FR3126427A1 - Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate. - Google Patents

Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate. Download PDF

Info

Publication number
FR3126427A1
FR3126427A1 FR2113239A FR2113239A FR3126427A1 FR 3126427 A1 FR3126427 A1 FR 3126427A1 FR 2113239 A FR2113239 A FR 2113239A FR 2113239 A FR2113239 A FR 2113239A FR 3126427 A1 FR3126427 A1 FR 3126427A1
Authority
FR
France
Prior art keywords
substrate
titanium alloy
deposit
deposition
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR2113239A
Other languages
French (fr)
Inventor
Philippe EMILE
Claude ARCHAMBEAU
Sylvia LOPEZ CASTANO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations SAS
Original Assignee
Airbus Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations SAS filed Critical Airbus Operations SAS
Priority to FR2113239A priority Critical patent/FR3126427A1/en
Publication of FR3126427A1 publication Critical patent/FR3126427A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

- Procédé de traitement d’une pièce comprenant un substrat et un dépôt d’alliage de titane sur le substrat. - Le procédé comprend une étape (E1) de traitement thermique consistant à chauffer la pièce (1) jusqu’à une température de recuit maximale comprise entre 50°C et 250°C au-dessus de la température de transition bêta et une étape (E2) de refroidissement de la pièce (1). L’étape (E1) de traitement et l’étape (E2) de refroidissement permettent de casser les macrostructures colonnaires du dépôt. Figure pour l’abrégé : Fig. 2- Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate. - The method comprises a heat treatment step (E1) consisting in heating the part (1) to a maximum annealing temperature of between 50°C and 250°C above the beta transition temperature and a step ( E2) for cooling the part (1). The treatment step (E1) and the cooling step (E2) make it possible to break the columnar macrostructures of the deposit. Figure for abstract: Fig. 2

Description

Procédé de traitement d’une pièce comprenant un substrat et un dépôt d’alliage de titane sur le substrat.Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate.

La présente invention concerne un procédé de traitement d’une pièce comprenant un substrat et un dépôt d’alliage de titane sur le substrat.The present invention relates to a process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate.

État de la techniqueState of the art

La technologie de fabrication additive (« additive manufacturing » en anglais) par dépôt de matière sous flux d’énergie dirigée (« direct energy deposition » en anglais) correspond à une technique de soudage permettant de déposer de la matière sur un substrat à l’aide de différentes sources de soudage telles qu’un faisceau d’électrons, un plasma (arc électrique par exemple) ou un laser. Cette technologie permet de déposer de la matière, en particulier un alliage de titane, sous forme de cordons de soudure (« bead » en anglais) superposés. L’ensemble des cordons de soudure ainsi déposés permet de générer un revêtement brut en trois dimensions. Le revêtement est alors usiné pour obtenir un fini pour une pièce de type pièce aéronautique. Cette technologie autorise une grande productivité et autorise la fabrication et le traitement des pièces de grandes tailles.Additive manufacturing technology (“additive manufacturing” in English) by deposition of material under directed energy flow (“direct energy deposition” in English) corresponds to a welding technique making it possible to deposit material on a substrate at the using different welding sources such as an electron beam, a plasma (electric arc for example) or a laser. This technology makes it possible to deposit material, in particular a titanium alloy, in the form of superimposed weld beads. The set of weld beads thus deposited makes it possible to generate a rough coating in three dimensions. The coating is then machined to obtain a finish for an aeronautical part type part. This technology allows high productivity and allows the manufacture and processing of large parts.

À cause de l’historique thermique suivi par le dépôt réalisé par cette technologie, les macrostructures et les microstructures cristallines peuvent se présenter différemment selon que l’on regarde dans la zone de dépôt ou dans la zone d’interface entre le substrat et le dépôt. Dans la zone de dépôt, on trouve des grains grossiers en phase bêta présentant une macrostructure colonnaire et qui suivent la direction de fabrication du dépôt.Because of the thermal history followed by the deposit made by this technology, the macrostructures and the crystalline microstructures can appear differently depending on whether one looks in the deposit zone or in the interface zone between the substrate and the deposit. . In the deposition zone, there are coarse grains in the beta phase having a columnar macrostructure and which follow the direction of manufacture of the deposit.

Une macrostructure fait référence à l’arrangement des grains bêta, la microstructure a trait à l’arrangement de la phase alpha et ou alpha/bêta dans et autour du grain bêta.A macrostructure refers to the arrangement of the beta grains, the microstructure relates to the arrangement of the alpha and or alpha/beta phase in and around the beta grain.

