GB1600281A - Containment of pressurized fluid jets - Google Patents

Containment of pressurized fluid jets Download PDF

Info

Publication number
GB1600281A
GB1600281A GB2152277A GB2152277A GB1600281A GB 1600281 A GB1600281 A GB 1600281A GB 2152277 A GB2152277 A GB 2152277A GB 2152277 A GB2152277 A GB 2152277A GB 1600281 A GB1600281 A GB 1600281A
Authority
GB
United Kingdom
Prior art keywords
tank
jet
receptacle
liquid
pressurized fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB2152277A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Development Corp UK
National Research Development Corp of India
Original Assignee
National Research Development Corp UK
National Research Development Corp of India
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Development Corp UK, National Research Development Corp of India filed Critical National Research Development Corp UK
Priority to GB2152277A priority Critical patent/GB1600281A/en
Priority to CA303,662A priority patent/CA1103583A/en
Priority to US05/907,237 priority patent/US4224985A/en
Priority to NO781745A priority patent/NO149641C/en
Priority to NL7805413A priority patent/NL7805413A/en
Priority to DE19782822267 priority patent/DE2822267A1/en
Priority to JP6155778A priority patent/JPS53145116A/en
Priority to FR7816341A priority patent/FR2391384A1/en
Publication of GB1600281A publication Critical patent/GB1600281A/en
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B35/00Methods or apparatus for preventing or extinguishing fires
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/02Surface sealing or packing

