GB2031019A - High Carbon Content Fuels - Google Patents
High Carbon Content Fuels Download PDFInfo
- Publication number
- GB2031019A GB2031019A GB7926944A GB7926944A GB2031019A GB 2031019 A GB2031019 A GB 2031019A GB 7926944 A GB7926944 A GB 7926944A GB 7926944 A GB7926944 A GB 7926944A GB 2031019 A GB2031019 A GB 2031019A
- Authority
- GB
- United Kingdom
- Prior art keywords
- carbon black
- liquid hydrocarbon
- hydrocarbon fuel
- liquid
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 49
- 229910052799 carbon Inorganic materials 0.000 title abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title abstract description 15
- 239000006229 carbon black Substances 0.000 claims abstract description 61
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 57
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 54
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 52
- 239000007788 liquid Substances 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims abstract description 11
- -1 carbon black Chemical compound 0.000 claims abstract description 8
- 239000000178 monomer Substances 0.000 claims description 39
- 239000000203 mixture Substances 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 17
- 229920000642 polymer Polymers 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000013019 agitation Methods 0.000 claims description 3
- 150000001993 dienes Chemical class 0.000 claims description 2
- 229920001567 vinyl ester resin Polymers 0.000 claims description 2
- 125000005396 acrylic acid ester group Chemical group 0.000 claims 1
- 239000007870 radical polymerization initiator Substances 0.000 claims 1
- 125000000962 organic group Chemical group 0.000 abstract 1
- 235000019241 carbon black Nutrition 0.000 description 56
- 229940105289 carbon black Drugs 0.000 description 54
- 239000003054 catalyst Substances 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 8
- 229920000578 graft copolymer Polymers 0.000 description 8
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 6
- 239000000539 dimer Substances 0.000 description 5
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- 229920002554 vinyl polymer Polymers 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000010559 graft polymerization reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- NFWSQSCIDYBUOU-UHFFFAOYSA-N methylcyclopentadiene Chemical class CC1=CC=CC1 NFWSQSCIDYBUOU-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical class C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- 230000009974 thixotropic effect Effects 0.000 description 2
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- KEIFWROAQVVDBN-UHFFFAOYSA-N 1,2-dihydronaphthalene Chemical compound C1=CC=C2C=CCCC2=C1 KEIFWROAQVVDBN-UHFFFAOYSA-N 0.000 description 1
- OEOIWYCWCDBOPA-UHFFFAOYSA-N 6-methyl-heptanoic acid Chemical compound CC(C)CCCCC(O)=O OEOIWYCWCDBOPA-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001253 acrylic acids Chemical class 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- BOOQTIHIKDDPRW-UHFFFAOYSA-N dipropyltryptamine Chemical compound C1=CC=C2C(CCN(CCC)CCC)=CNC2=C1 BOOQTIHIKDDPRW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- NNYBQONXHNTVIJ-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=C1C(C=CC=C1CC)=C1N2 NNYBQONXHNTVIJ-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000003349 gelling agent Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 229940063718 lodine Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- ALIFPGGMJDWMJH-UHFFFAOYSA-N n-phenyldiazenylaniline Chemical compound C=1C=CC=CC=1NN=NC1=CC=CC=C1 ALIFPGGMJDWMJH-UHFFFAOYSA-N 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/32—Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Graft Or Block Polymers (AREA)
- Liquid Developers In Electrophotography (AREA)
- Liquid Carbonaceous Fuels (AREA)
Abstract
Disclosed is a high-carbon- content liquid hydrocarbon fuel wherein particulated carbon such as carbon black, having organic groups or components attached to the surfaces thereof, is dispersed in a liquid hydrocarbon fuel. Disclosed also is a method for making the high-carbon- content liquid hydrocarbon fuel wherein organic components are graft-polymerized to carbon black dispersed in a liquid hydrocarbon fuel.
Description
SPECIFICATION
High Carbon Content Fuels
This invention relates to liquid fuels for propelling aircraft, rockets and the like. More specifically it is concerned with liquid fuels containing finely divided carbon particles dispersed therein.
