GB1573158A - Method for protective film lamination with curl control - Google Patents

Method for protective film lamination with curl control Download PDF

Info

Publication number
GB1573158A
GB1573158A GB44185/77A GB4418577A GB1573158A GB 1573158 A GB1573158 A GB 1573158A GB 44185/77 A GB44185/77 A GB 44185/77A GB 4418577 A GB4418577 A GB 4418577A GB 1573158 A GB1573158 A GB 1573158A
Authority
GB
United Kingdom
Prior art keywords
film
substrate
roll
laminate
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
GB44185/77A
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sealtran Corp
Original Assignee
Sealtran Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sealtran Corp filed Critical Sealtran Corp
Priority to GB44185/77A priority Critical patent/GB1573158A/en
Publication of GB1573158A publication Critical patent/GB1573158A/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1429Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface
    • B29C65/1432Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the way of heating the interface direct heating of the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1477Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier
    • B29C65/1483Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/733General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
    • B29C66/7336General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light
    • B29C66/73365General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being opaque, transparent or translucent to visible light at least one of the parts to be joined being transparent or translucent to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81422General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81423General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being concave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83415Roller, cylinder or drum types the contact angle between said rollers, cylinders or drums and said parts to be joined being a non-zero angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/18Handling of layers or the laminate
    • B32B38/1866Handling of layers or the laminate conforming the layers or laminate to a convex or concave profile
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2017/00Carriers for sound or information
    • B29L2017/001Carriers of records containing fine grooves or impressions, e.g. disc records for needle playback, cylinder records
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