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

(54) IMPROVEMENTS IN OR RELATING TO THE CONTAINMENT OF PRESSURIZED FLUID JETS (71) We, NATIONAL RESEARCH DEVELOPMENT CORPORATION, a British Corporation established by Statute, of 66-74, Victoria Street, London, S.W.1., do hereby declare the invention, for which I pray that a patent may be granted to me, and the method by which it is to be performed, to be particularly described in and by the following statement: This invention relates to the containment of pressurized fluid jets, primarily high pressure, (e.g. 1000 Ibs per square inch and above), fluid jets, and is particularly, (but not exclusively) concerned with the containment of upwardly-discharging oil jets, resulting from "blow-outs" at oil rigs.
Oil blow-outs can results in substantial pollution as well as a large loss of revenue.
The invention has, however, applications other than containing high pressure jets, for example:a) the collection of oil and/or gas from a drilling rig, b) the exchange of heat and/or pressure c) the separation of liquids of various densities from a mixture of the same, and d) the containment of low (e.g. less than 1000 Ibs per square inch) pressure fluid jets.
As used herein, the term "containing" includes absorbing energy from the fluid jet, and the term "oil" includes mixtures of oil, liquids and gases.
Furthermore, as used herein, the term "liquid" includes water, oil and semi-solids, such as mud.
According to one aspect of the present invention, apparatus for containing a pressurized fluid jet comprises a receptacle of generally conical form having walls defining an included angle of less than 25 and provided with inlet means whereby the jet can enter the the receptacle at the small end thereof, it being arranged that sufficient energy is absorbed by the creation of vortices within the receptacle to contain the jet.
According to another aspect of the present invention, a method of containing a pressurized fluid jet comprises disposing the receptacle in the path of said jet whereby sufficient energy is absorbed by the generation of vortices within the receptacle to contain the jet.
The various aspects of the invention will now be described, by way of example only, with reference to the semi-diagrammatic drawings accompanying the Provisional Specifications (21522/77 and 14290/78), wherein: - Figure 1 is a side view, partly in medial section, of the upper part of an oil rig, with apparatus according to the invention disposed thereon, Figure 2 is a detail, to an enlarged scale, of part of Figure 1, Figure 3 is a view similar to that shown by Figure 1, and illustrates the apparatus in operation Figure 4 is a plan view which illustrates a modification, Figure 5 is a view, similar to that shown by Figure 3, and illustrates one modification, Figure 6 is a side view, in medial section, illustrating a modified containment tank, Figure 7 is a side view and illustrates another modification, Figure 8 is a detail, to an enlarged scale, of part of Figure 7, Figure 9 is a side view similar to that shown by Figure 5, and illustrates a further modification, Figure 10 is a side view, in medial section, which illustrates how control can be applied to containment apparatus, and Figures 11, 12 and 13 are side view, in medial section, of tank filling and heat/ pressure exchange apparatus, and to the accompanying semi-diagrammatic drawings, wherein: Figures 14 to 17 are fragmentary side views, in medial section, which illustrate various modifications.
In the figures, like reference numerals refer to like components.
With reference to Figure 1, an off-shore oil rig 1 for the production of oil includes a well-head platform 2 and an oil discharge pipe 3. A conventional manifold assembly with control/isolating valves whereby oil is directed to several receiving stations, plus other components, would normally be connected to the upper end of pipe 3 but have been omitted from Figure 1 for reasons of clarity.
The platform 2 supports apparatus 10 for containing a jet of high pressure oil should it escape upwardly from the pipe 3.
The apparatus 10 comprises a receptacle in the form of a tank 11 for holding a body of water 12, it being arranged that, as explained hereinafter, the escaping jet can enter the tank 11 from below, whereby sufficient energy is absorbed by the creation of vortices within the water held in the receptacle to contain the jet.
The tank 11 is of generally conical form with the small end lowermost, i.e. nearest to pipe 3. The tank 11, which is, more specifically, of frusto-conical form. is supported above the platform 2 by four equi-spaced legs 13. The bottom of the tank 11 is perforated by a centrally-disposed aperture 14 aligned with pipe 3 and closed by a non-return flap valve 15. (The valve 15 is shown in dotted lines).
A tubular structure 20 is disposed centrally within the tank 11. in an upright position.
The bore of the structure 20 is of somewhat larger diameter than that of the aperture 14.
The upper end of the tubular structure 20 is slidably located by a tubular guide 21 carried by the central part of a baffle 23, the periphery of which is attached to the wall of the tank 11. The baffle 23, which is of frusto-conical form, is perforated by holes 24.
A second baffle 30, also of frusto-conical form. is disposed in the tank 11. with its lower periphery attached to the wall thereof. The baffle 30, which is perforated by holes 25, has a central aperture 31, the periphery of which is spaced from the tubular structure 20. The lower end of the tubular structure 20 is open and the upper end thereof is closed by a blank 32.
Ducts 36, 37, 38 disposed at differing heights connect the tank 11 with valved outlets, (not shown), operable from positions remote from the well-head.
As shown in Figure 2, the lower end of the tubular structure 20 rests on a flanged ring 40. The periphery of the flap valve 15 is clamped to the bottom of the tank 11 by the flange of the ring 40.