Parmi ces grains bêta, la microstructure cristalline correspond généralement à une structure fine alpha aciculaire (structure de Widmanstätten). Dans la zone d’interface, entre le substrat et le dépôt, on trouve une macrostructure de transition qui est composée de grains globulaires primaires allongés dans la direction du laminage (matériau initial de la tôle), passant par la présence des grains bêta fins équiaxes dans la zone du substrat affecté thermiquement et qui va jusqu’à une macrostructure constituée de grains bêta colonnaires du dépôt.Among these beta grains, the crystalline microstructure generally corresponds to a fine acicular alpha structure (Widmanstätten structure). In the interface zone, between the substrate and the deposit, there is a transition macrostructure which is composed of primary globular grains elongated in the direction of rolling (initial material of the sheet), passing through the presence of equiaxed fine beta grains in the zone of the thermally affected substrate and which goes up to a macrostructure made up of columnar beta grains of the deposit.

Il existe déjà un traitement thermique généralement utilisé pour des pièces en alliage de titane fabriquées par des procédés conventionnels. Ce traitement, dit traitement de recuit bêta, permet d’homogénéiser les microstructures entre le dépôt, l’interface et le substrat et, donc, de limiter la propagation de fissure par fatigue du dépôt. Ce traitement thermique est réalisé à une température de recuit typique de 30°C au-dessus de la température de transition bêta. La température de transition bêta (ou, autrement appelée, température de transus bêta) est sensiblement égale à 995°C environ. Au-dessous de cette température, le titane se présente sous une forme biphasée alpha-bêta et se présente sous une forme bêta au-dessus de cette température.There is already a heat treatment generally used for titanium alloy parts made by conventional methods. This treatment, called beta annealing treatment, makes it possible to homogenize the microstructures between the deposit, the interface and the substrate and, therefore, to limit the propagation of cracks by fatigue of the deposit. This heat treatment is carried out at a typical annealing temperature of 30°C above the beta transition temperature. The beta transition temperature (or, otherwise called, beta transus temperature) is approximately equal to 995°C. Below this temperature, titanium occurs in an alpha-beta biphasic form and occurs in a beta form above this temperature.

Cependant, il apparait que le traitement thermique de recuit bêta à 30°C de cette température de transition bêta ne permet pas de « casser » les macrostructures colonnaires et donc ne limite pas la propagation de fissure par fatigue du dépôt.However, it appears that the beta annealing heat treatment at 30°C of this beta transition temperature does not make it possible to “break” the columnar macrostructures and therefore does not limit the fatigue crack propagation of the deposit.

La présente invention a pour objet de remédier à cet inconvénient. Pour cela, elle concerne un procédé de traitement d’une pièce comprenant un substrat en alliage de titane et un dépôt d’alliage de titane sur le substrat, le dépôt ayant été déposé sur le substrat par dépôt de matière sous flux d’énergie dirigée.The object of the present invention is to remedy this drawback. For this, it relates to a process for treating a part comprising a titanium alloy substrate and a deposition of titanium alloy on the substrate, the deposit having been deposited on the substrate by deposition of material under directed energy flow .

Selon l’invention, le procédé comprend au moins les étapes suivantes :
- une étape de traitement thermique consistant à chauffer la pièce jusqu’à une température de recuit maximale comprise entre 50°C et 250°C au-dessus de la température de transition bêta ;
- une étape de refroidissement de la pièce.
According to the invention, the method comprises at least the following steps:
- a heat treatment step consisting in heating the part up to a maximum annealing temperature of between 50° C. and 250° C. above the beta transition temperature;
- a part cooling step.

Ainsi, grâce à un traitement thermique permettant de chauffer la pièce à une température de recuit comprise entre 50°C et 250°C au-dessus de la température de transition bêta, les macrostructures colonnaires sont supprimées ou « cassées » et réorganisées de manière équiaxe. Le refroidissement contrôlé permet d’organiser la microstructure en colonies. Ces deux étapes améliorent le comportement en fatigue de la pièce qui présente plus particulièrement une meilleure tenue en propagation de fissure en fatigue.Thus, thanks to a heat treatment making it possible to heat the part to an annealing temperature between 50°C and 250°C above the beta transition temperature, the columnar macrostructures are removed or “broken” and reorganized in an equiaxed manner. . Controlled cooling organizes the microstructure into colonies. These two steps improve the fatigue behavior of the part, which more particularly has better behavior in fatigue crack propagation.

De plus, la température de recuit maximale est comprise entre 50°C et 150°C au-dessus de la température de transition bêta.In addition, the maximum annealing temperature is between 50°C and 150°C above the beta transition temperature.