(54) METHOD FOR PROTECTIVE FILM LAMINATION WITH CURL CONTROL (71) We, SEALTRAN CORPORA TION, a corporation organised and existing under the laws of the State of Illinois, United States of America, of 2615 N. Paulina Street, Chicago, Illinois 60614, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be preformed, to be particularly described in and by the following statement: This invention relates to a method of laminating a protective transparent film to a substrate.
There are many instances in which it is desirable to laminate a transparent protective film onto a data-bearing substrate. For example, paper menus that are protected with laminated protective films are often improved in initial appearance and remain usable for much longer periods than those which do not have such protection. Documents and photographs can be preserved for historical or sentimental purposes much longer than would otherwise be possible if covered with a protective transparent film covering laminated to them. Even plastics articles, such as identification cards, signs, and the like, can be materially increased in longevity by laminating a tough, abrasion resistant transparent film onto their surfaces.
All such articles are referred to generally, in this specification, as having a data-bearing substrate.
One commonly used transparent protective film is of composite construction, having one surface formed of a tough, abrasion resistant polyester resin, the opposite surface comprising a material that serves as an adhesive for bonding the film to a substrate. The most common adhesive material is polyethylene. These composite polyesterpolyethylene films have been successfully used for the protection of a wide variety of articles, including photographs, menus, identification cards, directional signs, and others.
One prevalent problem in laminating transparent protective films to various objects, where the bonding surface is one which requires heating to obtain good adherence, as in the case of polyethylene, is the maintenance of effective control of the heating of the adhesive surface of the film. With insufficient heating, adherence is likely to be inadequate, and the film may tend to peel away from the substrate that it is supposed to protect. On the other hand, if the polyethylene or other adhesive material on the inner bonding surface of the film is heated too much, it may tend to flow when pressure is applied to laminate the film to a substrate, fouling the laminating apparatus.
Control of the heating of the adhesive surface of the protective film is thus important to the laminating process and apparatus, particularly in high volume operations.
Another substantial problem is presented in those instances in which the substrate is relatively flexible, as is frequenctly the case.
The heating of the protective film immediately prior to pressure lamination tends to expand the film as the laminating process proceeds. When the film subsequently cools, its contraction may cause the completed laminate to curl upwardly on the side to which the film has been applied. This problem is particularly noticeable in laminated articles having a protective film on only one side, but may even occur where the film is applied to both sides of a substrate, due to minor variations in the film thickness, differences in the heating of the two laminating films applied to opposite sides of the substrate, and other factors. The resulting curl in the laminated articles, which may occur in a transverse direction as well as in a longitudinal direction, is frequently quite objectionable.
It is the object of the present invention, therefore, to provide a new method for laminating a transparent protective film to a relatively flexible data-bearing substrate without producing appreciable curl in the finished laminate.
The method of the present invention comprises the following steps: A. providing a composite protective film comprising an outer layer of transparent abrasion resistant resin and an inner layer of transparent thermoplastic bonding resin, the bonding resin containing a radiant-heatblocking pigment in an amount sufficient to increase the radiant heat absorption of the bonding resin and to decrease its radiant heat transmission but small enough to preclude material degradation of the transparency of the composite film to visible light; B. heating the bonding resin layer of the composite film by directing radiant heat to impinge directly upon the bonding resin; C. laminating the composite protective film to a data-bearing substrate by passing the composite film and the substrate between first and second pressure rolls, promptly after heating of the adhesive, with the adhesive surface of the film in engagement with an inner surface of the substrate, the outer surface of the film engaging the first pressure roll, and the outer surface of the substrate engaging the second pressure roll; and D. maintaining the resulting laminate in engagement with the second pressure roll through an appreciable arcuate distance on the second pressure roll after clearing its engagement with the first pressure roll.
In preferred embodiments of the present invention, the pigment which is present in the bonding resin is a white pigment, suitably zinc oxide or titanium dioxide, and the concentration thereof is about one percent.
A suitable source of the radiant heat which is employed in the heating step is one or more infra-red heating lamps, and the heating efficiency can be increased by focussing the infra-red radiation on the outer surface of the pigmented bonding resin layer.
By providing that the relative positions of the pressure rolls are adjustable, it is a simple matter to compensate for films and substrates of differing thicknesses and flexibility.
Embodiments of the method of the present invention will now be described in more detail with reference to the accompanying drawings, in which: Fig. 1 illustrates the principal components of one form of heat lamination apparatus capable of carrying out the heat lamination method of the invention; Fig. 2 is a detail view taken approximately along lines 2-2 in Fig. 1; Fig. 3 is a sectional view, on an enlarged scale, of a preferred form of transparent film employed in the method of this invention; Fig. 4 illustrates the basic components of another form of apparatus capable of carrying out the method of this invention.
Figs. 1 and 2 illustrate a first form of laminating apparatus 10 effectively usable to carry out the laminating method of the invention. The laminating apparatus 10 is shown in essentially schematic form because the individual components are well-known in the art.