A tubular seal 41 extends between the bottom end of the tubular structure 20 and the ring 40, so as to cover the junction therebetween and prevent the escape of water. The ends of tubular seal 41, which is of easily frangible material, such as fabric, are secured to the structure 20 and ring 40 by "pipe-clips" 42, 43.
The flap valve 15 is of "multi-segment" form, with the segments coming together at the centre, in the convergent manner shown in Figure 2.
With additional reference now to Figure 3, assuming the occurrence of a blow-out, caused, for example, by trouble arising from the need to overhaul the manifold assembly at the upper end of oil pipe 3, a high pressure oil jet 50 will discharge upwardly from the pipe 3.
The oil Jet 50 will then enter the tank 11 by way of the aperture 14, deflecting the segments of the valve 15 outwardly as it does so, to pass through the bore of the tubular structure 20 until it contacts the blank 32.
Initially, the tubular structure 20 serves as a barrier means to isolate the body of water 12 from the oil jet 50. However, pressure of the oil jet 50 on the under-surface of the blank 32 ejects the tubular structure 20 clear of the tank 11, breaking the frangible seal 41 as it does so. Removal of the barrier provided by the structure 20 results in the body of water 12 being disposed in the path of the oil jet 50 whereby energy is absorbed, by movement of the water, due to entrainment and the generation of vortices, caused by the jet, within the confines of the tank 11. Sufficient energy is absorbed by movement of the water 12 to contain the jet and thus prevent the loss of oil (and water 12) from the tank 11.
The void left by the structure 20 as it rises out of the tank 11 needs to be filled very quickly with water 12. Otherwise, the oil jet 50 will pass through the tank, entraining water with it so as to empty the tank in a very short time. The system of ejection described above results in the structure 20 being expelled at a sufficiently high speed to prevent such entrainment.
As soon as the oil jet 50 enters the body of water 12, the valved outlets of one or more of the ducts 36, 37, 38 are opened so as to prevent the tank 11 from overflowing. Water 12 in the tank 11 is very quickly replaced by oil from the jet 50 and oil flowing from the tank 11 can be fed into storage tanks, or into tankers, until such time as the escape of oil is stopped.
Ducts 36, 37 serve as overflow ducts, and maintain a substantially constant volume of liquid in the tank 11.
The body of liquid within the tank 11 "captures" and contains the oil jet 50 to such an extent that the level of liquid merely rises at the centre to form a hump. The baffle 23 serves to "cap" the hump and confine it, whilst the perforations 24 in the baffle allow gas to escape from the tank 11.
The baffle 30 serves to reduce any tendency for the entrainment action to set up unwanted vortices, which would (in this case), lead to loss of liquid from the tank 11.
In fact, use of the baffle 30 is only required in the case of a tank of large volume. where a correspondingly large mass of liquid is used to absorb energy from a jet.
Where smaller volume tanks are employed, the use of vortices is encouraged.
Curtiilment and capture of the jet 50 avoids pollution and loss of revenue-earning oil, ind allow repair personnel to gain access to the well-head.
The invention achieves the above without risk of fire.
Tests conducted indicate that a tank with lower side parts which slope inwardly in a downward (confining) direction is preferable, otherwise the inflowing oil jet 50 will tend to expel liquid from the tank. The plan form of the tank is not critical. The plan form of the tank 11 illustrated is circular but other plan forms. for example. rectangular, may be used.
It will be appreciated that the arrangement shown in Figures 1, 2 and 3 is not to scale. Actuallv. in thepresent example, the pipe 3 would have a diameter of about 4 inches: the tank 11 would have an upper diameter of about 30 ft., a lower diameter of about 2(1 ft.. and a depth of about 10 ft.. and the bottom of the tank 11 would be disposed about 10 ft. above the platform 2. The bore of tubular structure 20 would be about 2 ft.
in diameter. Obviously, however, dimensions may vary according to requirements.
The valve 15 is formed so that the segments of the valve are held open by the incoming jet St) to such an extent that oil can enter the tank 11 without significant escape of liquid therefrom.
The tank It can be permanently or semi-permanently installed. or, with reference to Figure A, it may be made in four or more cooperating segment-like sections lia, each with a segment of tubular structure 20a and suitable water seals. The tank can then be assembled after a blow-out has occurred.
However, such assembly could be dangerous and a semi-permanent or permanent installation is preferred.
A permanent installation may also be used full-time for oil-collection purposes, so dispensing with the usual manifold assembly at the well-head. Under such conditions there is, in effect, a permanent "blow-out".
Oil or other liquids, including mud, may be used instead of the water 12.
The apparatus 10 can be of inexpensive construction. For example, G.R.P. (Glassreinforced plastics material) can be used for the tank 11 and tubular structure 20. All the tank 11 has to do is to contain a sufficient volume of liquid. It is not subjected to any significant dynamic loading.
Instead of the system of ejection described above, high speed (remotecontrolled) actuator means may be used to lift the tubular structure 20 to a sufficient height whereby it does not interfere with "capture" of the oil jet 50 by the body of liquid in tank 11.
The tank 11 is formed so as to contain a sufficient volume of liquid, (water, oil etc.), whereby sufficient energy is absorbed, by movement of the liquid, to prevent an oil jet breaking through the free surface of the liquid to any great extent.