De façon non limitative, la température de recuit maximale est égale à 100°C au-dessus de la température de transition bêta.Without limitation, the maximum annealing temperature is equal to 100° C. above the beta transition temperature.

Par ailleurs, la température de recuit maximale est maintenue pendant une durée comprise entre 30 min et 1 h 45 min.Furthermore, the maximum annealing temperature is maintained for a period of between 30 min and 1 h 45 min.

Avantageusement, l’étape de refroidissement de la pièce consiste à refroidir la pièce à une vitesse de refroidissement inférieure à 1°C/s.Advantageously, the part cooling step consists of cooling the part at a cooling rate of less than 1°C/s.

De préférence, l’alliage de titane correspond à un titane Ti-6AI-4V.Preferably, the titanium alloy corresponds to a Ti-6AI-4V titanium.

L’invention concerne également une pièce comprenant un substrat en alliage de titane et un dépôt d’alliage de titane sur le substrat.The invention also relates to a part comprising a titanium alloy substrate and a titanium alloy deposit on the substrate.

Selon l’invention, la pièce a été traitée par un procédé de traitement tel que spécifié ci-dessus.According to the invention, the part has been treated by a treatment method as specified above.

L’invention concerne aussi un procédé de fabrication d’une pièce.The invention also relates to a method of manufacturing a part.

Selon l’invention, le procédé de fabrication comprend au moins les étapes suivantes :
- une étape de dépôt consistant à déposer au moins un dépôt d’alliage de titane sur un substrat d’alliage de titane par une méthode de dépôt de matière sous flux d’énergie dirigée,
- une étape de traitement de la pièce par le procédé de traitement tel que spécifié ci-dessus.
According to the invention, the manufacturing process comprises at least the following steps:
- a deposition step consisting in depositing at least one titanium alloy deposit on a titanium alloy substrate by a material deposition method under directed energy flow,
- a step of processing the part by the processing method as specified above.

Par ailleurs, le procédé de fabrication comprend en outre une étape de finition consistant à usiner le dépôt après l’étape de traitement de la pièce pour obtenir un fini de la pièce.Furthermore, the manufacturing process further comprises a finishing step consisting in machining the deposit after the step of processing the part to obtain a finish for the part.

Brève description des figuresBrief description of figures

Les figures annexées feront bien comprendre comment l'invention peut être réalisée. Sur ces figures, des références identiques désignent des éléments semblables.The appended figures will make it clear how the invention can be implemented. In these figures, identical references designate similar elements.

représente une vue en perspective d’un exemple de fabrication additive par dépôt de matière sous flux d’énergie dirigée. shows a perspective view of an example of additive manufacturing by material deposition under directed energy flow.

représente schématiquement le procédé de traitement. schematically represents the treatment process.

représente schématiquement le procédé de fabrication d’une pièce. schematically represents the manufacturing process of a part.

représente une coupe transversale d’un exemple de dépôt d’une pièce qui n’a pas été soumise au procédé de traitement. Les couches de dépôt sont superposées de la gauche vers la droite. shows a cross-section of an example of depositing a part that has not been subjected to the treatment process. The deposit layers are superimposed from left to right.

représente une coupe transversale d’un exemple de dépôt d’une pièce qui a été soumise au procédé de traitement dans lequel l’étape de traitement thermique à consister à chauffer la pièce jusqu’à une température de recuit maximale sensiblement égale à 30°C au-dessus de la température de transition bêta. Les couches de dépôt sont superposées de la gauche vers la droite. represents a cross-section of an example of the deposition of a part which has been subjected to the treatment process in which the heat treatment step consists in heating the part to a maximum annealing temperature substantially equal to 30°C above the beta transition temperature. The deposit layers are superimposed from left to right.

représente une coupe transversale d’un exemple de dépôt d’une pièce qui a été soumise au procédé de traitement dans lequel l’étape de traitement thermique à consister à chauffer la pièce jusqu’à une température de recuit maximale sensiblement égale à 50°C au-dessus de la température de transition bêta. Les couches de dépôt sont superposées de la gauche vers la droite. represents a cross section of an example of depositing a part which has been subjected to the treatment process in which the heat treatment step consists in heating the part up to a maximum annealing temperature substantially equal to 50°C above the beta transition temperature. The deposit layers are superimposed from left to right.

représente une coupe transversale d’un exemple de dépôt d’une pièce qui a été soumise au procédé de traitement dans lequel l’étape de traitement thermique à consister à chauffer la pièce jusqu’à une température de recuit maximale sensiblement égale à 100°C au-dessus de la température de transition bêta. Les couches de dépôt sont superposées de la gauche vers la droite. represents a cross-section of an example of the deposition of a part which has been subjected to the treatment process in which the heat treatment step consists in heating the part up to a maximum annealing temperature substantially equal to 100°C above the beta transition temperature. The deposit layers are superimposed from left to right.