The development of ramjet engines has shown that as their range increases, propellant fuels of increased volumetric heating value (heat of combustion per unit volume) are necessary. Generally, the volumetric heating values of liquid hydrocarbon fuels increase with increased carbon-to-hydrogen ratios in the fuels and increased densities. It has been proposed in the prior art to increase the carbon content and densities of liquid hydrocarbon fuels, and consequently their volumetric heating values, by dispersing in them finely divided carbon, such as carbon black or powdered graphite. Studies have been made with carbon blacks suspended in such hydrocarbon fuels as kerosene, decalin and tetralin.
In some of these studies gelling agents, such as an aluminum soap of isooctanoic acid or the Dow
Chemical Company proprietary material tradenamed CX 3487, have been utilized to keep the carbon black dispersed in the hydrocarbon fuel. These hydrocarbon fuel carbon black mixtures, however, exhibit marked increases in viscosity in comparison to the liquid hydrocarbon fuel alone. Liquid fuels -containing particulated aluminum and boron to increase their volumetric heating value have also been investigated. The metal oxides formed in combusting these fuels has, however, interfered with engine -efficiencies and has shown these fuels to have only limited applicability.
Turning now to other considerations, studies of carbon black have demonstrated that hydrocarbon groups or polymers can be attached through carbon-to-carbon bonds to the surfaces of carbon black particles. U.S. Patent 3,043,708 discloses a method wherein hydrocarbon groups can be attached to the surfaces of carbon black particles utilizing Friedel-Crafts alkylating agents and catalysts. These modified carbon blacks are said to be useful for reinforcing rubber compositions. Other studies of carbon black have shown that various monomers can be graft-polymerized onto carbon black particles. For example, when styrene is added to carbon black and is thermally polymierized, a reaction product of styrene polymer grafted onto the surface of carbon black particles is obtained.
A primary object of this invention is to provide a liquid hydrocarbon fuel containing dispersed carbon particles and having a high volumetric heating value. A further object of this invention is to provide a method of making a liquid hydrocarbon fuel containing dispersed carbon particles and having a high volumetric heating value. A still further object of this invention is to provide a method of increasing the stability of the dispersed carbon black in a liquid hydrocarbon fuel containing dispersed carbon particles. A further object is to provide a fuel of this description having a depressed pour-point and reduced viscosities in comparison to prior art carbon black liquid fuel mixtures.
This invention, provides a hydrocarbon fuel consisting essentially of a liquid combustible hydrocarbon, having dispersed therein carbon black particles to whose surfaces hydrocarbon groups are chemically attached or polymer groups are graft-polymerized. The fuel composition of this invention may also contain catalyst residue and/or self polymers of the monomer material making up the grafted-polymer, but these are not essential components of the composition.
This invention further provides a method of preparing a high-carbon-content hydrocarbon fuel wherein particulated carbon black, a polymerizable, graftable monomer and a polymerization initiator are mixed in a liquid hydrocarbon fuel medium and the resulting mixture is reacted at proper conditions of temperature and pressure to accomplish graft-polymerization of at least a portion of the added monomer to the carbon black.
Although the emphasis in the following description is on liquid hydrocarbon fuel-carbon blackgrafted polymer compositions and a method of preparing them, the scope of this invention also
includes compositions comprising liquid hydrocarbon fuels and carbon black, the iatter having attached to its surfaces hydrocarbon radicals. The hydrocarbon radicals may have been attached by utilizing
Friedel-Crafts, Grignard, or other conventional reactions, as well as polymerization type reactions such as Ziegler-Natta, anionic, cationic, radiation-induced, and peroxide-initiated reactions.