In addition to the ducts 36, 37, 38, one or more outlets may be provided whereby any solids or semi-solids entering the tank 11 by way of the oil jet 50 can be removed.
The collection of gas, for example, following a "blow-out" may well be as important as the preventage of spillage of oil and Figure 5 illustrates modified apparatus suitable for this purpose.
With reference to Figure 5, a modified apparatus 10a is provided wherein tank ila is basically the same as tank 11 of Figure 3 but is provided with a cylindrical extension (51) of its wall. The upper end of extension 51 is formed with a bell mouth.
Apparatus 10a, which can collect oil as well as gas, has a cap 52 which is lowered into place after the component equivalent to structure 20 (Figure 1) has been ejected, so that is is slidably disposed within the cylindrical extension 51. The cap 52, which is preferably of plastics material, in order to avoid causing sparks, and because it is expected to be subjected only to very low working pressures, has a domed upper end portion and a cylindrical skirt portion. A weight 57 of annular form is attached to the lower periphery of the skirt portion.
The domed upper end portion of cap 52, which cap serves as a non-stationary cover for tank 11a, is provided with a vent duct 53 providing for release of gas to atmosphere.
A free space 59 for gas separated out by the apparatus exists above the body of liquid 12a. A valve 54 is fitted in the vent duct 53 so as to control the escape of gas therethrough. At least one duct 55 extends through the side of tank ila to pass upwardly through the liquid 12a and terminate in the free space 59. The duct 55, which is provided with an external control valve 58, provides a downward escape path for gas from free space 59 when valve 58 is open and valve 54 closed. Gas removed from free space 59 can then be collected at the outlet end of duct 55.
The domed upper end of cap 52 carries a gas pressure relief valve 56. Ducts 36a, 37a and 38a allow for the collection, respectively, of oil. water and sludge.
The cap 52 and extension 51 cooperate, with a telescopic relationship, in a similar manner to that of a town gas-holder. In order to maintain a seal around the base of the cap, it is necessarv to allow the liquid in the tank to be at a higher level than that shown in Figure 1.
For a permanent. i.e. full-time, collection installation. the tank I la may be attached directly to the upper end of pipe 3, using an extension of pipe 3. so as to minimise the escape of oil.
The body of liquid required to contain a high pressure fluid jet may be substantially reduced in volume bv making the receptacle for containing the liquid of generally triangular (vertical) cross-section. One such receptacle comprises the generally conical tank 6() shown in Figure 6.
With reference to Figure 6. the tank 60 of apparatus l(lb is actually of frusto-conicai form with wall parts defining an included angle, in side elevation. of less than 25".
Fluid from pipe 3 enters the tank at the smaller end of the tank b().
In one particular experiment, a conical tank of circular cross-section with wall parts defining an included angle of 100 effectively contained a water jet of 6() Ibs per square inch gauge without internal baffles and with little evidence of any "hump" in the free liquid surface.
A typical full-scale installation based on this experiment would result in a conical tank having an upper diameter of about 3.5 ft. and a height of 16 ft.
Other tank shapes have also been found to be effective. For example, tanks of rectangular plan form with sloping wall parts giving the tank a triangular (vertical) cross section. Small scale tests with tanks having sloping wall parts so that they have triangular vertical cross-section, show that intense vortices generated in the liquid by entry of the pressurized jet act to extract the energy from the jet. These vortices cause effective mixing of the emerging jet and the surrounding liquid. The tanks may have circular or rectangular plan form; the sloping side parts are more important. Indications are that a small lateral gap may be required between the internal surface of the tank at its base and the jet at that point.
A fluid jet contained by the use of a tank of triangular cross-section may be released bv creating an air leakage path into the base of the cone in the vicinity of the entering jet.
Containment of the jet can then be reachieved by allowing liquid to enter the tank in a rapid manner, for example, by way of control ports.
Figures 7 and 8 illustrate apparatus 10c whereby control ports are used to introduce a body of liquid so as to contain a fluid jet.
The figures show an oil drilling rig 70 provided with a G.R.P. tank 60c of frustoconical form. The wall of the tank 60c is extensively perforated and forms part of a tank assembly 11c, suspended, by cables 73, from the structure of the drilling derrick 71 so as to encircle the drilling pipe 72. The perforations in the wall of tank 60c form control ports 74 which can be covered by barrier means comprising a conical sleeve 75 comprising two (or more) cooperating parts with unperforated walls. As shown in Figure 8, the two cooperating parts of the sleeve 75 are normally held against the receptacle 60c, (so as to cover ports 74), by means of compression springs 76. A cylindrical tank 78 of considerably greater internal volume than that provided by frusto-conical tank 60c is disposed co-axially around tank 60c and is attached rigidly thereto.Sleeve parts 75 can be moved away from the tank 60c by cables 82, the effective lengths of which can be shortened by use of winches 86 (Figure 7). The tank assembly 11c is movable, up or down, relative to the drilling pipe 72, by means of cables 73 and winches 80 (Figure 7). Collection pipes 36c, 37c and 38c are of flexible construction so as not to hinder this movement of tank assembly 1 1c.
