GB2047215A - Identification markings for gemstones - Google Patents

Identification markings for gemstones Download PDF

Info

Publication number
GB2047215A
GB2047215A GB7913406A GB7913406A GB2047215A GB 2047215 A GB2047215 A GB 2047215A GB 7913406 A GB7913406 A GB 7913406A GB 7913406 A GB7913406 A GB 7913406A GB 2047215 A GB2047215 A GB 2047215A
Authority
GB
United Kingdom
Prior art keywords
crystal
proton
mev
diamond
crystal lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB7913406A
Other versions
GB2047215B (en
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DRESCHHOFF G A M
Original Assignee
DRESCHHOFF G A M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DRESCHHOFF G A M filed Critical DRESCHHOFF G A M
Priority to GB7913406A priority Critical patent/GB2047215B/en
Publication of GB2047215A publication Critical patent/GB2047215A/en
Application granted granted Critical
Publication of GB2047215B publication Critical patent/GB2047215B/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0027Ion-implantation, ion-irradiation or ion-injection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Adornments (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method of providing permanent identification markings to gemstones such as diamond crystals by irradiating the cooled gemstone with protons in the desired pattern. The proton bombardment results in a reaction limited to a defined plane and converting the bombarded area of the plane into a different crystal lattice than that of the preirradiated stone.