Claims (9)

Procédé de traitement d’une pièce (1) comprenant un substrat (2) en alliage de titane et un dépôt (3) d’alliage de titane sur le substrat (2), le dépôt (3) ayant été déposé sur le substrat (2) par dépôt de matière sous flux d’énergie dirigée (4),
caractérisé en ce qu’il comprend au moins les étapes suivantes :
  • une étape (E1) de traitement thermique consistant à chauffer la pièce (1) jusqu’à une température de recuit maximale comprise entre 50°C et 250°C au-dessus de la température de transition bêta ;
  • une étape (E2) de refroidissement de la pièce (1).
Process for treating a part (1) comprising a titanium alloy substrate (2) and a titanium alloy deposit (3) on the substrate (2), the deposit (3) having been deposited on the substrate ( 2) by deposition of material under directed energy flow (4),
characterized in that it comprises at least the following steps:
  • a heat treatment step (E1) consisting in heating the part (1) to a maximum annealing temperature of between 50° C. and 250° C. above the beta transition temperature;
  • a step (E2) of cooling the part (1).
Procédé selon la revendication 1,
caractérisé en ce que la température de recuit maximale est comprise entre 50°C et 150°C au-dessus de la température de transition bêta.
Method according to claim 1,
characterized in that the maximum annealing temperature is between 50°C and 150°C above the beta transition temperature.
Procédé selon la revendication 1,
caractérisé en ce que la température de recuit maximale est égale à 100°C au-dessus de la température de transition bêta.
Method according to claim 1,
characterized in that the maximum annealing temperature is 100°C above the beta transition temperature.
Procédé selon l’une quelconque des revendications 1 à 3,
caractérisé en ce que la température de recuit maximale est maintenue pendant une durée comprise entre 30 min et 1 h 45 min.
Process according to any one of Claims 1 to 3,
characterized in that the maximum annealing temperature is maintained for a period of between 30 min and 1 h 45 min.
Procédé selon l’une quelconque des revendications 1 à 4,
caractérisé en ce que l’étape (E2) de refroidissement de la pièce (1) consiste à refroidir la pièce (1) à une vitesse de refroidissement inférieure à 1°C/s.
Process according to any one of Claims 1 to 4,
characterized in that the step (E2) of cooling the part (1) consists in cooling the part (1) at a cooling rate of less than 1°C/s.
Procédé selon l’une quelconque des revendications 1 à 5,
caractérisé en ce que l’alliage de titane correspond à un titane Ti-6AI-4V.
Process according to any one of Claims 1 to 5,
characterized in that the titanium alloy corresponds to a titanium Ti-6AI-4V.
Pièce comprenant un substrat (2) en alliage de titane et un dépôt (3) d’alliage de titane sur le substrat (2),
caractérisée en ce qu’elle a été traitée par un procédé de traitement selon l’une quelconque des revendications 1 à 6.
Part comprising a titanium alloy substrate (2) and a titanium alloy deposit (3) on the substrate (2),
characterized in that it has been treated by a treatment method according to any one of claims 1 to 6.
Procédé de fabrication d’une pièce,
caractérisé en ce qu’il comprend au moins les étapes suivantes :
  • une étape (E01) de dépôt consistant à déposer au moins un dépôt (3) d’alliage de titane sur un substrat (2) d’alliage de titane par une méthode de dépôt de matière sous flux d’énergie dirigée (4),
  • une étape (E02) de traitement de la pièce (1) par le procédé de traitement selon l’une quelconque des revendications 1 à 6.
Part manufacturing process,
characterized in that it comprises at least the following steps:
  • a deposition step (E01) consisting in depositing at least one titanium alloy deposit (3) on a titanium alloy substrate (2) by a material deposition method under directed energy flow (4),
  • a step (E02) of processing the part (1) by the processing method according to any one of claims 1 to 6.
Procédé selon la revendication 8,
caractérisé en ce qu’il comprend en outre une étape (E03) de finition consistant à usiner le dépôt (3) après l’étape (E02) de traitement de la pièce (1) pour obtenir un fini de la pièce (1).
Method according to claim 8,
characterized in that it further comprises a finishing step (E03) consisting in machining the deposit (3) after the step (E02) of processing the part (1) to obtain a finish for the part (1).
FR2113239A 2021-12-09 2021-12-09 Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate. Pending FR3126427A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR2113239A FR3126427A1 (en) 2021-12-09 2021-12-09 Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2113239 2021-12-09
FR2113239A FR3126427A1 (en) 2021-12-09 2021-12-09 Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate.