In operation, should a blow-out occur on the drilling pipe 72 and above the tank assembly 1 1c, it is necessary to raise the tank assembly so as to position it appropriately in relation to the blow-out point. The outer tank 78 is then quickly filled with liquid. In this example water is supplied to the outer tank 78 by way of a flexible hose 81. The control ports 74 in tank 60c are then opened quickly by rapid winching in of the cables 82 (using winches 86) against the action of springs 76. The hitherto isolated water then rushes into the inner tank 60c by way of ports 74, so as to flood the tank whereby the escaping oil is contained by the generation of vortices in the body of water.
Any gas present can escape to atmosphere by bubbling through the body of water.
At the expense of further complication, the gas-collection method described above with reference to Figure 5 may also be applied to the arrangement illustrated by Figures 7 and 8. Alternatively, the semipermanent multi-part arrangement referred to in respect of Figure 4 may be applied to the arrangement of Figures 7 and 8. Since the size of the components of the weight and volume of liquid can be drastically reduced by using the teachings of Figures 6, 7 and 8, the embodiment illustrated thereby becomes more practicable and is therefore to be preferred.
The arrangement shown by Figure 5 may be modified to take advantage of the more effective containment method of Figure 6.
Such a modification is shown in apparatus 10d of Figure 9 wherein the frusto-conical tank 60d thereof is contained permanently within a generally cylindrical tank lid of substantially larger volume. The tank 11d is provided with a dished lower end to assist the collection of water and sludge.
In operation, violent mixing of the components of the jet in the inner tank 60d will ensure that grit, water and mud, as well as oil, will flow over the lip of the inner tank into the annular space between the inner and outer tanks 60d, lid. Since the internal pressure of the tank lid will only be atmospheric or slightly above, the contents of tank lid will be relatively undisturbed.
The components of the jet may thus be drawn off at appropriate (predetermined) levels, using ducts 36d, 37d, 38d. The separated fluids can then be conducted to suitable storage tanks.
If containment of the jet 50 by tank 60d becomes temporarily ineffective, resulting, for example, from passage of a slug of solid (or semi-solid) material or bubble of gas passing through tank 60d. the large volume body 12d of liquid in the annular space between tanks 60d and lid is available to re-instate the attenuation system by spilling over into the inner tank 60d.
In some installations it may be advantageous to arrange for the frusto-conical tank to be upside down, horizontal or at any other angle. Any gas present can be collected in a similar manner to that shown in Figure 5.
A lightweight receptacle of frusto-conical form can be attached to the outlet end of any pipe being supplied with fluid at a high pressure.
Figure 10 shows apparatus 10e with such a receptacle (60e) attached to the end of a flexible water hose 90. When "full", sufficient energy is absorbed. by the generation of vortices within the conical receptacle 60e, to allow water to escape only at low velocity and at substantially atmospheric pressure from the outlet end of the receptacle. Under these conditions there is virtually no thrust, i.e. reactive force, on the hose 90 due to the high speed jet. The apparatus 10e may be converted rapidly to allow an unrestrained release of water by allowing air to enter the inlet, i.e. smaller end of the receptacle 60e, using a valved pipe 92. Introducing air in this way also has the effect of reintroducing a reactive force on the hose 90.
The receptacle 60e may be reprimed either by using an arrangement employing a sleeve and control port system, as described above with reference to Figures 7 and 8, or by temporarily inserting an obdurating member of spoiler 91 (here of perforated form) into the mouth of the receptacle 60e so as to divert water against the inner surface of the receptacle. As soon as the receptacle 60e has been re-primed, the spoiler 91 may be removed.
A small-scale experimental apparatus 10e has a hose 90 of 0.0625" bore, supplied with water at 60 Ibs per square inch gauge. The receptacle 60e, which was 3.0 inches in length and of 0.625 inch diameter at the larger end, provided adequate containment of the water jet.
With reference to Figure 11, a generally conical receptacle 60f is shown disposed within a tank 100 being filled with liquid through a high pressure duct or hose 90f, so as to enter the tank 100 at low velocity, as in the case with apparatus 10e of Figure 10.
Liquid thus enters tank 100 without disturbing sediment or causing aeration of the tank contents. The receptacle 60f is connected to the outlet of the hose 90f so that liquid, (for example, oil), enters the tank by way of the receptacle. In this case a perforated spoiler 91f may be permanently disposed in the outlet end of receptacle 60f, so as to retain liquid therein and thus continue to absorb energy by the generation of vortices, even when the liquid 101 in the tank 100 is at a low level.
It will be noted from Figure 11 that the receptacle 60f can be disposed substantially horizontally.
The teachings of the present invention may also be employed in order to provide for the exchange of heat and/or pressure.
Figure ]2 illustrates heat exchange means comprising apparatus 10g wherein a perforated receptacle 60g of frusto-conical form is used to cool a hot fluid supplied to the smaller end of the receptacle by way of pipe 3g. The receptacle 60g is housed within a chamber 93 provided with external heat exchange fins 94. The receptacle 60g and chamber 93 together define an annular space for holding the major part of the body of liquid 12g.