Description

SPECIFICATION Identification markings for gemstones This invention relates to a method for producing permanent identification markings within gemstones. Specifically, the present invention is directed to a method for producing permanent identification markings in the interior of a gemstone by a predetermined pattern of proton bombardment.
Various means of identifying gemstones have been used in the prior art. These methods, however, usually rely on a subjective evaluation of the physical properties of the particular gem such as color, shape, size, weight, dimensions, known flaws and surface irregularities.
The art has also employed various sources of radiation to enhance or alter diamonds having slight value due to undesirable color characteristics. U.S.
Patent 2,945,793 teaches a process for coloring diamonds by means of electron irradiation. Custers et. al., in U.S. Patent 2,998,365 employ electrons or slow neutrons to improve the color of diamonds.
Schulke (Nucleonics, February, 1963, pp.68-70) mentions the use of alpha particles, protons, deuterons and neutrons to color diamonds some shade of green.
Radiation has been employed by the prior art to mark products such as eye glass lenses and contact lens for identification. Methods such as those seen in U.S. Patent Nos. 1,475,473; 3,657,085; and 4,039,827 have been shown for this purpose.
The art is also aware that interior chemical reactions are known to occur when diamonds are bombarded with protons (Zeller et. al.,ZeitschriftFur Naturforschung, 23a, 953-954, 1968; Zeller et. al., Modern Geology, 1,141-148,1970; and Virmani et.
al., Modern Geology 3,43-51,1971).
These reactions, however, have caused large areas of transformation forming large black areas in natural diamond crystals. The prior art process as disclosed would cause a great loss of value to gem diamonds.
It is an object of this invention to provide a permanent method of internally marking gemstones for positive identification.
Another object of this invention is to provide a means for positively marking gemstones for identification that is undetectable to the naked eye.
Another object of this invention is to provide microscopic identifying marks within the crystal lattice of gemstones which can be traced and which would provide positive identification of the gem in case of theft.
A further object of this invention is to provide a method of personalizing gemstones.
The present invention achieves the objects set forth by irradiating gemstones such as natural diamond crystals with positively charged particles, for example monoenergetic protons from a Van de Graaff accelerator in such a manner that only certain predetermined and discrete internal portions of the gemstone crystal undergo transformation into a different crystal lattice. The gemstone is cooled to confine the lattice transformation to a highly defined plane at a desired depth which is a function of proton bombardment level.
The proton bombardment is directed by a suitable proton mask such as a metal template between the gemstone crystal and the proton source so that the irradiation would occur on the crystal only in the predetermined and selected plane and area. The proton mask may be fabricated to only allow proton radiation in the form of numbers, letters or any desired design to pass through to the crystal. The shielded portions of the crystal would be unaffected by the radiation. Furthermore, by controlling the intensity of the proton bombardment, it is possible to produce markings which would be visible only with a microscope and would cause darkening only to the extent needed to make them detectable. The quality of the stone and its refractive properties would be essentially unaffected.
The markings produced by the method of invention are stable and permanent. They are irreversible by any known methods.
Figure 1 is a diagrammatic cross-sectional view of a gemstone crystal that has been irradiated.
Figure 2 is a diagrammatic magnified view of the gemstone of Figure 1.
Figure 3 is a diagrammatic cross-sectional view of a gemstone crystal that has been irradiated through a template having two openings.
Figure 4 is a diagrammatic magnified view of Figure 3.
Referring now to Figure 1, a gemstone crystal is illustrated that has been bombarded by a proton beam 2. As the protons enter the crystal through surface 4 they lose energy through ionization. The crystal lattice is not strongly heated by the bombardment in area 6 and no significant or concentrated lattice changes occur except for sporadic atom displacement and electron trapping. At the end of the proton particle's path, a visible change takes place in a very small and localized region of the crystal lattice shown as area 8. The remainder of the crystal is unchanged and shown herein as area 10.
Any lattice change occurring in area 6 may be reversed by heating the gemstone.
Figure 2 shows individual displacement spikes which is the visible change occurring in the small, localized area due to the intense heat produced when the proton particle stops. Each spike as shown may comprise an area of about 0.01 microns in diameter and involve about 104 atoms. The area in which the displacement spikes are developed constitutes a permanent change that is detectable upon microscopic examination and that may only be removed by recutting the crystal to eliminate the affected area.
Figure 3 is similar to Figure 1 except that a metal template 14 has been inserted between proton beam 2 and crystal surface 4. In this illustration, the proton beam 2 only penetrates the crystal through openings 16 that have been etched in template 14. Accordingly, the only areas of detectable change are shown as areas 18. The remainder of the crystal 20 is unaffected.
Figure 4 is similar to Figure 2 and shows the displacement spikes that occur after template 14 had been used.
When natural diamond crystals are irradiated with monoenergetic protons from a Van de Graaff accelerator, permanent changes take place in the crystals at the point where the particles come to rest.
If particle energies in the range from about 0.25 MeV to about 4 MeV are used, the crystal surface will not be damaged by sputtering nor will nuclear reactions occur which would render the diamond radioactive after completion of the treatment. The protons with which the gem is bombarded will penetrate the crystal in a well defined and highly predictable manner stopping at a depth of a few microns to several tens of microns depending upon their initial energies. Energy levels in the range of about 0.7 MeV to 2 MeV are preferred. When the particles enter the crystals they first lose energy through ionization and the crystal lattice is not strongly heated. However, at the end of the particle's path a detectable change in the crystal lattice takes place in a very small and localized region.This region is characterized by the development of displacement spikes which result from the intense localized heating caused when the particle stops at the end of its path through the crystal. The zone in which the displacement spikes are developed constitutes a permanent change from a diamond lattice to amorphous carbon or graphite which is visible upon microscopic examination and could only be removed by cutting away the affected area on the stone.
Cooling the crystal during irradiation keeps the bulk temperature low so that the structural changes produced by the displacement spike are confined to a localized zone. The lattice change in the stopping region causes the previously optically transparent portion of the crystal to become highly absorptive to visible light.
The depth of penetration of the protons into the crystal lattice is directly proportional to the energy level employed. Accordingly, it is possible to produce identification markings at different depths below the crystal surface.
EXAMPLE Single crystals of natural diamond were irradiated with protons ranging in energy from 0.7 MeV to 1.8 MeV. The particle beam was supplied by a Van de Graaff accelerator. Approximately 1016 particles per hour per cm2 were incident upon the crystal with an average beam current of 1.5 microamperes. All irradiations were performed with a defocused beam so that the proton intensity distribution across the beam was as uniform as possible to eliminate formation of hot spots. Extremely high particle fluxes were avoided to prevent excessive heating of the target although a sufficiently high flux is needed to produce a defined area of lattice transformation. To limit the spikes to a plane, at the desired depth, the gemstone should be cooled to at least below approximately minus 50 centigrade.In the present example, the crystal was cooled to liquid nitrogen temperature during the irradiations. The duration of the irradiations ranged from a few minutes to several hours.
The formation of a thin dark layer is very pronounced after irradiating for 30 minutes. Under these conditions of irradiation, the natural dimensions were approximately as follows: Average thickness of the crystal: 1 to 2 mm.
Depth of the altered layer below the crystal surface: roughly 15 microns.
Thickness of the altered layer: Approximately 1 micron.
The original color ofthe bulk volume of the crystal remains unaltered by the treatment. Only the localized areas where the protons come to rest will be affected. In diamonds, this effect is a coloration within the stopping region due to the physical properties of the diamond lattice. At atmospheric pressure, the lattice is thermodynamically unstable. The intense heating produced when the protons come to rest converts the region of the displacement spike into amorphous carbon. If the heating is maintained for a sufficiently long period the more stable form, graphite, may be produced.
The production of a continuous dark layer below the surface of a diamond as shown by the prior art would greatly reduce its value and render it worthless as a gem. Accordingly, in practicing the invention a proton mask such as a metal template would be introduced between the proton beam and the surface of the gem so that the beam would fall on the crystal only through the perforations etched in the template. These perforations could take any desired form, for example, they could be designed to provide simple dot patterns or they could be produced in complex geometric forms. Numbers, letters orvirtually any design could be copied by photoengraving and could be introduced beneath the surface of the stone. Those portions of the diamond which are shielded from the radiation will be unaffected.By controlling the intensity of the proton bombardment it is possible to produce markings which are visible only with a microscope and would cause darkening only to the extent needed to make them detectable.
The quality of the stone and its refractive properties would be essentially unaffected.
The method of the invention may also be used to personalize gemstones such as by inserting the owner's initials, childs' name or date. By controlling the intensity of the proton bombardment, markings may be provided that are visible to the naked eye.
By controlling the energy levels and intensity of the proton beam, the method of the invention is adaptable to all gemstones having a crystal lattice, dependent only on the physical and chemical properties of the individual gems.
An advantage of this invention resides in its ability to mark gemstones in such a manner that the marks can be removed only by recutting the stone. If the markings are introduced 20 microns below the surface they could be removed only by cutting away a substantial volume of the gem. Furthermore, if the markings are placed under facets and if a distinctive dot or line pattern is used it would be possible to determine the extent of any recutting which might be done in an attempt to conceal thefts.
The total volume affected by the method of this invention is very small in proportion to the total volume of the stone.
From the preceding description of the preferred embodiments, it is evident that the objects of the invention are attained and although the invention has been described and illustrated in detail, it is to be clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation. The spirit and scope of this invention are limited only by the terms of the appended

Claims (15)

claims. We wish it to be understood that we do not desire to be limited to the exact details of the method shown and described, for obvious modifications can be made by a person skilled in the art. CLAIMS
1. A method of providing permanent identification markings within the interior of a gemstone crystal lattice comprising irradiating the crystal by means of proton bombardment in the pattern of the identification mark, said protons being applied at a sufficient flux, energy level and time period to reach a desired depth within the crystal in a sufficient concentration to irreversibly transform an area of a plane normal to the axis of irridation at said depth in the pattern of the identification mark into a second crystal lattice different from the pre-irradiation crystal lattice.
2. The method of claim 1 wherein the gemstone is diamond and the second crystal lattice is amorphous carbon or graphite.
3. The method of claim 1 wherein the internal identification markings are small enough to be unde tectable to the naked eye.
4. The method of claim 2 wherein the porton particle energies are in the range of from about 0.25 MeV to about 4 MeV.
5. The method of claim 4 wherein the proton particle energies are in the range of from 1 MeV to 2 MeV.
6. The method of claim 2 wherein the diamond is cooled to below minus 50 centigrade during the irradiation period.
7. The method of claim 2 wherein the irradiation period is in the range of from a few minutes to several hours.
8. The method of claim 2 wherein a proton mask etched with the identification marking is introduced between the proton source and the diamond.
9. The method of claim 1 wherein the protons are monoenergetic protons from a Van de Graaff accelerator.
10. A method of providing permanent identification markings within the interior of a diamond crystal lattice comprising irradiating the diamond by means of a proton bombardment through a proton mask etched in the pattern of the identification mark; said protons being applied within an energy range of about 0.25 MeV to about 4 MeV; said diamond crystal being cooled to the temperature of liquid nitrogen during the irradiating period; whereby the area of the crystal in which the proton stops is transformed into amorphous carbon or graphite.
11. Gemstones having internal identification markings produced by the method of claim 1.
12. Diamonds having internal identification markings produced by the method of claim 2.
13. Diamonds having internal identification markings produced by the method of claim 10.
14. A method of providing permanentidentifica- tion markings within the interior of a gemstone crystal lattice substantially as herein described with reference to the accompanying drawings.
15. Any novel element, or combination of elements, herein described andlor shown in the accompanying drawings, irrespective of whether the present claim is within the scope of, or relates to the same invention as, any of the preceding claims.
GB7913406A 1979-04-18 1979-04-18 Identification markings for gemstones Expired GB2047215B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB7913406A GB2047215B (en) 1979-04-18 1979-04-18 Identification markings for gemstones

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB7913406A GB2047215B (en) 1979-04-18 1979-04-18 Identification markings for gemstones

Publications (2)

Publication Number Publication Date
GB2047215A true GB2047215A (en) 1980-11-26
GB2047215B GB2047215B (en) 1982-12-22

Family

ID=10504609

Family Applications (1)

Application Number Title Priority Date Filing Date
GB7913406A Expired GB2047215B (en) 1979-04-18 1979-04-18 Identification markings for gemstones

Country Status (1)

Country Link
GB (1) GB2047215B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2325392A (en) * 1997-05-23 1998-11-25 Gersan Ets Diamond marking
US9901895B2 (en) 2013-05-30 2018-02-27 Chow Tai Fook Jewellery Company Method of marking material and system therefore, and material marked according to same method
US10475355B2 (en) 2013-10-11 2019-11-12 Chow Tai Fook Jewellery Company Limited Method of providing markings to precious stones including gemstones and diamonds, and markings and marked precious stones marked according to such a method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2325392A (en) * 1997-05-23 1998-11-25 Gersan Ets Diamond marking
US9901895B2 (en) 2013-05-30 2018-02-27 Chow Tai Fook Jewellery Company Method of marking material and system therefore, and material marked according to same method
US10475355B2 (en) 2013-10-11 2019-11-12 Chow Tai Fook Jewellery Company Limited Method of providing markings to precious stones including gemstones and diamonds, and markings and marked precious stones marked according to such a method

Also Published As

Publication number Publication date
GB2047215B (en) 1982-12-22

Similar Documents

Publication Publication Date Title
US4200506A (en) Process for providing identification markings for gemstones
CA2093216C (en) Methods for producing indicia on diamonds
GB2248575A (en) Method for producing indicia on diamonds
CA1323667C (en) Method for producing a marking on a spectacle lens
RU98102782A (en) METHOD FOR LABELING DIAMONDS
TWI753393B (en) Optically permeable mark for gemstone marking
EP2566653B1 (en) Method for applying a marking onto the surface of a diamond or brilliant and for verifying its authenticity
CA2316957C (en) Diamond or gemstone marking by plurality of grooves
EP0984865A1 (en) Diamond marking
JPS62278200A (en) Irradiation to topaz and product therefrom
US5637878A (en) Process for irradiating gemstones
GB2047215A (en) Identification markings for gemstones
Dreschhoff et al. Identification markings for gemstones
US5477055A (en) Method of producing gemstone quality topaz
NL7903059A (en) Providing permanent identification markings on gemstones - using proton bombardment to transform the crystal lattice
WO2019161791A1 (en) Method of marking a solid-state material, markings formed from such methods and solid-state materials marked according to such a method
BE878738A (en) WERKWIJZE VOOR HET AANBRENGEN VAN PERMANENTE IDENTIFICATIEMERKEN BINNEN EDELSTENEN
JPH0536399B2 (en)
KR100509546B1 (en) Marking Diamond
TH19557B (en) Marking on diamonds
JPS55165639A (en) Method of heat treatment by light
KR20080096940A (en) Menufacturing method for a yellow diamond
KR830009754A (en) Method and apparatus for expressing emotion on jewel surface

Legal Events

Date Code Title Description
PCNP Patent ceased through non-payment of renewal fee

Effective date: 19940418