Liquid Hydrocarbon Fuel
The liquid hydrocarbon component may be any combustible liquid hydrocarbon. Preferred
hydrocarbon liquids are those having a high density and high carbon-to-hydrogen ratio such as
kerosene, the JP-5, RP-1, or Shelldyne fuels, decalin or tetralin. "JP-5", "RP-1", and "Shelldyne" is a trademark of Shell Oil Company for mixtures of unsaturated bicyclo (2.2.1) hepta-2, 5-diene dimers. A
preferred hydrocarbon liquid is a hydrogenated dimer of methyl-cyclopentadienes having the following structure:
Carbon Black
A wide variety of carbon blacks may be dispersed in the liquid hydrocarbon fuel. These include thermal blacks of various particle sizes, furnace blacks, and channel blacks.Usable furnace blacks include the classes designated as super abrasion, high abrasion, fast extrusion, fine, and carcass grade of various particle sizes. Classes of channel blacks usable are medium processing, hard processing and conducting. Carbon black produced from acetylene and the various graphitized blacks may also be used. Blacks of smaller particle size will combust easily but will tend to increase the viscosity of the resulting fuel-carbon black mixture, whereas carbon black of greater particle size will increase the viscosity less at corresponding concentrations but will not combust as rapidly. It will therefore be necessary usually to choose a carbon black of intermediate particle size to optimize the burning and viscosity characteristics of the resulting carbon black-liquid hydrocarbon mixture.
A preferred carbon black is a semireinforcing black (SRF) having the following properties:
ASTM No. N-754
lodine Adsorption, mg/gm . 20-27 Tint 188-200 DBP adsorption, cc/I 00 gm 54 62 Ash, % 0.75 Maximum
30 Mesh Residue, % 0.001 Maximum
325 Mesh Residue, % 0.050 Maximum
Monomer
The monomer to be graft-polymerized onto the particles of carbon black can be a number of those now commercially available. It is believed that the mechanism of graft-polymerization consists of two steps. In the first step, the molecules of monomer polymerize to form a polymer chain.
Subsequently, the reactive end of the polymer chain attaches to the surface of the carbon black.
Consequently, the monomer selected should be one that will yield a desired carbon blackgraftedpolymer having hydrocarbon moieties compatible with the hydrocarbon fuel component in which the carbon black is dispersed. Specifically, monomers which can be used include vinyl esters, esters of acrylic and substituted acrylic acids, and polymerizable hydrocarbons containing a hydrocarbon moiety which will be compatible with the liquid hydrocarbon fuel component. Other usable monomers include diene monomers such as isoprene and butadiene, cyclic dienes such as cyclopentadiene, and cyclic hydrocarbons containing multiple unsaturation (conjugated or unconjugated).Ideal monomers would be those containing moieties similar to the liquid hydrocarbon fuel component such as vinyl hydrogenated dimers of methylcyclopentadienes, vinyl Shelldyne-type hydrocarbons (mixtures of vinylsubstituted unsaturated bicyclo (2.2.1) hepta-2,5-diene dimers), vinyl cuban (vinyl-substituted compounds of pentacyclo (4.2.0.0250.330.47) octane), and vinyl binor-S (vinyl-substituted compounds of heptacyclo (5.5.1.12.614,1219,1 ' 035.0310) tetradecane).
Specific monomers which can be used are lauryl methacrylate,1,2 di-hydronaphthalene, and partially hydrogenated, vinylated hydrogenated anthracene and phenanthrene.
Catalysts
Catalysts which can be used are those traditionally used as free radical initiators such as peroxides and hydroperoxides, pinacols, and transitional metal ion initiators. More specifically, catalysts which can be used are 2,2'-axobisisobutyronitrile commonly called AIBN and 1,3diphenyltriazene hereinafter designated DPT. Of these the DPT catalyst is preferred because it has a longer half-life and can be used at higher temperatures of 100 to 1 200C. The working temperature for the AIBN catalyst is 60 to 800C.
Based on the aggregate weight of carbon black, liquid hydrocarbon and polymerized monomer in the final fuel composition, the amount of carbon black should be between about 5 and about 70 percent by weight, the amount of liquid hydrocarbon between about 30 and about 93 weight percent and the monomer between about 2 and about 1 5 percent by weight. Preferred weight ranges of these components are between about 50 and about 70 weight percent of carbon black, between about 30 and about 50 percent of hydrocarbon liquid and between about 1 and about 5 weight percent of monomer.