In operation, with a body of liquid 12g already present in receptacle 60g and chamber 93, pressurized fluid enters the heat exchange apparatus via pipe 3g to give up its heat to chamber 93 and the fins 94 thereof.
The generation of vortices in the liquid 12g by entry of the pressurized fluid contributes substantially to the exchange of heat. The reduced-temperature fluid is conducted away from the apparatus by way of outlet 39g. The chamber 93 may be of closed form, i.e. as illustrated, whereby it is subject to an internal pressure, or it may be provided with a header vent whereby it operates at a lower pressure, which may be atmospheric. The apparatus then serves as a pressure reducing means as well as a heat exchanger. A suitable header vent 139 is shown in dotted lines.
Figure 13 illustrates an alternative form of heat exchange/pressure reducing means comprising apparatus 10h. With reference to Figure 13. external cooling fins 94h are attached directly to the body of the frustoconical tanks 60h. Fluid enters the tank 60h via pipe 3h at relatively high velocity and leaves via conical tank cover 170 and pipe 139h at relatively low velocity. The intense mixing which takes place within the frustoconical tank 60h due to the generation of vortices ensures that the fluid makes intimate contact with the sides of the tank, so as to ensure efficient cooling as well as a substantial reduction in the pressure difference between the supply and draw-off pipes 3h 139h.
Figure 14 illustrates part of an oil drilling rig wherein apparatus 10i including a tank 6()i of frusto-conical form, is disposed around a drilling pipe 72i. A tubular sheath 140 is disposed co-axially about the pipe 72i so as to define an annular passageway for the upward flow of a jet 50i of pressurized oil, mud etc.. released by drilling and/or blow-out.
The annular jet 50i streams upwardly along the drilling pipe 72i as it enters the tank 60i to mix with the body of liquid 12i contained therein. As the annular jet 50i mixes with the liquid 12i, it gives up energy in generating vortices, represented in Figure 14 by primary and secondary vortices 141, 142.
Duct 36i is disposed so that vortex 141 is "tapped" whereby liquid is separated out dynamically.
Means may be provided to retard unwanted swirl which might build up suffi ciently to carry the liquid 12i out of tank 60i.
Such means may comprise internal plates 143, 144 attached to the wall of the tank 60i and disposed substantially parallel to the longitudinal axis thereof.
Figure 15 shows how liquids of various densities can be separated out dynamically of a mixture by use of apparatus 10j. Duct 36j is used to collect liquid of one density present adjacent a vortex 141j and an inner, co-axially disposed inner duct 150 is used to collect liquid of a differing density present in a central part of the same vortex. Suction pumps 151, 152 can be employed if extrac tion is necessay or desirable.
In all the above-described examples, the fluid jet was shown to enter a central part of the liquid-containing receptacle. This is not necessary, however, as is illustrated by Figure 16.
Figure 16 shows apparatus 10k which makes use of a tank 60k. The tank has a substantially rectangular cross-section when viewed end-on, (as is shown by Figure 16), but has a substantially triangular shape with "apex" lowermost, when viewed side-on.
(As viewed in the direction of arrow 160).
Pressurized fluid enters the lower end of tank 60k by way of duct 3k which is disposed adjacent the back wall of the tank. Thus fluid entering the tank 60k tends to stream along the back wall before breaking away to form the vortex 141k. The behaviour of the fluid is similar to that in apparatus 10i illustrated by Figure 14, wherein fluid entering the tank 60i tends to stream upwardly along drilling pipe 72i.
With this in mind, it may be desirable to provide some of the above-described embodiments with internal plates or other surfaces along which incoming fluid can attach itself.
In a non-illustrated modification of the arrangement shown in Figure 16, the tank 60k has a substantially rectangular shape when viewed in the direction of arrow 160.
Means may be provided to further encourage or promote the formation of a vortex. With reference to Figure 17, which illustrates apparatus 101, such means may comprise internal plates 165 which define concavities serving as guide surfaces.
Structures smaller than plates 165 may be sufficient to enhance or initiate the formation of vortices.
Where suitable, any of the abovedescribed arrangements may be substituted and/or combined. For example, the plates 165 of Figure 17 could be disposed in the tank 60i of Figure 14.
In another non-illustrated modification, a generally conical receptacle is used wherein the fluid jet is caused to enter at the larger end thereof.
Inter alia, the invention has the beneficial effect of greatly reducing the noise emanating from an uncontrolled jet of fluid.
WHAT I CLAIM IS: 1. Apparatus for containing a pressurized fluid jet, comprising a receptacle of generally conical form having walls defining an included angle of less than 25C and provided with means whereby the jet can enter the receptacle at the small end thereof, it being arranged that sufficient energy is absorbed by the creation of vortices within the receptacle to contain the jet.
2. Apparatus as claimed in Claim 1, wherein the included angle is 10 .
3. Apparatus as claimed in Claim 1 or 2, wherein the receptacle holds a body of liquid.
4. Apparatus as claimed in Claim 3, provided with barrier means for isolating the body of liquid from the jet and means for removing said barrier means, so as to allow contact between the body of liquid and the jet.
5. Apparatus as claimed in Claim 4, wherein the receptacle is disposed within a tank so as to define an annular space therewith for holding the body of liquid, the
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (35)