Publications (1)

Publication Number Publication Date
FR3126427A1 true FR3126427A1 (en) 2023-03-03

Family

ID=80999709

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2113239A Pending FR3126427A1 (en) 2021-12-09 2021-12-09 Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate.

Country Status (1)

Country Link
FR (1) FR3126427A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605456A (en) * 2018-06-15 2019-12-24 天津大学 Titanium alloy CMT-heat treatment composite additive manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110605456A (en) * 2018-06-15 2019-12-24 天津大学 Titanium alloy CMT-heat treatment composite additive manufacturing method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AZARNIYA ABOLFAZL ET AL: "Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 804, 11 May 2019 (2019-05-11), pages 163 - 191, XP085754823, ISSN: 0925-8388, [retrieved on 20190511], DOI: 10.1016/J.JALLCOM.2019.04.255 *
ERHARD BRANDL ET AL: "Microstructure of additive layer manufactured Ti 6Al 4V after exceptional post heat treatments", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 81, 23 April 2012 (2012-04-23), pages 84 - 87, XP028491530, ISSN: 0167-577X, [retrieved on 20120428], DOI: 10.1016/J.MATLET.2012.04.116 *
OYELOLA OLUSOLA ET AL: "On the machinability of directed energy deposited Ti6Al4V", ADDITIVE MANUFACTURING, vol. 19, 11 November 2017 (2017-11-11), NL, pages 39 - 50, XP055935906, ISSN: 2214-8604, Retrieved from the Internet <URL:https://www.sciencedirect.com/science/article/pii/S2214860417303779> DOI: 10.1016/j.addma.2017.11.005 *

Similar Documents

Publication Publication Date Title
EP0070773A1 (en) Process for manufacturing metallic composite articles, and articles obtained thereby
EP0526361B1 (en) High performance electrode wire for electric discharge machining and process for preparing same
EP3850118A1 (en) Nickel-based superalloys
EP0148688A2 (en) Method for the thermomechanical treatment of superalloys to obtain structures with great mechanical characteristics
EP0924015A1 (en) Screw extruder coating process
FR3126427A1 (en) Process for treating a part comprising a substrate and a deposition of titanium alloy on the substrate.
EP0780187A1 (en) Manufacturing process of a blade comprising alpha-beta titanium with an insert at metastable beta titanium and a blade manufactured by such a process
FR3014000A1 (en) METHOD FOR MANUFACTURING AND REPAIRING A CUTTING TOOL
WO2021023931A1 (en) Method for preparing a metal powder for an additive manufacturing process, and use of such a powder
FR2685227A1 (en) IMPROVEMENT OF HOT WORK SUITABILITY BY USE OF COATING DEPOSITED BY THERMAL SPRAYING.
EP2440367B1 (en) Method for reducing the diameter of an opening
CN113481448B (en) Titanium alloy member and heat treatment method for titanium alloy member
FR2657624A1 (en) Process for the manufacture of plates made of ductile metal and its applications
FR2988402A1 (en) PROCESS FOR TREATING TITANIUM
WO2015060331A1 (en) Aluminum alloy, and semiconductor production device and plasma treatment device each manufactured using same
EP3172353B1 (en) Method for treating a nitrided/nitrocarburised part
FR3032137A3 (en)
FR3040645A1 (en) PROCESS FOR MANUFACTURING A PIECE BY SELECTIVE FUSION OR SELECTIVE FRITTAGE ON BED OF POWDER
EP2721310B1 (en) Method for producing an attachment element
CN115323346B (en) Textured coating on surfaces of heavy-duty bearings and gears and preparation method thereof
EP1379353B1 (en) Electric discharge machining wire with optimised surface coating
CN112959014A (en) Preparation method of copper/steel composite shaft sleeve
WO2022223478A1 (en) Method for manufacturing a timepiece pivot pin and timepiece pivot pin obtained by said method
FR3141701A1 (en) Process for repairing a part by chemical deposition
FR3126897A1 (en) Process for optimizing the friction welding of an assembly of at least two parts made of an alloy based on nickel and chromium hardened by γ&#39;&#39; phase precipitation assembled by friction welding

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20230303

RX Complete rejection

Effective date: 20230721