The amount of catalyst incorporated into the mixture will depend in part on the particular catalyst used. When either the AIBN or DPT catalysts are used, between about 1 and about 5 parts by weight of catalyst per 100 parts by weight of monomer are used.
Method of Preparing Liquid Hydrocarbon-carbon Black-graft Polymer Compositions
The temperature and pressure at which the carbon black monomer, and catalyst are reacted are those now generally used in ordinary polymerization reactions and will range from about 50 to about 1 500C and from about 0 to about 20 psig.
In combining the carbon black, liquid hydrocarbon fuel, monomer, and catalyst a novel feature of the method of mixing these components is that the carbon black, monomer and catalyst are added to and reacted in the liquid hydrocarbon fuel directly. No intermediate step wherein the carbon black and monomer are first reacted and then added to the liquid hydrocarbon is required.
In a preferred method of combining the components the carbon black, monomer, and catalyst are
all added in the desired proportions to the liquid hydrocarbon fuel. The combined materials are agitated at ambient temperature sufficiently to disperse them evenly throughout the hydrocarbon liquid. The mixture is then heated to the temperature required to polymerize the monomer. The time required to complete the reaction varies but a period as low as two hours has been used. Upon completion of the reaction, the mixture is cooled and is ready for use as a fuel.
If desired, however, the carbon black-grafted-poiymer can be formed separately from the liquid hydrocarbon fuel and then combined with and dispersed in the liquid hydrocarbon fuel.
It is recognized that the monomer reacts in two different ways. There is a self-polymerization (homopolymerization) reaction in which the monomer molecules link with each other forming a homopolymer of the monomer. The second reaction is one wherein growing polymer chains react with carbon black particles to form grafted-polymer. Ideally the reaction should be conducted to maximize the formation of grafted-polymers with the carbon black and to minimize the formation of homopolymers.
In some instances it is desirable to pretreat the carbon black with a de-gassing treatment. This step constitutes subjecting the carbon black to a vacuum (2 to 5 mm of mercury) and elevated temperature (140 to 1 500C) for a period about three hours: This treatment removes moisture and oxygen and enhances the activity of the carbon black for attaching hydrocarbon radicals.
Example 1
To 106.6 grams of hydrocarbon liquid fuel (tradenamed Shelldyne) in a blender a weight of 65 grams of a thermal carbon black was added. Upon blending the two components, a thixotropic dispersion with a density of 1.27 gms/ml and containing 33.7 percent by weight of carbon black was obtained. This mixture, designated as sample A, was set aside to be used as a control and comparison sample.
A second dispersion using the same proportion of thermal black and hydrocarbon liquid was then prepared. While the second dispersion was still in the blender 300 mg of DPT catalyst was added with continued agitation, and subsequently 21.5 g of lauryl methacrylate monomer. A portion of the resulting mixture, designated as sample B, was retained at room temperature. The remainder, designated as sample C, weighing 117 grams was removed and heated overnight (15 hours approximately) at a temperature of 1 000C in a closed container.Visual comparison of this last mixture, sample C with the sample containing no added monomer, sample A, and the sample containing unpolymerized monomer, sample B, showed definitely that the heated, polymerized sample C had the lowest viscosity (comparable to motor oil at room temperature) whereas the first two samples A and B were extremely viscous. This lower viscosity indicated that graft polymerization of the lauryl methacrylate had occurred in the presence of the liquid hydrocarbon fuel carrier. The calculated composition of samples B and C was 55.2 percent Shelldyne, 33.7 percent carbon black, and 11.1 percent monomer and polymer respectively.