  1. **WARNING** start of CLMS field may overlap end of DESC **.
    heat exchange/pressure reducing means comprising apparatus 10h. With reference to Figure 13. external cooling fins 94h are attached directly to the body of the frustoconical tanks 60h. Fluid enters the tank 60h via pipe 3h at relatively high velocity and leaves via conical tank cover 170 and pipe 139h at relatively low velocity. The intense mixing which takes place within the frustoconical tank 60h due to the generation of vortices ensures that the fluid makes intimate contact with the sides of the tank, so as to ensure efficient cooling as well as a substantial reduction in the pressure difference between the supply and draw-off pipes 3h 139h.
    Figure 14 illustrates part of an oil drilling rig wherein apparatus 10i including a tank 6()i of frusto-conical form, is disposed around a drilling pipe 72i. A tubular sheath 140 is disposed co-axially about the pipe 72i so as to define an annular passageway for the upward flow of a jet 50i of pressurized oil, mud etc.. released by drilling and/or blow-out.
    The annular jet 50i streams upwardly along the drilling pipe 72i as it enters the tank 60i to mix with the body of liquid 12i contained therein. As the annular jet 50i mixes with the liquid 12i, it gives up energy in generating vortices, represented in Figure
    14 by primary and secondary vortices 141, 142.
    Duct 36i is disposed so that vortex 141 is "tapped" whereby liquid is separated out dynamically.
    Means may be provided to retard unwanted swirl which might build up suffi ciently to carry the liquid 12i out of tank 60i.
    Such means may comprise internal plates 143, 144 attached to the wall of the tank 60i and disposed substantially parallel to the longitudinal axis thereof.
    Figure 15 shows how liquids of various densities can be separated out dynamically of a mixture by use of apparatus 10j. Duct 36j is used to collect liquid of one density present adjacent a vortex 141j and an inner, co-axially disposed inner duct 150 is used to collect liquid of a differing density present in a central part of the same vortex. Suction pumps 151, 152 can be employed if extrac tion is necessay or desirable.
    In all the above-described examples, the fluid jet was shown to enter a central part of the liquid-containing receptacle. This is not necessary, however, as is illustrated by Figure 16.
    Figure 16 shows apparatus 10k which makes use of a tank 60k. The tank has a substantially rectangular cross-section when viewed end-on, (as is shown by Figure 16), but has a substantially triangular shape with "apex" lowermost, when viewed side-on.
    (As viewed in the direction of arrow 160).
    Pressurized fluid enters the lower end of tank 60k by way of duct 3k which is disposed adjacent the back wall of the tank. Thus fluid entering the tank 60k tends to stream along the back wall before breaking away to form the vortex 141k. The behaviour of the fluid is similar to that in apparatus 10i illustrated by Figure 14, wherein fluid entering the tank 60i tends to stream upwardly along drilling pipe 72i.
    With this in mind, it may be desirable to provide some of the above-described embodiments with internal plates or other surfaces along which incoming fluid can attach itself.
    In a non-illustrated modification of the arrangement shown in Figure 16, the tank 60k has a substantially rectangular shape when viewed in the direction of arrow 160.
    Means may be provided to further encourage or promote the formation of a vortex. With reference to Figure 17, which illustrates apparatus 101, such means may comprise internal plates 165 which define concavities serving as guide surfaces.
    Structures smaller than plates 165 may be sufficient to enhance or initiate the formation of vortices.
    Where suitable, any of the abovedescribed arrangements may be substituted and/or combined. For example, the plates 165 of Figure 17 could be disposed in the tank 60i of Figure 14.
    In another non-illustrated modification, a generally conical receptacle is used wherein the fluid jet is caused to enter at the larger end thereof.
    Inter alia, the invention has the beneficial effect of greatly reducing the noise emanating from an uncontrolled jet of fluid.
    WHAT I CLAIM IS: 1. Apparatus for containing a pressurized fluid jet, comprising a receptacle of generally conical form having walls defining an included angle of less than 25C and provided with means whereby the jet can enter the receptacle at the small end thereof, it being arranged that sufficient energy is absorbed by the creation of vortices within the receptacle to contain the jet.
  2. 2. Apparatus as claimed in Claim 1, wherein the included angle is 10 .
  3. 3. Apparatus as claimed in Claim 1 or 2, wherein the receptacle holds a body of liquid.
  4. 4. Apparatus as claimed in Claim 3, provided with barrier means for isolating the body of liquid from the jet and means for removing said barrier means, so as to allow contact between the body of liquid and the jet.
  5. 5. Apparatus as claimed in Claim 4, wherein the receptacle is disposed within a tank so as to define an annular space therewith for holding the body of liquid, the
    receptacle being provided with ports whereby the receptacle can be flooded by entry of liquid through the ports, and said barrier means are disposed so as to removably cover said ports.
  6. 6. Apparatus as claimed in any one of Claims 1 to 5, for use in containing a pressurized jet comprising fluid in both the liquid and gaseous phase and provided with means for collecting gaseous fluid separated out in said receptacle.
  7. 7. Apparatus as claimed in Claim 3, 4, 5 or 6, wherein the receptacle is perforated and wherein the receptacle is disposed in a chamber so as to define therewith an annular space for holding part of said body of liquid.
  8. 8. Apparatus as claimed in any one of Claims 1 to 7, provided with means for retarding swirl in the receptacle.
  9. 9. Apparatus as claimed in any one of Claims 1 to 7, provided with means for further encouraging movement of fluid within the receptacle.
  10. 10. Apparatus as claimed in any one of Claims 3 to 7, provided with means for separating out fractions of said liquid.
  11. 11. The combination of an oil-rig and apparatus as claimed in any one of Claims 1 to 10.
  12. 12. The combination of an oil drilling rig and apparatus as claimed in any one of Claims 1 to 10.
  13. 13. Apparatus as claimd in Claims 1, 2 or 3, wherein the receptacle is disposed in a tank provided with a duct for filling the tank with liquid, the receptacle being connected to the duct outlet so that liquid enters the tank by way of the receptacle.
  14. 14. Apparatus as claimed in Claim 1, 2 or 3, wherein the receptacle is disposed in a chamber and means are provided for reducing pressure in the chamber.
  15. 15. Heat exchange means comprising apparatus as claimed in Claims 1, 2 or 3, and operable so as to reduce the temperature of the jet fluid.
  16. 16. Pressure-reducing means comprising apparatus as claimed in Claims 1,2 or 3, and operable so as to reduce the pressure of the jet fluid.
  17. 17. A method of containing a pressurized fluid jet comprising disposing a receptacle as claimed in any one of Claims 1 to 10 in the path of said jet whereby sufficient energy is absorbed by the generation of vortices within the receptacle to contain the jet.
  18. 18. The method of Claim 17, wherein a body of liquid is disposed in the receptacle.
  19. 19. The method of Claim 17 or 18, wherein the fluid is in both the liquid and the gaseous phase and wherein the two phases are separated out and collected.
  20. 20. Liquid collected by the method claimed in Claim 19.
  21. 21. Gas collected by the method claimed in Claim 19.
  22. 22. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figures 1, 2 and 3 of the drawings accompanying Provisional Specification No. 21522/77.
  23. 23. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figures 1, 2 and 3 of the drawings accompanying Provisional Specification No. 21522/77, modified substantially with reference to Figure 4 thereof.
  24. 24. Apparatus for containing a pressurized fluid jet, substantialy as hereinbefore described with reference to Figure 5 of the drawings accompanying Provisional Specification No. 14290/78.
  25. 25. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 6 of the drawings accompanying Provisional Specification No. 14290/78.
  26. 26. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figures 7 and 8 of the drawings accompanying Provisional Specification No. 14290/78.
  27. 27. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 9 of the drawings accompanying Provisional Specification No. 14290/78.
  28. 28. Apparatus for containing a pressurized fluid Jet, substantially as hereinbefore described with reference to Figure 10 of the drawings accompanying Provisional Specification No. 14290/78.
  29. 29. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 11 of the drawings accompanying Provisional Specification No. 14290/78.
  30. 30. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 12 of the drawings accompanying Provisional Specification No. 14290/78.
  31. 31. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 13 of the drawings accompanying Provisional Specification No. 14290/78.
  32. 32. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 14 of the accompanying drawings.
  33. 33. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 15 of the accompanying drawings.
  34. 34. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 16 of the accompanying drawings.
  35. 35. Apparatus for containing a pressurized fluid jet, substantially as hereinbefore described with reference to Figure 17 of the accompanying drawings.
GB2152277A 1977-05-21 1977-05-21 Containment of pressurized fluid jets Expired GB1600281A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
GB2152277A GB1600281A (en) 1977-05-21 1977-05-21 Containment of pressurized fluid jets
CA303,662A CA1103583A (en) 1977-05-21 1978-05-18 Containment of pressurized fluid jets
US05/907,237 US4224985A (en) 1977-05-21 1978-05-18 Containment of pressurized fluid jets
NO781745A NO149641C (en) 1977-05-21 1978-05-19 METHOD AND APPARATUS FOR AA COLLECT A FLUID RADIATION
NL7805413A NL7805413A (en) 1977-05-21 1978-05-19 DEVICE FOR STOPPING A PRESSURE RADIUS.
DE19782822267 DE2822267A1 (en) 1977-05-21 1978-05-22 METHOD AND SYSTEM FOR COLLECTING A JET OF FLUID
JP6155778A JPS53145116A (en) 1977-05-21 1978-05-22 Device for storing pressure fluid
FR7816341A FR2391384A1 (en) 1977-05-21 1978-05-22 DEVICE AND METHOD FOR CONTAINING A PRESSURIZED FLUID JET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2152277A GB1600281A (en) 1977-05-21 1977-05-21 Containment of pressurized fluid jets