The laminating apparatus 10 of Figs. 1 and 2 comprises a supply 11 of laminating film 12, in this instance shown as a reel from which the film 12 is fed into the nip between the two pressure rolls 14 and 15. Apparatus 10 further comprises a second supply reel 16 from which a data-bearing substrate 17 is fed into the nip between the pressure rolls 14 and 15. The substrate 17 may, for example, comprise a continuous web of paper or plastic previously printed with appropriate data such as the contents of a menu, advertising or promotional material, a photograph, a reproduction of a historical document, or almost any other subject matter. Apparatus 10 also includes appropriate drive means (not shown) for rotating the pressure rolls 14 and 15 in the directions indicated by the arrows A and B respectively. The drive arrangement should be such that the peripheral surfaces of the two pressure rolls have approximately the same speed.
Two guide rolls 18 and 19 are included in apparatus 10 and are located on the opposite side of pressure rolls 14 and 15 from the supply reels 11 and 16. The guide rolls may be idlers, in which case no drive is required for them. On the other hand, the rolls 18 and 19 may also be employed as tensioning rolls to pull a laminating material through the pressure rolls 14 and 15 in the course of a laminating operation, as described below, in which case the apparatus 10 should include an appropriate drive for the rolls, rotating rolls 18 and 19 at a peripheral speed approximately equal to or slightly greater than the peripheral speed of the pressure rolls 14 and 15.
A radiant heating source 21 is incorporated in the laminating apparatus 10 immediately adjacent the pressure roll 14 that engages the outer surface of laminating film 12. For example, heater 21 may comprise one or more infra-red heat lamps and an appropriate reflector for concentrating the heat from the lamps on the inner surface of the laminating film 12. the surface that is bonded to substrate 17. Preferably, a focussing reflector is employed for maximum concentration of heating at the adhesive surface of the film.
Fig. 3 affords a sectional view of a preferred form for the transparent laminating film 12. As shown therein, the laminating film 12 is of composite construction, including two layers 23 and 24. The outer layer 23 is formed of a abrasion resistant thermosetting polyester resin such as the resin polyethylene terephthalate available commercially under the registered Trade Mark "Mylar". The inner bonding layer 24, comprising a coating on one surface of the polyester film 23, is preferably formed of polyethylene, and contains a limited quantity of a radiant heatblocking pigment, as hereinafter described in greater detail below. In a typical laminating film 12, the polyester layer 23 may have a thickness of 0.0005 inch and the bonding layer of polyethylene may have a thickness of 0.001 inch.
In the operation of laminating apparatus 10, and in the performance of the method of the present invention, the composite laminating film 12 is fed from the supply reel 11 and into engagement with the first pressure roll 14. The orientation of the film 12, as it passes from reel 11 to roll 14, is such that the polyester outer surface 23 engages roll 14 and the polyethylene coated inner bonding surface 24 (Fig. 3) faces downwardly toward substrate 17. The radiant heater 21 heats the adhesive inner surface of the protective film; heater 21 should be positioned adjacent to the nip between pressure rolls 14 and 15 to avoid undesired loss of heat that might otherwise be wasted in useless general heating of apparatus 10. However, some spacing between the pressure roll nip and heater 21 is permissible, depending on the speed of movement of film 12 and other relevant factors.
The substrate 17 is fed from its supply reel 16 into the nip between pressure rolls 14 and 15, where the heated bonding surface 24 on film 12 is pressed against and laminated to the substrate. As is apparent from Figs. 1-3, the unheated outer surface 23 of film 12 contacts pressure roll 14 whereas the outer surface of substrate 17 engages pressure roll 15.
Beyond the pressure rolls 14 and 15, the laminate 25 formed by pressing the heated film 12 against the substrate 17 continues its movement between the guide rolls 18 and 19 (Fig. 1). These guide rolls are positioned so that the laminate 25 remains in engagement with the second pressure roll 15 through an appreciable arcuate distance D after the laminate 25 has cleared its engagement with the first pressure roll 14. By thus maintaining the laminate 25 in engagement with the second pressure roll 15, the roll that engages substrate 17, for an appreciable circumferential distance, any tendency of laminate 25 to curl longitudinally after it cools is effectively controlled. By appropriate adjustment of the relative positions of the pressure rolls 14 and 15, with respect to the path followed by the laminate after it leaves the pressure rolls, the curl of the cooled laminate can be held to a minimum and may be eliminated entirely.
To provide effective control of longitudinal curl, and to allow apparatus 10 to be used with films and substrates of varying thickness and flexibility, the laminating apparatus may include means for adjusting the relative positions of the pressure rolls. Typically, the shaft 26 of pressure roll 14 may be mounted in bearings permitting vertical adjustment of this pressure roll as indicated by the arrows C, or the shaft 27 for pressure roll 15 may be mounted to provide for horizontal position adjustment as indicated by arrows E (Fig. 1), or both adjustments may be provided. Alternatively, apparatus 10 may be constructed to provide for adjustment of the positions of guide rolls 18 and 19 as indicated by arrows F. These adjustments, which can be effected by any suitable mechanical arrangement make it possible to vary the angular distance D, and hence the dircumferential distance, through which the laminate 25 is maintained in continuing contact with pressure roll 15.
This makes it possible to effect precise control of longitudinal curl for a wide variety of different films and substrates that may vary substantially in thickness, flexibility, and thermal expansion characteristics.
Polyester film, in the process of manufacture, is usually stretched both longitudinally and transversely (biaxially) immediately after initial extrustion. Because the polyester layer 23 of composite film 12 (Fig. 3) is inevitably heated to a considerable extent in laminating apparatus 10, there is some tendency toward subsequent contraction of the film in the transverse direction, due to "plastic memory", which may produce curl in the laminate 25 when the laminate cools. This transverse curl is usually less than longitudinal curl, because little or no stretching force is applied transversely of the film, but it can be objectionable in some instances.
To counteract transverse curl, when present, pressure roll 15 may be formed with a convex surface 15A as shown in Fig. 2. With this configuration, transverse contraction of the protective film on cooling straightens the transverse curvature induced in laminate 25 by the convex surface of roll 15, affording a flat laminate output. Of course, the mating surface 14A of roll 14 should have a corresponding concave configuration to assure effective bonding across the full width of laminate 25.
Because the laminating film 12 is transparent, much of the radiant heat from device 21 may pass through the inner bonding layer 24 of film 12. This represents an undesired waste of heat. The heating effect on film 12 is more efficiently localized in its adhesive surface 24 in the method of this invention by adding limited pigmentation 31 to that layer of the composite film. Pigmentation of the bonding resin (eg polyethylene) layer 24 increases its radiant heat absorption and limits the heating of the outer protective layer 23, affording better heating efficienty.
Pigmentation also aids in reducing curl because it limits the heating of the polyester layer 23 of film 12 that is the source of the curl. Pigmentation 31 can be effective even at concentrations as low as about one percent by volume of bonding layer 24; the amount of pigmentation should be low enough to avoid material degradation of the transparency of composite film 12. Finely divided zinc oxide is one suitable pigment; another pigment which may be employed is titanium dioxide.
Fig. 4 illustrates a modified form of laminating apparatus 110 that may be employed instead of the laminating apparatus 10 of Fig. 1. In the apparatus 110, the protective film 12 is again fed from a supply reel 11 into the nip between two pressure rolls 14 and 15.
A radiant heater 21 is again provided to heat the adhesive surface of film 12 immediately prior to the passage of the film into the area between the two pressure rolls. As before, the substrate 17 is shown as fed from a substrate supply reel 16 into the space between the two pressure rolls 14 and 15.
In apparatus 110, there is a single guide roll 111, located opposite pressure roll 15 at a position on the path of the laminate 25 at an appreciable arcuate distance beyond pressure roll 14. Guide roll 111 maintains laminate 25 in engagement with pressure roll 15 through an appreciable arcuate distance D' after the laminate has cleared its engagement with the first pressure roll 14. This affords the same curl-prevention effect as in the previously described apparatus 10. Apparatus 110 may include means for adjusting the location of guide roll 111 around the periphery of pressure roll 15 to adjust the extent of the arcuate distance D' and thereby control the curl-reduction effect in compensation for changes in the thickness, flexibility, or thermal expansion characteristics of either film 12 or substrate 17. The adjustment of the position for roll 111 is along an arcuate path generally indicated by the arrows G. With this construction, the positions for pressure rolls 14 and 15 may remain essentially constant, preferably with some resilient biasing means urging the two pressure rolls toward each other at their point of tangency.
In the foregoing description of specific embodiments 10 and 110, it is assumed that film 12 and substrate 17 are both continuous webs. Individual sheets, with appropriate sheet feed means, can be used for either the protective film or the substrate or both. The protective film may be entirely transparent or it may carry pre-printed data as desired.
APpropriate electrical controls can be pro veiled for heater 21 to vary the heat output in accordance with variations in the properties of the film bonding layer 24. In either of the apparEembodiments 10 and 110, when ditticrrkp b encountered in eliminating lon- gitudinal curl, the diameter of roll 15 can be reduced, increasing the reverse curvature through which the laminate is bent and further reducing the curl of the finished product. Stationary guides can be employed, instead of rolls 18, 19 (Fig. 1) or 111 (Fig. 4) to hold laminate 25 in contact with an aprreciable circumferential portion of roll 15. All of these modifications are readily accomplished, and hence have not been illustrated.
WHAT WE CLAIM IS: 1. A method of laminating a protective transparent film to a data-bearing substrate, without producing appreciable curl in the finished laminate, comprising the following steps: A. providing a composite protective film comprising an outer layer of transparent abrasion resistant resin and an inner layer of transparent thermoplastic bonding resin, the bonding resin containing a radiant-heatblocking pigment in an amount sufficient to increase the radiant heat absorption of the bonding resin and to decrease its radiant heat transmission but small enough to preclude material degradation of the transparency of the composite film to visible light; B. heating the bonding resin layer of the composite film by directing radiant heat to impinge directly upon the bonding resin; C. laminating the composite protective film to a data-bearing substrate by passing the composite film and the substrate between first and second pressure rolls, promptly after heating of the adhesive, with the adhesive surface of the film in engagement with an inner surface of the substrate, the outer surface of the film engaging the first pressure roll, and the outer surface of the substrate engaging the second pressure roll; and D. maintaining the resulting laminate in engagement with the second pressure roll through an appreciable arcuate distance on the second pressure roll after clearing its engagement with the first pressure roll.
2. A method according to Claim 1, in which the pigment employed is a white pigment.
3. A method according to Claim 2, in which the pigment employed is zinc oxide or titanium dioxide.
4. A method according to any preceding Claim, in which the concentration of the pigment in the bonding resin is about one percent.
5. A method according to any preceding Claim, including the additional preliminary step of adjusting the relative positions of the pressure rolls to vary said arcuate distance in accordance with the thickness, flexibility and thermal expansion characteristics of the protective film or substrate.
6. A method according to any preceding Claim, including the additional step of adjusting an auxlliary guide. located on the
**WARNING** end of DESC field may overlap start of CLMS **.

Claims (6)

**WARNING** start of CLMS field may overlap end of DESC **. because it limits the heating of the polyester layer 23 of film 12 that is the source of the curl. Pigmentation 31 can be effective even at concentrations as low as about one percent by volume of bonding layer 24; the amount of pigmentation should be low enough to avoid material degradation of the transparency of composite film 12. Finely divided zinc oxide is one suitable pigment; another pigment which may be employed is titanium dioxide. Fig. 4 illustrates a modified form of laminating apparatus 110 that may be employed instead of the laminating apparatus 10 of Fig. 1. In the apparatus 110, the protective film 12 is again fed from a supply reel 11 into the nip between two pressure rolls 14 and 15. A radiant heater 21 is again provided to heat the adhesive surface of film 12 immediately prior to the passage of the film into the area between the two pressure rolls. As before, the substrate 17 is shown as fed from a substrate supply reel 16 into the space between the two pressure rolls 14 and 15. In apparatus 110, there is a single guide roll 111, located opposite pressure roll 15 at a position on the path of the laminate 25 at an appreciable arcuate distance beyond pressure roll 14. Guide roll 111 maintains laminate 25 in engagement with pressure roll 15 through an appreciable arcuate distance D' after the laminate has cleared its engagement with the first pressure roll 14. This affords the same curl-prevention effect as in the previously described apparatus 10. Apparatus 110 may include means for adjusting the location of guide roll 111 around the periphery of pressure roll 15 to adjust the extent of the arcuate distance D' and thereby control the curl-reduction effect in compensation for changes in the thickness, flexibility, or thermal expansion characteristics of either film 12 or substrate 17. The adjustment of the position for roll 111 is along an arcuate path generally indicated by the arrows G. With this construction, the positions for pressure rolls 14 and 15 may remain essentially constant, preferably with some resilient biasing means urging the two pressure rolls toward each other at their point of tangency. In the foregoing description of specific embodiments 10 and 110, it is assumed that film 12 and substrate 17 are both continuous webs. Individual sheets, with appropriate sheet feed means, can be used for either the protective film or the substrate or both. The protective film may be entirely transparent or it may carry pre-printed data as desired. APpropriate electrical controls can be pro veiled for heater 21 to vary the heat output in accordance with variations in the properties of the film bonding layer 24. In either of the apparEembodiments 10 and 110, when ditticrrkp b encountered in eliminating lon- gitudinal curl, the diameter of roll 15 can be reduced, increasing the reverse curvature through which the laminate is bent and further reducing the curl of the finished product. Stationary guides can be employed, instead of rolls 18, 19 (Fig. 1) or 111 (Fig. 4) to hold laminate 25 in contact with an aprreciable circumferential portion of roll 15. All of these modifications are readily accomplished, and hence have not been illustrated. WHAT WE CLAIM IS:
1. A method of laminating a protective transparent film to a data-bearing substrate, without producing appreciable curl in the finished laminate, comprising the following steps: A. providing a composite protective film comprising an outer layer of transparent abrasion resistant resin and an inner layer of transparent thermoplastic bonding resin, the bonding resin containing a radiant-heatblocking pigment in an amount sufficient to increase the radiant heat absorption of the bonding resin and to decrease its radiant heat transmission but small enough to preclude material degradation of the transparency of the composite film to visible light; B. heating the bonding resin layer of the composite film by directing radiant heat to impinge directly upon the bonding resin; C. laminating the composite protective film to a data-bearing substrate by passing the composite film and the substrate between first and second pressure rolls, promptly after heating of the adhesive, with the adhesive surface of the film in engagement with an inner surface of the substrate, the outer surface of the film engaging the first pressure roll, and the outer surface of the substrate engaging the second pressure roll; and D. maintaining the resulting laminate in engagement with the second pressure roll through an appreciable arcuate distance on the second pressure roll after clearing its engagement with the first pressure roll.
2. A method according to Claim 1, in which the pigment employed is a white pigment.
3. A method according to Claim 2, in which the pigment employed is zinc oxide or titanium dioxide.
4. A method according to any preceding Claim, in which the concentration of the pigment in the bonding resin is about one percent.
5. A method according to any preceding Claim, including the additional preliminary step of adjusting the relative positions of the pressure rolls to vary said arcuate distance in accordance with the thickness, flexibility and thermal expansion characteristics of the protective film or substrate.
6. A method according to any preceding Claim, including the additional step of adjusting an auxlliary guide. located on the
GB44185/77A 1977-10-24 1977-10-24 Method for protective film lamination with curl control Expired GB1573158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB44185/77A GB1573158A (en) 1977-10-24 1977-10-24 Method for protective film lamination with curl control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB44185/77A GB1573158A (en) 1977-10-24 1977-10-24 Method for protective film lamination with curl control

Publications (1)

Publication Number Publication Date
GB1573158A true GB1573158A (en) 1980-08-13

Family

ID=10432169

Family Applications (1)

Application Number Title Priority Date Filing Date
GB44185/77A Expired GB1573158A (en) 1977-10-24 1977-10-24 Method for protective film lamination with curl control

Country Status (1)

Country Link
GB (1) GB1573158A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2143774A (en) * 1983-07-25 1985-02-20 Kiso Kasei Sangyo Co Ltd Composite films for protecting documents from being reproduced
WO1996002389A1 (en) * 1994-07-19 1996-02-01 Brückner Maschinenbau Gernot Brückner Gmbh & Co. Kg Process and device for continuously producing multilayered bodies
WO2000026011A1 (en) * 1998-10-30 2000-05-11 Advanced Photonics Technologies Ag Lamination
DE102005028661A1 (en) * 2005-06-15 2006-12-21 Kiv Kreis Gmbh Two-layer foil production, comprises connecting surfaces of thinner and thicker single thermoplastic foil at infrared radiation source, supplying energy for softening/melting of the surfaces of the foils
GB2430646A (en) * 2005-09-30 2007-04-04 Primax Electronics Ltd Lamination apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2143774A (en) * 1983-07-25 1985-02-20 Kiso Kasei Sangyo Co Ltd Composite films for protecting documents from being reproduced
WO1996002389A1 (en) * 1994-07-19 1996-02-01 Brückner Maschinenbau Gernot Brückner Gmbh & Co. Kg Process and device for continuously producing multilayered bodies
WO2000026011A1 (en) * 1998-10-30 2000-05-11 Advanced Photonics Technologies Ag Lamination
DE102005028661A1 (en) * 2005-06-15 2006-12-21 Kiv Kreis Gmbh Two-layer foil production, comprises connecting surfaces of thinner and thicker single thermoplastic foil at infrared radiation source, supplying energy for softening/melting of the surfaces of the foils
DE102005028661B4 (en) * 2005-06-15 2010-10-28 Kiv Kreis Gmbh Method and device for producing a two-layer film and a two-layer film produced therewith
GB2430646A (en) * 2005-09-30 2007-04-04 Primax Electronics Ltd Lamination apparatus

Similar Documents

Publication Publication Date Title
US4069081A (en) Method for protective film lamination with curl control
US4060441A (en) Method for forming a transparent protective coating on a photograph or the like
US6007660A (en) Method for applying heat bondable lamina to a substrate
TWI480595B (en) An optical sheet manufacturing apparatus and an optical sheet manufacturing method
US5582669A (en) Method for providing a protective overcoat on an image carrying medium utilizing a heated roller and a cooled roller
US7785436B2 (en) Laminating method for forming a laminate layer on a recording surface of a recording medium
US3239402A (en) Edge banding method and apparatus
US5316609A (en) Encapsulating laminator
US4528056A (en) Curl free reinforced paper sheet technique
US5512126A (en) Optical laminator
US3081212A (en) Method and apparatus for laminating
US20090266486A1 (en) Sheet peeling apparatus and method
GB1573158A (en) Method for protective film lamination with curl control
US6986823B2 (en) Process and apparatus for producing a laminate, comprising at least one polymer film with information and at least one substrate, for further processing for forgery-proof documents
US3756896A (en) Machine laminating magnetic strip on tag or label stock
CA1089345A (en) Method for protective film lamination with curl control
EP0908295B1 (en) Method of manufacturing laminated thermoplastic resin sheet and apparatus therefor
WO2018223684A1 (en) Roll forming device for plastic floor
JP2840552B2 (en) Laminator having a function to prevent wrinkles of sealing film
CN113272142A (en) Method and device for bonding substrates in the form of films and composite obtained thereby
JP3024458B2 (en) Manufacturing method of thermoplastic resin laminate
JP2002067160A (en) Laminating device
JP6120062B2 (en) Thermal adhesive film laminating method and apparatus
JP4538727B2 (en) Recording medium coating apparatus
JPH05171119A (en) Production tacky sheet

Legal Events

Date Code Title Description
PS Patent sealed [section 19, patents act 1949]
PE20 Patent expired after termination of 20 years

Effective date: 19971023