Example II
To 1 84 grams of a hydrogenated dimer of methylcyclopentadiene (known commercially as RJ-4) 11 3 grams of the same thermal black as in Example I was added and blended to give a thixotropic mixture containing 38 percent black. A portion of this mixture (106 grams), designated as sample D, was removed for purposes of control and comparison. To the remaining 191 grams of mixture 23.6 g of lauryl methacrylate and 330 mg of DPT catalyst were added with agitation. The amount of catalyst added corresponds to 1.4 parts per 100 parts by weight of monomer. The quantities of carbon black,
RJ-4 liquid hydrocarbon, lauryl methacrylate, and DPT catalyst mixed correspond to the same weight ratios in Example I.After mixing all of these components a sample portion, designated as sample E, was removed and the remainder, designated as sample F, was heated overnight in a closed container at 11 00C. From visual examination the next day, the polymerized sample F was observed to have a considerably lower viscosity than the original comparison sample D and the unpolymerized sample E.
The measured viscosity of sample E was 6940 centipoises and that of sample F was only 300 centipoises. The calculated composition of samples E and F was 55.2 percent dimer, 33.8 percent carbon black and 11.0 percent monomer based on the aggregate weight of these three components.
Heats of combustion of samples A, C, D and F when measured were as shown in the following tabulation. The values given for Shelidyne and RJ-4 without added carbon black are those reported in the literature. The calculated values for the liquid fuel-carbon blackmonomer-grafted polymer mixtures do not include the heat of combustion of the included monomer and grafted-polymer, whereas the experimental values do.
Heating Value,
B TU per gallon
Calculated Experimental
Shelldyne without added carbon black 162,000
Shelldyne with added carbon black and
no added monomer (sample A
37.5% carbon black by wt.) 178,500 183,000
Heating Value, BTU per gallon Experimental Calculated
Shelldyne with grafted polymer and car
bon black (sample C--33.79/o carbon black, 11.1 percent
monomer, and 55.2% Shelldyne) 176,000 173,700
RJ-4 without added carbon black 142,000
RJ-4 with added carbon black and
no added monomer (sample D
38% carbon black by weight) 161,500 166,600
RJ-4 with grafted polymer and carbon
black (sample F33.8% carbon black, 11.0% monomer, and
55.2% RJ-4 fuel) 159,000 165,100
Claims (4)
1. A method for preparing a liquid hydrocarbon fuel composition which comprises slurrying a mixture of from 5-70 weight percent pulverulent carbon black, from 30-93 weight percent of a liquid combustible hydrocarbon and a monomer selected from the group consisting of a vinyl ester, an acrylic acid ester, an acylic diene and a cyclic diene wherein said monomer constitutes from 2-1 5 weight percent of the aggregate weight of said mixture, heating the mixture with agitation at a temperature of from 60--1 200C in the presence of a free radical polymerization initiator.
2. A method for preparing a liquid hydrocarbon fuel composition substantially according to either one of the Examples herein.
3, A liquid hydrocarbon fuel composition prepared according to the method of Claim 1 or Claim 2.