Publications (1)

Publication Number Publication Date
GB1600281A true GB1600281A (en) 1981-10-14

Family

ID=10164347

Family Applications (1)

Application Number Title Priority Date Filing Date
GB2152277A Expired GB1600281A (en) 1977-05-21 1977-05-21 Containment of pressurized fluid jets

Country Status (1)

Country Link
GB (1) GB1600281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117262945A (en) * 2023-11-21 2023-12-22 上海华菱电站成套设备股份有限公司 Mine wellhead protection device for mine hoist

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117262945A (en) * 2023-11-21 2023-12-22 上海华菱电站成套设备股份有限公司 Mine wellhead protection device for mine hoist
CN117262945B (en) * 2023-11-21 2024-01-23 上海华菱电站成套设备股份有限公司 Mine wellhead protection device for mine hoist

Similar Documents

Publication Publication Date Title
US4449850A (en) Antipollution device for recovering fluids lighter than water escaping from an underwater source
KR950012521B1 (en) A method for cleansing gases and apparatus herefor
AU2011266756B2 (en) Equipment for the conveying and recovery of hydrocarbons from an underwater well for the extraction of hydrocarbons, under uncontrolled release conditions
US4224985A (en) Containment of pressurized fluid jets
US20220339557A1 (en) A separation apparatus with insert
US3331194A (en) Flare stack structure and apparatus treating and controlling flow of gases to and from stack
GB1600281A (en) Containment of pressurized fluid jets
CN102900459B (en) Self-balancing water-seal-type anti-explosion device
CN106402439B (en) A kind of automatic exhaust steam valve
CN103801205A (en) Water seal fire-retardant formula ventilation air methane blending device
CN2888249Y (en) Multifunctional tank with functions of flash evaporation, liquid separation and water seal for combustible gas emptying
CN208952131U (en) The useless solid gas of drilling platforms separates blue combustion device
US4438861A (en) Vented inlet for tanks loaded from pressurized tankers
CN209782230U (en) System for reducing hydrogen storage and discharge risk
CN111714934A (en) Overpressure relief device for reducing gas-liquid entrainment phenomenon and multiphase reaction system
US2471571A (en) Separator
NO20150488A1 (en) Apparatus and process for conveying and recovering hydrocarbons from an underwater well or from an underwater pipeline in uncontrolled release (blowout) conditions.
CN201599993U (en) Novel centrifugal type oil separator
CN113639071A (en) Baffling type torch gas-water sealed tank
CN113550748B (en) Recovery device and recovery method
CN219860706U (en) Oil-water separation fine treatment tank
CN218816357U (en) Metering equipment
CN221155482U (en) Liquid chemical helium removing device
CN113639070B (en) Float type flare gas water-sealed tank
CN216572142U (en) Gas-liquid separation device of oil storage tank

Legal Events

Date Code Title Description
PS Patent sealed
PCNP Patent ceased through non-payment of renewal fee