferritic stainless steel for use in high temperature applications and method for producing a foil of the steel
JPS56105458A (en) Heat-resistant cast alloy
CN110408816A (en) A kind of nickel boron carbon intermediate alloy and preparation method thereof
JPS62270721A (en) Production of high-mn austenitic stainless steel for cryogenic service
Saha Deciphering the role of Al $ _2 $ O $ _3 $ formed during isothermal oxidation in a dual-phase AlCoCrFeNi $ _ {2.1} $ Eutectic High-Entropy Alloy
CN110343907A (en) High-strength casting Ni containing W3Al based high-temperature alloy and preparation method thereof
JPH06184700A (en) Alloy with high strength, non-magnetism, and low thermal expansion
GB2083499A (en) Austenitic steel
JPH0621303B2 (en) Method for producing low oxygen Ti alloy
JPH04502938A (en) Iron, nickel, chromium base alloy
JPH03134144A (en) Nickel-base alloy member and its manufacture
JP2003147492A (en) Ti-CONTAINING Fe-Cr-Ni STEEL HAVING EXCELLENT SURFACE PROPERTY, AND CASTING METHOD THEREFOR
JPH04141559A (en) Ferritic stainless steel wire ensuring superior work efficiency of mig welding
JPS6254176B2 (en)
JPS62278248A (en) Oxidation-resistant fe-cr-al alloy
Decker et al. Influence of Crucible Materials on High-Temperature Properties of Vacuum-Melted Nickel-Chromium-Cobalt Alloy
JPS62196356A (en) Martensitic heat-resistant stainless steel
US2693412A (en) Alloy steels
SU1346690A1 (en) Cast iron
Kayano et al. Effect of Ni content on solidification cracking susceptibility of Inconel 706 Ni-base superalloy

Legal Events

Date Code Title Description
WAP Application withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)