4. A liquid hydrocarbon fuel consisting essentially of a liquid combustible hydrocarbon, having dispersed therein carbon black particles to whose surfaces hydrocarbon groups are chemically attached or polymer groups are graft-polymerized.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/950,347 US4165969A (en) | 1973-02-23 | 1978-10-11 | High carbon content liquid fuels |
Publications (2)
Publication Number | Publication Date |
---|---|
GB2031019A true GB2031019A (en) | 1980-04-16 |
GB2031019B GB2031019B (en) | 1982-12-22 |
Family
ID=25490313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB7926944A Expired GB2031019B (en) | 1978-10-11 | 1979-08-02 | High carbon content fuels |
Country Status (9)
Country | Link |
---|---|
JP (1) | JPS5552385A (en) |
BE (1) | BE878162A (en) |
DE (1) | DE2940486A1 (en) |
ES (1) | ES483602A1 (en) |
FR (1) | FR2438680A1 (en) |
GB (1) | GB2031019B (en) |
IT (1) | IT1122493B (en) |
NL (1) | NL7906254A (en) |
SE (1) | SE7906610L (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62101690A (en) * | 1985-10-29 | 1987-05-12 | Mitsubishi Heavy Ind Ltd | Additive for fuel oil |
JPH02225594A (en) * | 1989-02-27 | 1990-09-07 | Mitsubishi Heavy Ind Ltd | Additive for fuel oil |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2754267A (en) * | 1954-07-12 | 1956-07-10 | Shell Dev | Carbon black concentrates |
FR1154339A (en) * | 1956-06-29 | 1958-04-04 | Bataafsche Petroleum | Improved method of operating an oven |
-
1979
- 1979-08-02 GB GB7926944A patent/GB2031019B/en not_active Expired
- 1979-08-06 SE SE7906610A patent/SE7906610L/en not_active Application Discontinuation
- 1979-08-08 FR FR7920317A patent/FR2438680A1/en active Granted
- 1979-08-09 BE BE0/196664A patent/BE878162A/en not_active IP Right Cessation
- 1979-08-13 IT IT25091/79A patent/IT1122493B/en active
- 1979-08-16 NL NL7906254A patent/NL7906254A/en not_active Application Discontinuation
- 1979-08-23 ES ES483602A patent/ES483602A1/en not_active Expired
- 1979-10-05 DE DE19792940486 patent/DE2940486A1/en not_active Withdrawn
- 1979-10-11 JP JP13129879A patent/JPS5552385A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
FR2438680B1 (en) | 1983-07-08 |
NL7906254A (en) | 1980-04-15 |
FR2438680A1 (en) | 1980-05-09 |
SE7906610L (en) | 1980-04-12 |
DE2940486A1 (en) | 1980-04-17 |
IT7925091A0 (en) | 1979-08-13 |
BE878162A (en) | 1979-12-03 |
GB2031019B (en) | 1982-12-22 |
IT1122493B (en) | 1986-04-23 |
JPS5552385A (en) | 1980-04-16 |
ES483602A1 (en) | 1980-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4165969A (en) | High carbon content liquid fuels | |
US4528334A (en) | Carboxylated poly(oxyalkylenes) | |
DE69321086T2 (en) | Process for the preparation of in situ dispersion of copolymers | |
US4810754A (en) | High temperature peroxide induced telomerization processes for grafting vinyl nitrogen containing monomers onto olefin polymers | |
US3441455A (en) | Encapsulated propellants and method for their preparation from fluorinated monomers using radiation | |
DE1495837C3 (en) | Process for the production of thermoplastic-elastic molding compounds | |
US3256236A (en) | Carbon-polyolefin compositions and process for making same | |
US3159608A (en) | Copolymerization of ethylene and vinyl acetate | |
US3671608A (en) | Plastic composition and method of preparing same | |
JPH0468326B2 (en) | ||
CN108192138A (en) | Modification method of carbon nano tube used as rubber filler | |
GB2031019A (en) | High Carbon Content Fuels | |
US3578629A (en) | Process for preparing reinforced polyolefins | |
US3129199A (en) | Process for preparing high impact material by polymerizing styrene in the presence of diene rubber and polystyrene | |
US5039342A (en) | Modified asphalt cement compositions and methods of producing the same | |
SU1205775A3 (en) | Method of obtaining furnace black | |
DE2201768A1 (en) | Telomeric liquid polybutadiene oils | |
US5962593A (en) | Poly (metal carboxylate) grafted rubbers with high modulus | |
Bacon et al. | The interaction of maleic anhydride with rubber | |
CN1154665C (en) | Monovinylaromatic polymer with improved stress crack resistance | |
ES430775A1 (en) | Process for impact modification of high nitrile polymers | |
US4115478A (en) | High impact polymer and process for its production | |
CN1119360C (en) | Simplified bimodal process | |
DE69501584T2 (en) | Impact-modified compositions based on copolymers of alpha-alkyl vinyl aromatics and vinyl cyanide | |
US2689240A (en) | Copolymer of cyclopentadiene and vinyl acetate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |