WO2015060331A1 - Aluminum alloy, and semiconductor production device and plasma treatment device each manufactured using same - Google Patents

Aluminum alloy, and semiconductor production device and plasma treatment device each manufactured using same Download PDF

Info

Publication number
WO2015060331A1
WO2015060331A1 PCT/JP2014/078043 JP2014078043W WO2015060331A1 WO 2015060331 A1 WO2015060331 A1 WO 2015060331A1 JP 2014078043 W JP2014078043 W JP 2014078043W WO 2015060331 A1 WO2015060331 A1 WO 2015060331A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
plasma
aluminum
processing apparatus
plasma processing
Prior art date
Application number
PCT/JP2014/078043
Other languages
French (fr)
Japanese (ja)
Inventor
蓮尾 俊治
Original Assignee
九州三井アルミニウム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 九州三井アルミニウム工業株式会社 filed Critical 九州三井アルミニウム工業株式会社
Publication of WO2015060331A1 publication Critical patent/WO2015060331A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53214Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being aluminium
    • H01L23/53219Aluminium alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an aluminum alloy, a semiconductor manufacturing apparatus using the same, and a plasma processing apparatus.
  • the present invention relates to an aluminum alloy used by performing an anodizing treatment used in an environment where a plasma treatment is performed.
  • a plasma processing apparatus for irradiating the object to be processed with plasma is used.
  • an aluminum alloy is used for the chamber and other components from the viewpoint of workability and lightness.
  • the aluminum alloy used is preferably aluminum having a high purity of 4N (99.99 wt%) or more with a low impurity element content from the viewpoint of preventing secondary damage due to plasma irradiation.
  • a strength of about 200 to 300 N / mm 2 is necessary, so that high-purity aluminum having a low strength of 4 N or more cannot be used alone.
  • an aluminum alloy such as a so-called 5000 series alloy or 6000 series alloy having the above-mentioned strength and JIS standard
  • the surface thereof is subjected to anodizing treatment (hereinafter referred to as “hard anodizing treatment”).
  • hard anodizing treatment A certain effect was obtained in reducing damage during plasma irradiation in the environment of the plasma processing apparatus and preventing scattering of impurities from a part of the chamber and apparatus parts.
  • a 5000 series alloy or the like contains a very large amount of impurity elements as compared with aluminum having a high purity of 4N or higher.
  • an impurity element such as a 5000 series alloy causes the intermetallic compound 3 to precipitate from the aluminum substrate 1 to the alumite film 2 by performing a hard anodizing treatment. End up. Then, this intermetallic compound 3 causes a defect in the alumite film 2, and the denseness of the alumite film 2 is lowered.
  • the anodized film is easily peeled off, and the peeled anodized film is scattered and attached on the semiconductor wafer being manufactured.
  • the influence of this alumite film adhesion has become apparent as secondary damage due to the miniaturization of the wiring accompanying the advancement of technology, and has become a problem as a decrease in yield and reliability.
  • Patent Document 1 discloses a technique for preventing peeling of an alumite film by adding a predetermined amount of Mg to high-purity aluminum. Note that Mg alone improves the strength of high-purity aluminum with low strength.
  • Patent Document 2 discloses a technique for improving the strength of high purity aluminum by precipitating Mg 2 Si by adding Mg + Si to high purity aluminum.
  • Patent Document 3 discloses a technique for refining crystal grains by adding a predetermined amount of Ti to high-purity aluminum and improving the adhesion of the alumite film.
  • the aluminum alloy that has been subjected to the hard anodized treatment described in the above-mentioned patent document has a strength that can withstand the plasma treatment while being highly pure, and also reduces damage during plasma irradiation in the environment of the plasma treatment apparatus, The effect of preventing scattering of impurities (including intermetallic compounds) from the chamber or the like can be obtained.
  • the above-described technology is mainly intended to prevent contamination by impurities from the chamber of the plasma processing apparatus and to improve anodization, that is, to remove film defects and foreign substances in the film. It is excellent in that fundamental measures are taken against the request.
  • the alumite film is not completely damaged, and there is still foreign matter that peels off from the object to be processed and scatters, and foreign matter that occurs during processing in the equipment. However, there are cases where it adheres to the alumite film. These foreign substances increase as the number of plasma treatments increases, and are scattered or dropped and adhere as impurities on the object to be treated.
  • the plasma processing apparatus Because of this situation, it is desirable for the plasma processing apparatus to continue operation while removing foreign substances adhering to the surface of the chamber as completely as possible. It is necessary to clean the surface of the etc. regularly. Therefore, it is desirable that the surface of the chamber or the like has as uniform a color as possible so that foreign matters can be easily identified and removed.
  • cast aluminum is subjected to heat treatment after forging and rolling to become a final aluminum alloy material.
  • coarsening of crystal grains occurs due to recrystallization. Therefore, the effect of grain refinement by adding Ti during casting is halved when the final aluminum alloy material after heat treatment is formed.
  • the crystal grains have the property that the color varies depending on the plane orientation. Therefore, as shown in FIG. 13, the coarsened crystal grain region can be visually observed as a color appearance in a cylindrical part formed of 4NAl + Mg + Ti alloy before the hard alumite treatment. Even in a part that is not shown and has been subjected to the hard alumite treatment, the part can be visually recognized. The color unevenness generated in this way makes it difficult to determine the presence or absence of foreign matter or the like attached to the chamber or the like of the plasma processing apparatus.
  • the high-purity aluminum alloy subjected to the hard alumite treatment described in the patent document as described above is improved in strength of the alloy base part, and improved in adhesion of the alumite film, thereby reducing damage during plasma irradiation, While obtaining the effect of preventing the scattering of impurities from a part of the chamber and equipment parts, color unevenness due to the coarsening of crystal grains occurs on the surface of the chamber, etc., so it is difficult to judge the quality during cleaning, There has been a problem of foreign matter adhering to the workpiece.
  • the present invention has been made in view of the circumstances as described above, and is intended to make crystal grains fine while having sufficient strength, and is dense and has a high quality hard anodized film with few defects due to intermetallic compounds.
  • An aluminum alloy suitable for use as a material for plasma electrode plates and plasma chambers is provided.
  • the present invention provides the following. That is, the aluminum alloy according to the invention of claim 1 is wt%, Mg: 2.0 to 3.5%, Cr: 0.001 to 0.01%, or Mn: 0.005 to 0.01. %, Ti: 0.001 to 0.04%, with the balance being inevitable impurities of 0.01% or less, and Al.
  • a plasma processing apparatus is a plasma processing apparatus for performing a predetermined process on an object to be processed using active species obtained by plasma or plasma conversion in a vacuum chamber,
  • One or more of the vacuum chambers or components provided therein are wt%, Mg: 2.0 to 3.5%, Cr: 0.001 to 0.01%, or Mn: 0.005 to
  • the aluminum alloy is composed of 0.01%, Ti: 0.001 to 0.04%, the balance being 0.01% or less of inevitable impurities, and Al.
  • a plasma processing apparatus is a plasma processing apparatus for performing a predetermined process on an object to be processed using active species obtained by plasma or plasmatization in a vacuum chamber,
  • One or more of the vacuum chambers or components provided therein are wt%, Mg: 2.0 to 3.5%, Cr: 0.001 to 0.01%, or Mn: 0.005 to Containing 0.01%, Ti: 0.001 to 0.04%, the balance being 0.01% or less inevitable impurities, and an aluminum alloy member obtained by anodizing an aluminum alloy made of Al It is.
  • a semiconductor manufacturing apparatus comprising the plasma processing apparatus according to the second or third aspect.
  • the aluminum alloy according to the fifth aspect of the present invention is, in wt%, Si: 0.35 to 2.5%, Mg ⁇ 1.73 ⁇ Si, Cr: 0.001 to 0.01%, or Mn: 0 0.005 to 0.01%, Ti: 0.001 to 0.04%, the balance being 0.01% or less inevitable impurities, and Al.
  • a plasma processing apparatus is a plasma processing apparatus for performing a predetermined process on an object to be processed using active species obtained by plasma or plasma in a vacuum chamber,
  • One or more of the vacuum chamber or components provided therein are wt%, Si: 0.35 to 2.5%, Mg ⁇ 1.73 ⁇ Si, Cr: 0.001 to 0.01 % Or Mn: 0.005 to 0.01%, Ti: 0.001 to 0.04%, the balance is composed of an inevitable impurity of 0.01% or less, and an aluminum alloy made of Al. .
  • a plasma processing apparatus is a plasma processing apparatus for performing a predetermined process on an object to be processed using active species obtained by plasma or plasma in a vacuum chamber,
  • One or more of the vacuum chamber or components provided therein are wt%, Si: 0.35 to 2.5%, Mg ⁇ 1.73 ⁇ Si, Cr: 0.001 to 0.01 % Or Mn: 0.005 to 0.01%, Ti: 0.001 to 0.04%, and the remainder was 0.01% or less of inevitable impurities, and an aluminum alloy made of Al was anodized It is composed of an aluminum alloy member.
  • a semiconductor manufacturing apparatus comprising the plasma processing apparatus according to the sixth or seventh aspect.
  • the aluminum alloy according to the present invention has very fine crystal grains even after the rolling process, it is difficult for the color difference due to the plane orientation to occur. Therefore, even after the heat treatment and after the hard alumite treatment, The surface can be made uniform with no color unevenness.
  • the figure (photograph) used in the description is intended for an aluminum alloy in which inevitable impurities are suppressed to 0.01% or less by using high-purity aluminum of 4N (99.99 wt%) or more.
  • FIG. 1 shows the composition of an aluminum alloy according to an embodiment of the present invention. That is, this aluminum alloy has, for example, Al having a purity of 99.99 wt% (4N: Four Nine) or higher by a usual melting method and Mg having a purity of 99.95 wt% or higher, or a purity of 99.95 wt%. % Mg and 99.999 wt% Si are added, Ti is added in the form of Al—Ti or Al—Ti—B master alloy, and then Cr or Mn is similarly added to Al— By adding in the form of Cr or Al—Mn master alloy, the molten aluminum whose composition is adjusted can be cast as a billet or slab by a semi-continuous casting method.
  • Al having a purity of 99.99 wt% (4N: Four Nine) or higher by a usual melting method
  • Mg having a purity of 99.95 wt% or higher, or a purity of 99.95 wt%.
  • % Mg and 99.999 wt% Si are added,
  • the slab obtained by casting is plastically processed to a state close to the target shape by applying external force by forging, Plastic processing into a required shape by rolling (JIS standard: H112 treatment).
  • a solution treatment is performed at a temperature of about 500 to 580 ° C. for about 1 to 10 hours, and further an aging treatment is performed at a temperature of about 160 to 220 ° C. Can be given.
  • the above-described aluminum alloy according to the present invention includes, in wt%, Mg: 2.0 to 3.5%, Cr: 0.001 to 0.01% or Mn: 0.005 to 0.01%, Ti: 0.001 to 0.04% inclusive, the balance being 0.01% or less of inevitable impurities and a first aluminum alloy made of Al, wt%, Si: 0.35 to 2.5%, Mg ⁇ 1.73 ⁇ Si, Cr: 0.001 to 0.01% or Mn: 0.005 to 0.01%, Ti: 0.001 to 0.04%, including 0.01% or less inevitable impurities There is a second aluminum alloy whose balance is made of Al.
  • Mg is added to the first aluminum alloy and Mg + Si is added to the second aluminum alloy in order to strengthen the material by solid solution strengthening and to improve the corrosion resistance of the material. That is, the strength of the material is improved by the solid solution of Mg due to the difference in atomic radius between Mg and Al, and the Mg 2 Si is formed in a range that does not affect the formation of the alumite film. This is to improve the strength of the material.
  • the Mg-added alloy forms MgF 2 in a CVD (Chemical Vapor Deposition) apparatus using a CF-based plasma gas, which leads to suppression of destruction of the alumite film.
  • CVD Chemical Vapor Deposition
  • Mg is added to improve the strength of the material by dissolving in aluminum, but the amount of addition in the first aluminum alloy is wt% and Mg is in the range of 2.0 to 3.5 wt%.
  • the reason is that when the addition amount is less than 2.0 wt%, the strength of the material cannot be sufficiently improved, and when the addition amount exceeds 3.5 wt%, the corrosion resistance of the material and the anodized film is low. This is because it is inferior.
  • the amount of Mg is set to Mg ⁇ 1.73 ⁇ Si because Mg 2 Si is formed when the amount of Mg is less than 1.73 times that of Si. This is because the excess Si is precipitated as primary Si, forms coarse precipitates in the material, and remains in the subsequent alumite film, leading to film defects.
  • the reason why Ti is added to the first and second aluminum alloys is to refine the crystal grains after casting the material and improve the adhesion of the alumite coating during the hard alumite treatment.
  • the crystal grains of the cast material are coarsened only by the addition of Mg and Si described above. Even if forging or rolling process is applied to the cast material, the crystal grains are further coarsened by recrystallization at that time, and the adhesion of the anodized film during the hard anodized treatment is improved. descend.
  • Ti addition is to prevent such a decrease in adhesion to a minimum.
  • Ti is added for the purpose of refining the crystal grains of the material.
  • the addition amount is wt% and Ti is in the range of 0.001 to 0.04 wt%, the addition amount is 0.
  • the amount is less than 0.001 wt%, the material cannot be sufficiently refined, and when the amount added exceeds 0.04 wt%, Ti itself is an element that anodizes, so in the Al alloy. This is because Ti exceeding the solid solution limit forms an alumite film together with aluminum, resulting in uneven film thickness and uneven film thickness.
  • the cast material is generally heat-treated after being forged and rolled and used as a final aluminum material.
  • the recrystallization temperature to make it difficult to recrystallize during the heat treatment, it is possible to prevent occurrence of problems in appearance and alumite film formation due to coarsening of crystal grains due to recrystallization.
  • the problem of appearance is that the crystal grains have the property that the color varies depending on the plane orientation, so that the area of the coarsened crystal grains can be visually observed as the color and the hard anodized treatment is applied.
  • the color unevenness generated in this way is difficult to determine the presence or absence of foreign matter attached to the chamber or the like of the plasma processing apparatus.
  • the problem with alumite film formation is that there is a difference in growth depending on the plane orientation during the growth of the alumite film, that is, there is a difference in the shaving condition (depth) of the aluminum material surface, and the color and surface roughness of the alumite film Is to affect.
  • the additive amount is in the range of Cr: 0.001 to 0.01 wt% or Mn: 0.005 to 0.01 wt%, as these materials are used as much as possible from the viewpoint of metal contamination as a material for semiconductor manufacturing equipment. It is an element that should be avoided and is the result of minimization.
  • the reason why the inevitable impurities are limited to 0.01% or less in the first and second aluminum alloys is to promote the refinement of crystal grains while preventing the metal contamination by Cr and Mn described above.
  • Cr and Mn described above contain Mn: 0.5 to 1.0 wt% and Cr: 0.05 to 0.00% for a general aluminum alloy that contains a large amount of impurity elements and is not highly pure. Recrystallization cannot be suppressed unless a relatively large amount of about 35 wt% is added. This is because the impurity element forms an intermetallic compound with Cr or Mn, so that it is difficult to obtain an effect of suppressing recrystallization as Cr or Mn alone.
  • FIG. 2 is a cross-sectional photomicrograph showing the macrostructure of the first aluminum alloy (4NAl + Mg + Ti + Cr system) obtained by rolling.
  • FIG. 3 is a cross-sectional photomicrograph showing the macrostructure after rolling of an aluminum alloy (4NAl + Mg + Ti system) to which Cr is not added with the first aluminum alloy.
  • the first aluminum alloy according to the present embodiment to which Cr is added can reduce the size of crystal grains to about 1/22 as compared with the aluminum alloy to which Cr is not added. it can. Furthermore, it is possible to form a crystal having no direction of equiaxed crystal rather than a structure elongated in the rolling direction.
  • FIG. 4 is a cross-sectional photomicrograph showing the macrostructure of the first aluminum alloy (4NAl + Mg + Ti + Cr system) annealed after the rolling process, but also in this case, compared to the aluminum alloy not added with Cr, The size of the crystal grains can be reduced to about 1/11, and a crystal having no orientation of equiaxed crystals can be formed instead of a structure elongated in the rolling direction.
  • the ability to form fine crystal grains and the formation of crystals with no equiaxed crystal orientation are the other first aluminum alloys (4NAl + Mg + Ti + Mn system) and the book in which Si is added to these.
  • FIG. 6 is a cross-sectional macrophotograph of a second aluminum alloy (4NAl + Mg + Si + Ti + Cr system) subjected to solution treatment / aging treatment after forging
  • FIG. 8 is a cross-sectional micrograph thereof
  • FIG. 7 is a cross-sectional macrophotograph of this second aluminum alloy (4NAl + Mg + Si + Ti + Cr system) with no added Cr (4NAl + Mg + Si + Ti system)
  • FIG. 9 is a cross-sectional micrograph thereof.
  • the second aluminum alloy according to the present embodiment to which Cr is added can reduce the size of crystal grains to about one fifth as compared with the aluminum alloy to which Cr is not added. Uniform crystal grains can also be achieved.
  • the second aluminum alloy (4NAl + Mg + Si + Ti + Mn system) to which Mn is added.
  • FIG. 5 is a photograph showing a cross section of a sample obtained by subjecting the first aluminum alloy (4NAl + Mg + Ti + Cr system) obtained by rolling to a hard alumite treatment, and the amount of Cr added is 0.001 to 0.01 wt%. It is a range. There are no voids or impurities in the anodized film 2, and it can be confirmed that the surface of the aluminum substrate 1 and the surface of the anodized film 2 are also formed uniformly and smoothly.
  • first aluminum alloys (4NAl + Mg + Ti + Mn system) and the second aluminum alloys according to the present embodiment (4NAl + Mg + Si + Ti + Cr system, 4NAl + Mg + Si + Ti + Mn system) to which Si is added.
  • JIS standard A5052 alloy and A6061 alloy shown in FIG. 10 containing a large amount of impurity elements are subjected to hard anodizing treatment as shown in FIG. 11 (A5052) and FIG. 12 (A6061).
  • Impurities (intermetallic compounds) 3 are deposited from the aluminum substrate 1 to the alumite film 2, which is greatly different from the aluminum alloy according to this embodiment.
  • the crystal grains of the aluminum alloy according to the embodiment of the present invention are very fine both after rolling and after solution treatment and aging treatment after forging. Make no difference. Furthermore, even if a hard anodizing treatment is applied, the growth of the anodized aluminum film is not affected by the plane orientation or impurity elements, so there is no difference in growth of the surface of the aluminum substrate. The roughness becomes smooth, and color unevenness does not occur even on the surface after the hard alumite treatment.
  • the first and second aluminum alloys according to the embodiments of the present technology can form fine high-quality hard anodized coatings that are dense and have a small amount of impurity elements, while providing sufficient strength and miniaturization of crystal grains.
  • An aluminum alloy can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

An aluminum alloy according to the present invention comprises, in wt%, 2.0 to 3.5% of Mg, 0.001 to 0.01% of Cr or 0.005 to 0.01% of Mn, and 0.001 to 0.04% of Ti, with the remainder made up by 0.01% or less of unavoidable impurities and Al.

Description

アルミニウム合金及びそれを用いた半導体製造装置、プラズマ処理装置Aluminum alloy and semiconductor manufacturing apparatus and plasma processing apparatus using the same
 本発明は、アルミニウム合金及びそれを用いた半導体製造装置、プラズマ処理装置に関する。特に、プラズマ処理が施される環境下において使用される、陽極酸化処理を施して用いられるアルミニウム合金に係るものである。 The present invention relates to an aluminum alloy, a semiconductor manufacturing apparatus using the same, and a plasma processing apparatus. In particular, the present invention relates to an aluminum alloy used by performing an anodizing treatment used in an environment where a plasma treatment is performed.
 従来、半導体や液晶パネル等の製造工程においては、微細な配線を形成する必要性から、発塵やコンタミネーションに対して様々な対策が講じられている。また、被処理物に対するコンタミネーションへの積極的な対策の一つとして、被処理物にプラズマを照射するためのプラズマ処理装置が用いられている。そして、一般的に、このようなプラズマ処理装置では、チャンバーやその他部品に対して、加工性や軽量性の観点からアルミニウム合金が使用されている。 Conventionally, in the manufacturing process of semiconductors and liquid crystal panels, various measures have been taken against dust generation and contamination due to the necessity of forming fine wiring. In addition, as one of the positive measures against contamination on the object to be processed, a plasma processing apparatus for irradiating the object to be processed with plasma is used. In general, in such a plasma processing apparatus, an aluminum alloy is used for the chamber and other components from the viewpoint of workability and lightness.
 使用されるアルミニウム合金は、プラズマ照射による二次的被害を防止する観点から不純物元素の含有量が少ない4N(99.99wt%)以上の高純度を有するアルミニウムの使用が好ましいが、チャンバーやプラズマ電極は、プラズマ照射に耐えうるために例えば、200~300N/mm程度の強度が必要であるため、強度が低い4N以上の高純度のアルミニウムを単独で使用することができない。 The aluminum alloy used is preferably aluminum having a high purity of 4N (99.99 wt%) or more with a low impurity element content from the viewpoint of preventing secondary damage due to plasma irradiation. In order to withstand plasma irradiation, for example, a strength of about 200 to 300 N / mm 2 is necessary, so that high-purity aluminum having a low strength of 4 N or more cannot be used alone.
 従って、上記強度を有する、JIS規格で定められたいわゆる5000系合金や6000系合金等のアルミニウム合金を用いて、その表面に陽極酸化処理(以下、「硬質アルマイト処理」とする)を施すことで、プラズマ処理装置の環境下におけるプラズマ照射時のダメージ軽減や、チャンバーや装置部品の一部からの不純物の飛散防止に、一定の効果を得ていた。 Therefore, by using an aluminum alloy such as a so-called 5000 series alloy or 6000 series alloy having the above-mentioned strength and JIS standard, the surface thereof is subjected to anodizing treatment (hereinafter referred to as “hard anodizing treatment”). A certain effect was obtained in reducing damage during plasma irradiation in the environment of the plasma processing apparatus and preventing scattering of impurities from a part of the chamber and apparatus parts.
 しかしながら、図10に示すように、5000系合金等は、4N以上の高純度を有するアルミニウムに比較すると、非常に多くの不純物元素を含有している。5000系合金等の不純物元素は、図11(A5052)、図12(A6061)に示すように、硬質アルマイト処理を施すことで、アルミニウム素地1中からアルマイト皮膜2にかけて金属間化合物3を析出させてしまう。すると、この金属間化合物3がアルマイト皮膜2中に欠陥を引き起こし、アルマイト皮膜2の緻密性が低下する。このため、半導体製造装置における半導体等製造時のプラズマ処理において、アルマイト皮膜が剥離しやすくなり、剥離したアルマイト皮膜は、製造途中の半導体ウェハ上に飛散し付着することになる。このアルマイト皮膜の付着による影響は、技術の進展に伴う配線の微細化により二次的被害として顕在化し、歩留まりや信頼性の低下として問題となっていた。 However, as shown in FIG. 10, a 5000 series alloy or the like contains a very large amount of impurity elements as compared with aluminum having a high purity of 4N or higher. As shown in FIG. 11 (A5052) and FIG. 12 (A6061), an impurity element such as a 5000 series alloy causes the intermetallic compound 3 to precipitate from the aluminum substrate 1 to the alumite film 2 by performing a hard anodizing treatment. End up. Then, this intermetallic compound 3 causes a defect in the alumite film 2, and the denseness of the alumite film 2 is lowered. For this reason, in the plasma processing at the time of manufacturing a semiconductor or the like in the semiconductor manufacturing apparatus, the anodized film is easily peeled off, and the peeled anodized film is scattered and attached on the semiconductor wafer being manufactured. The influence of this alumite film adhesion has become apparent as secondary damage due to the miniaturization of the wiring accompanying the advancement of technology, and has become a problem as a decrease in yield and reliability.
 このようにアルマイト皮膜の剥離防止対策とアルミニウム合金自体の強度向上対策として、5000系合金等のアルミニウム合金を使用せず、高純度のアルミニウムに有効な元素を添加する技術が、以下のように開示されている。 As described above, a technique for adding an effective element to high-purity aluminum without using an aluminum alloy such as a 5000 series alloy as a countermeasure for preventing the peeling of the anodized film and improving the strength of the aluminum alloy itself is disclosed as follows. Has been.
 例えば、特許文献1においては、高純度のアルミニウムに所定量のMgを添加することにより、アルマイト皮膜の剥離を防止する技術が開示されている。なお、Mgは、単独では、強度が低い高純度のアルミニウムの強度を向上させる。 For example, Patent Document 1 discloses a technique for preventing peeling of an alumite film by adding a predetermined amount of Mg to high-purity aluminum. Note that Mg alone improves the strength of high-purity aluminum with low strength.
 また、特許文献2においては、高純度のアルミニウムにMg+Siを添加することによってMgSiを析出させ、高純度のアルミニウムの強度を向上させる技術が開示されている。 Patent Document 2 discloses a technique for improving the strength of high purity aluminum by precipitating Mg 2 Si by adding Mg + Si to high purity aluminum.
 また、特許文献3においては、高純度のアルミニウムに所定量のTiを添加することによって結晶粒を微細化し、アルマイト皮膜の密着性を向上させる技術が開示されている。 Further, Patent Document 3 discloses a technique for refining crystal grains by adding a predetermined amount of Ti to high-purity aluminum and improving the adhesion of the alumite film.
 上述した特許文献に記載された、硬質アルマイト処理を施したアルミニウム合金は、高純度でありながら、プラズマ処理に耐えうる強度を有すると共に、プラズマ処理装置の環境下におけるプラズマ照射時のダメージ軽減や、チャンバー等からの不純物(金属間化合物を含む)の飛散防止の効果を得ることができる。 The aluminum alloy that has been subjected to the hard anodized treatment described in the above-mentioned patent document has a strength that can withstand the plasma treatment while being highly pure, and also reduces damage during plasma irradiation in the environment of the plasma treatment apparatus, The effect of preventing scattering of impurities (including intermetallic compounds) from the chamber or the like can be obtained.
特開平09-217197号公報JP 09-217197 A 特許3249400号公報Japanese Patent No. 3249400 特開2004-99972号公報JP 2004-99972 A
 上述した技術は、プラズマ処理装置のチャンバー等からの不純物による汚染の防止と、アルマイト性の向上、すなわち皮膜欠陥や皮膜中の異物の除去を主目的とするものであり、近年の配線の微細化要求に対して根本的な対策を講じた点で優れている。 The above-described technology is mainly intended to prevent contamination by impurities from the chamber of the plasma processing apparatus and to improve anodization, that is, to remove film defects and foreign substances in the film. It is excellent in that fundamental measures are taken against the request.
 しかしながら、アルマイト皮膜は、完全にダメージを受けないという訳ではなく、また、被処理物等から剥離して飛散する異物の発生については、依然として存在し、また、装置内で処理中に発生する異物が、アルマイト皮膜に付着するケースも存在する。これらの異物は、プラズマ処理の回数を増すに従い増加し、飛散したり落下して被処理物上に不純物として付着することになる。 However, the alumite film is not completely damaged, and there is still foreign matter that peels off from the object to be processed and scatters, and foreign matter that occurs during processing in the equipment. However, there are cases where it adheres to the alumite film. These foreign substances increase as the number of plasma treatments increases, and are scattered or dropped and adhere as impurities on the object to be treated.
 このような事情から、プラズマ処理装置は、チャンバー等の表面に付着した異物等を可能な限り完全に除去しつつ稼働を継続させることが望ましいため、被処理物の処理数等に応じて、チャンバー等の表面を定期的に清掃する必要がある。よって、チャンバー等の表面は、異物等を容易に判別して除去し易いように可能な限り均一な色彩であることが望まれる。 Because of this situation, it is desirable for the plasma processing apparatus to continue operation while removing foreign substances adhering to the surface of the chamber as completely as possible. It is necessary to clean the surface of the etc. regularly. Therefore, it is desirable that the surface of the chamber or the like has as uniform a color as possible so that foreign matters can be easily identified and removed.
 ここで、鋳造時における結晶粒の粗大化は、溶解したアルミニウムの凝固速度が遅い場合や、結晶の核となるものが少ない高純度のアルミニウムを用いた場合に発生することが知られているが、これに対し、Tiの添加は結晶の核としての役割を果たすため、鋳造時の結晶粒の微細化には非常に効果的である。 Here, it is known that the coarsening of crystal grains at the time of casting occurs when the solidification rate of dissolved aluminum is slow or when high-purity aluminum with few crystal nuclei is used. On the other hand, the addition of Ti plays a role as a crystal nucleus, and is therefore very effective for refining crystal grains during casting.
 しかしながら、一般的に、鋳造したアルミニウムは、鍛造し圧延加工した後に熱処理がなされて最終的なアルミニウム合金素材となるが、この熱処理の際には、再結晶による結晶粒の粗大化が生じる。従って、鋳造時におけるTi添加による結晶粒微細化の効果は、熱処理後の最終的なアルミニウム合金素材を形成した際には半減することになる。 However, generally, cast aluminum is subjected to heat treatment after forging and rolling to become a final aluminum alloy material. During this heat treatment, coarsening of crystal grains occurs due to recrystallization. Therefore, the effect of grain refinement by adding Ti during casting is halved when the final aluminum alloy material after heat treatment is formed.
 また、結晶粒は、その面方位によって色味が異なる性質を有する。従って、粗大化した結晶粒の領域は、図13に示すように、硬質アルマイト処理を施す前の4NAl+Mg+Ti系合金で形成された筒状部品において、外観で色目として目視できる。図示せぬ、硬質アルマイト処理を施した後の部品においても、視認できる程度のものとなる。このようにして生じる色ムラは、プラズマ処理装置のチャンバー等に付着した異物等の有無を判別し難くする。 Also, the crystal grains have the property that the color varies depending on the plane orientation. Therefore, as shown in FIG. 13, the coarsened crystal grain region can be visually observed as a color appearance in a cylindrical part formed of 4NAl + Mg + Ti alloy before the hard alumite treatment. Even in a part that is not shown and has been subjected to the hard alumite treatment, the part can be visually recognized. The color unevenness generated in this way makes it difficult to determine the presence or absence of foreign matter or the like attached to the chamber or the like of the plasma processing apparatus.
 従って、上述したような特許文献に記載の硬質アルマイト処理を施した高純度のアルミニウム合金は、合金素地部の強度の向上や、アルマイト皮膜の密着性の向上によって、プラズマ照射時のダメージ軽減や、チャンバーや装置部品の一部からの不純物の飛散防止に効果を得る一方で、チャンバー等の表面には結晶粒の粗大化に起因した色ムラが発生するため、清掃時の良否の判断が難しく、被処理物上への異物の付着といった問題を有していた。 Therefore, the high-purity aluminum alloy subjected to the hard alumite treatment described in the patent document as described above is improved in strength of the alloy base part, and improved in adhesion of the alumite film, thereby reducing damage during plasma irradiation, While obtaining the effect of preventing the scattering of impurities from a part of the chamber and equipment parts, color unevenness due to the coarsening of crystal grains occurs on the surface of the chamber, etc., so it is difficult to judge the quality during cleaning, There has been a problem of foreign matter adhering to the workpiece.
 本発明は、以上のような事情に鑑みてなされたものであり、充分な強度を備えつつ結晶粒の微細化を図ると共に、緻密で、しかも、金属間化合物による欠陥が少なく良質な硬質アルマイト皮膜を形成でき、プラズマ電極板及びプラズマチャンバー等の素材として用いて好適なアルミニウム合金を提供することにある。 The present invention has been made in view of the circumstances as described above, and is intended to make crystal grains fine while having sufficient strength, and is dense and has a high quality hard anodized film with few defects due to intermetallic compounds. An aluminum alloy suitable for use as a material for plasma electrode plates and plasma chambers is provided.
 以上のような目的を達成するために、本発明は以下のようなものを提供する。
 すなわち、請求項1に記載の発明に係わるアルミニウム合金は、wt%で、Mg:2.0~3.5%、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるものである。
 請求項2に記載の発明に係わるプラズマ処理装置は、真空チャンバー内でプラズマあるいはプラズマ化することによって得られる活性種を利用して被処理物に所定の処理を施すプラズマ処理装置であって、前記真空チャンバーまたはその内部に設けられた部品のうちの1種以上が、wt%で、Mg:2.0~3.5%、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるアルミニウム合金により構成されるものである。
 請求項3に記載の発明に係わるプラズマ処理装置は、真空チャンバー内でプラズマあるいはプラズマ化することによって得られる活性種を利用して被処理物に所定の処理を施すプラズマ処理装置であって、前記真空チャンバーまたはその内部に設けられた部品のうちの1種以上が、wt%で、Mg:2.0~3.5%、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるアルミニウム合金に陽極酸化処理を施したアルミニウム合金部材により構成されるものである。
  請求項4に記載の発明に係わる半導体製造装置は、請求項2または請求項3のプラズマ処理装置を備えるものである。
  請求項5に記載の発明に係わるアルミニウム合金は、wt%で、Si:0.35~2.5%、Mg≧1.73×Si、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるものである。
 請求項6に記載の発明に係わるプラズマ処理装置は、真空チャンバー内でプラズマあるいはプラズマ化することによって得られる活性種を利用して被処理物に所定の処理を施すプラズマ処理装置であって、前記真空チャンバーまたはその内部に設けられた部品のうちの1種以上が、wt%で、Si:0.35~2.5%、Mg≧1.73×Si、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるアルミニウム合金により構成されるものである。
 請求項7に記載の発明に係わるプラズマ処理装置は、真空チャンバー内でプラズマあるいはプラズマ化することによって得られる活性種を利用して被処理物に所定の処理を施すプラズマ処理装置であって、前記真空チャンバーまたはその内部に設けられた部品のうちの1種以上が、wt%で、Si:0.35~2.5%、Mg≧1.73×Si、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるアルミニウム合金に陽極酸化処理を施したアルミニウム合金部材により構成されるものである。
 請求項8に記載の発明に係わる半導体製造装置は、請求項6または請求項7のプラズマ処理装置を備えるものである。
In order to achieve the above object, the present invention provides the following.
That is, the aluminum alloy according to the invention of claim 1 is wt%, Mg: 2.0 to 3.5%, Cr: 0.001 to 0.01%, or Mn: 0.005 to 0.01. %, Ti: 0.001 to 0.04%, with the balance being inevitable impurities of 0.01% or less, and Al.
A plasma processing apparatus according to a second aspect of the present invention is a plasma processing apparatus for performing a predetermined process on an object to be processed using active species obtained by plasma or plasma conversion in a vacuum chamber, One or more of the vacuum chambers or components provided therein are wt%, Mg: 2.0 to 3.5%, Cr: 0.001 to 0.01%, or Mn: 0.005 to The aluminum alloy is composed of 0.01%, Ti: 0.001 to 0.04%, the balance being 0.01% or less of inevitable impurities, and Al.
A plasma processing apparatus according to a third aspect of the present invention is a plasma processing apparatus for performing a predetermined process on an object to be processed using active species obtained by plasma or plasmatization in a vacuum chamber, One or more of the vacuum chambers or components provided therein are wt%, Mg: 2.0 to 3.5%, Cr: 0.001 to 0.01%, or Mn: 0.005 to Containing 0.01%, Ti: 0.001 to 0.04%, the balance being 0.01% or less inevitable impurities, and an aluminum alloy member obtained by anodizing an aluminum alloy made of Al It is.
According to a fourth aspect of the present invention, there is provided a semiconductor manufacturing apparatus comprising the plasma processing apparatus according to the second or third aspect.
The aluminum alloy according to the fifth aspect of the present invention is, in wt%, Si: 0.35 to 2.5%, Mg ≧ 1.73 × Si, Cr: 0.001 to 0.01%, or Mn: 0 0.005 to 0.01%, Ti: 0.001 to 0.04%, the balance being 0.01% or less inevitable impurities, and Al.
A plasma processing apparatus according to a sixth aspect of the present invention is a plasma processing apparatus for performing a predetermined process on an object to be processed using active species obtained by plasma or plasma in a vacuum chamber, One or more of the vacuum chamber or components provided therein are wt%, Si: 0.35 to 2.5%, Mg ≧ 1.73 × Si, Cr: 0.001 to 0.01 % Or Mn: 0.005 to 0.01%, Ti: 0.001 to 0.04%, the balance is composed of an inevitable impurity of 0.01% or less, and an aluminum alloy made of Al. .
A plasma processing apparatus according to a seventh aspect of the present invention is a plasma processing apparatus for performing a predetermined process on an object to be processed using active species obtained by plasma or plasma in a vacuum chamber, One or more of the vacuum chamber or components provided therein are wt%, Si: 0.35 to 2.5%, Mg ≧ 1.73 × Si, Cr: 0.001 to 0.01 % Or Mn: 0.005 to 0.01%, Ti: 0.001 to 0.04%, and the remainder was 0.01% or less of inevitable impurities, and an aluminum alloy made of Al was anodized It is composed of an aluminum alloy member.
According to an eighth aspect of the present invention, there is provided a semiconductor manufacturing apparatus comprising the plasma processing apparatus according to the sixth or seventh aspect.
 本発明によるアルミニウム合金は、圧延加工後においても結晶粒が非常に微細であることから、面方位による色目の違いが生じ難いため、たとえ熱処理後、硬質アルマイト処理後であっても、アルミニウム合金の表面を色ムラのない均一な状態とすることができる。 Since the aluminum alloy according to the present invention has very fine crystal grains even after the rolling process, it is difficult for the color difference due to the plane orientation to occur. Therefore, even after the heat treatment and after the hard alumite treatment, The surface can be made uniform with no color unevenness.
本発明に係るアルミニウム合金の組成を示す図である。It is a figure which shows the composition of the aluminum alloy which concerns on this invention. 本発明に係る第一アルミニウム合金(4NAl+Mg+Ti+Cr系)の圧延加工後の断面顕微鏡写真である。It is a cross-sectional microscope picture after the rolling process of the 1st aluminum alloy (4NAl + Mg + Ti + Cr type | system | group) which concerns on this invention. 第一アルミニウム合金(4NAl+Mg+Ti+Cr系)でCrを添加していないアルミニウム合金(4NAl+Mg+Ti系)の圧延加工後の断面顕微鏡写真である。It is a cross-sectional microscope picture after the rolling process of the aluminum alloy (4 NAl + Mg + Ti type | system | group) which is not adding Cr with the 1st aluminum alloy (4 NAl + Mg + Ti + Cr type | system | group). 第一アルミニウム合金(4NAl+Mg+Ti+Cr系)の焼鈍後の断面顕微鏡写真である。It is a cross-sectional photomicrograph after annealing of the first aluminum alloy (4NAl + Mg + Ti + Cr system). 第一アルミニウム合金(4NAl+Mg+Ti+Cr系)の硬質アルマイト処理後の断面顕微鏡写真である。It is a cross-sectional microscope picture after the hard alumite process of the 1st aluminum alloy (4NAl + Mg + Ti + Cr system). 第二アルミニウム合金(4NAl+Mg+Si+Ti+Cr系)の溶体化処理・時効処理後の断面マクロ写真である。It is a cross-sectional macro photograph after the solution treatment and aging treatment of the second aluminum alloy (4NAl + Mg + Si + Ti + Cr system). 第二アルミニウム合金(4NAl+Mg+Si+Ti+Cr系)でCrを添加していないアルミニウム合金(4NAl+Mg+Si+Ti系)の溶体化処理・時効処理後の断面マクロ写真である。It is a cross-sectional macro photograph after the solution treatment and aging treatment of the aluminum alloy (4 NAl + Mg + Si + Ti system) which is not adding Cr with the second aluminum alloy (4 NAl + Mg + Si + Ti + Cr system). 第二アルミニウム合金(4NAl+Mg+Si+Ti+Cr系)の溶体化処理・時効処理後の断面顕微鏡写真である。It is a cross-sectional microscope picture after the solution treatment and aging treatment of the second aluminum alloy (4NAl + Mg + Si + Ti + Cr system). 第二アルミニウム合金(4NAl+Mg+Si+Ti+Cr系)でCrを添加していないアルミニウム合金(4NAl+Mg+Si+Ti系)の溶体化処理・時効処理後の断面顕微鏡写真である。It is a cross-sectional photomicrograph after the solution treatment and aging treatment of the aluminum alloy (4NAl + Mg + Si + Ti system) which is not adding Cr by the second aluminum alloy (4NAl + Mg + Si + Ti + Cr system). 従来のアルミニウム合金中に含まれる不純物元素量を比較した図である。It is the figure which compared the amount of impurity elements contained in the conventional aluminum alloy. 硬質アルマイト処理を施したA5052合金の断面顕微鏡写真である。It is a cross-sectional microscope picture of A5052 alloy which performed the hard alumite process. 硬質アルマイト処理を施したA6061合金の断面顕微鏡写真である。It is a cross-sectional microscope picture of A6061 alloy which performed hard alumite processing. 比較材(4NAl+Mg+Ti系)の硬質アルマイト処理前の全体外観写真である。It is the whole external appearance photograph before the hard alumite process of a comparative material (4 NAl + Mg + Ti type | system | group).
 以下、本発明の実施例について図面を参照しながら説明する。なお、実施例に係るアルミニウム合金は、特別に記載しない限り焼鈍しを行っていないものを対象として説明しているが、焼鈍しを行ったものであっても本発明の要旨の範囲内である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, although the aluminum alloy which concerns on an Example has demonstrated as an object what was not annealed unless otherwise indicated, even if it annealed, it is in the range of the summary of this invention. .
 また、説明中において使用する図(写真)は、4N(99.99wt%)以上の高純度のアルミニウムを用いることによって不可避不純物を0.01%以下に抑制したアルミニウム合金を対象としている。 Further, the figure (photograph) used in the description is intended for an aluminum alloy in which inevitable impurities are suppressed to 0.01% or less by using high-purity aluminum of 4N (99.99 wt%) or more.
[実施形態]
 図1は、本発明の実施例に係るアルミニウム合金の組成を示すものである。すなわち、このアルミニウム合金は、例えば、通常の溶解法により純度が99.99wt%(4N:フォーナイン)以上とされたAlに、純度が99.95wt%以上のMgを、若しくは純度が99.95wt%以上のMgと99.999wt%以上のSiを添加した後、TiをAl-Ti、若しくはAl-Ti-Bの母合金の形で添加し、更にその後、Cr、若しくはMnを同様にAl-Cr、若しくはAl-Mnの母合金の形で添加することによって、組成が調整されたアルミニウム溶湯を、半連続鋳造法によりビレット若しくはスラブとして鋳造を行うことができる。
[Embodiment]
FIG. 1 shows the composition of an aluminum alloy according to an embodiment of the present invention. That is, this aluminum alloy has, for example, Al having a purity of 99.99 wt% (4N: Four Nine) or higher by a usual melting method and Mg having a purity of 99.95 wt% or higher, or a purity of 99.95 wt%. % Mg and 99.999 wt% Si are added, Ti is added in the form of Al—Ti or Al—Ti—B master alloy, and then Cr or Mn is similarly added to Al— By adding in the form of Cr or Al—Mn master alloy, the molten aluminum whose composition is adjusted can be cast as a billet or slab by a semi-continuous casting method.
 鋳造によるアルミニウム合金をプラズマ電極やプラズマチャンバー等に加工するアルミニウム合金素材とする場合には、鋳造により得られた上記スラブを、鍛造によって外力を加えて目的の形状に近い状態に塑性加工した後、圧延加工(JIS規格:H112処理)によって所要形状に塑性加工する。 When the aluminum alloy by casting is made into an aluminum alloy material that is processed into a plasma electrode, a plasma chamber, etc., the slab obtained by casting is plastically processed to a state close to the target shape by applying external force by forging, Plastic processing into a required shape by rolling (JIS standard: H112 treatment).
 また、圧延加工後、500~580℃程度の温度で1~10時間程度の溶体化処理を行い、更に、160~220℃程度の温度で時効処理を施すことにより、アルミニウム合金素材に十分な強度を与えることができる。 In addition, after the rolling process, a solution treatment is performed at a temperature of about 500 to 580 ° C. for about 1 to 10 hours, and further an aging treatment is performed at a temperature of about 160 to 220 ° C. Can be given.
 また、上述した本発明に係るアルミニウム合金には、wt%で、Mg:2.0~3.5%、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなる第一アルミニウム合金と、wt%で、Si:0.35~2.5%、Mg≧1.73×Si、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%、0.01%以下の不可避不純物を含み、残部がAlからなる第二アルミニウム合金とがある。 Further, the above-described aluminum alloy according to the present invention includes, in wt%, Mg: 2.0 to 3.5%, Cr: 0.001 to 0.01% or Mn: 0.005 to 0.01%, Ti: 0.001 to 0.04% inclusive, the balance being 0.01% or less of inevitable impurities and a first aluminum alloy made of Al, wt%, Si: 0.35 to 2.5%, Mg ≧ 1.73 × Si, Cr: 0.001 to 0.01% or Mn: 0.005 to 0.01%, Ti: 0.001 to 0.04%, including 0.01% or less inevitable impurities There is a second aluminum alloy whose balance is made of Al.
 ここで、第一・第二アルミニウム合金の上記組成における各成分元素の添加目的と調整範囲について説明する。 Here, the purpose of addition of each component element in the above composition of the first and second aluminum alloys and the adjustment range will be described.
 まず、第一アルミニウム合金にMg、第二アルミニウム合金にMg+Siを添加するのは、素材を固溶強化すると共に素材の耐食性の向上を図るためである。すなわち、MgとAlの原子半径の違いに起因してMgが固溶することにより素材の強度が向上すること、また、アルマイト皮膜の形成に影響を与えない範囲でMgSiを形成することにより素材の強度を向上するためである。 First, Mg is added to the first aluminum alloy and Mg + Si is added to the second aluminum alloy in order to strengthen the material by solid solution strengthening and to improve the corrosion resistance of the material. That is, the strength of the material is improved by the solid solution of Mg due to the difference in atomic radius between Mg and Al, and the Mg 2 Si is formed in a range that does not affect the formation of the alumite film. This is to improve the strength of the material.
 更に、Mgを添加した合金は、CF系のプラズマガスを使用したCVD(Chemical Vapor Deposition)装置において、MgFを形成し、アルマイト皮膜の破壊を抑制することにも繋がる。 Further, the Mg-added alloy forms MgF 2 in a CVD (Chemical Vapor Deposition) apparatus using a CF-based plasma gas, which leads to suppression of destruction of the alumite film.
 このように、Mgはアルミニウムに固溶させることによって素材の強度を向上させるべく添加するのであるが、第一アルミニウム合金において添加量をwt%でMg:2.0~3.5wt%の範囲とするのは、添加量が2.0wt%未満の場合には素材の強度向上が充分に図れないためであり、添加量が3.5wt%を超えた場合には、素材及びアルマイト皮膜の耐食性が劣ってしまうためである。 Thus, Mg is added to improve the strength of the material by dissolving in aluminum, but the amount of addition in the first aluminum alloy is wt% and Mg is in the range of 2.0 to 3.5 wt%. The reason is that when the addition amount is less than 2.0 wt%, the strength of the material cannot be sufficiently improved, and when the addition amount exceeds 3.5 wt%, the corrosion resistance of the material and the anodized film is low. This is because it is inferior.
 また、Si+Mgを添加した第二アルミニウム合金においては、Mgの量をMg≧1.73×Siとするのは、Mgの量がSiの1.73倍より少ない場合には、MgSiを形成した余剰なSiが初晶Siとして析出し、素材中に粗い析出物を形成し、その後のアルマイト皮膜中にも残存し、皮膜欠陥の原因に繋がるためである。 In addition, in the second aluminum alloy to which Si + Mg is added, the amount of Mg is set to Mg ≧ 1.73 × Si because Mg 2 Si is formed when the amount of Mg is less than 1.73 times that of Si. This is because the excess Si is precipitated as primary Si, forms coarse precipitates in the material, and remains in the subsequent alumite film, leading to film defects.
 また、第一・第二アルミニウム合金においてTiを添加するのは、素材鋳造後の結晶粒の微細化を図り、硬質アルマイト処理時のアルマイト被膜の密着性を向上させるためである。溶解したアルミニムを鋳造する際、上述したMgやSiの添加のみでは、鋳造材の結晶粒が粗大化してしまう。この鋳造材に、半導体部材を製造するための材料に加工する鍛造や圧延加工を適用しても、その際の再結晶によって結晶粒が更に粗大化し、硬質アルマイト処理時のアルマイト被膜の密着性が低下する。Ti添加は、このような密着性低下を最小限に防止するためである。 Moreover, the reason why Ti is added to the first and second aluminum alloys is to refine the crystal grains after casting the material and improve the adhesion of the alumite coating during the hard alumite treatment. When casting the melted aluminum, the crystal grains of the cast material are coarsened only by the addition of Mg and Si described above. Even if forging or rolling process is applied to the cast material, the crystal grains are further coarsened by recrystallization at that time, and the adhesion of the anodized film during the hard anodized treatment is improved. descend. Ti addition is to prevent such a decrease in adhesion to a minimum.
 このように、Tiは素材の結晶粒の微細化を図るために添加するのであるが、添加量をwt%でTi:0.001~0.04wt%の範囲とするのは、添加量が0.001wt%未満の場合には素材の微細化が充分に図れないためであり、添加量が0.04wt%を超える場合には、Ti自体が陽極酸化する元素であるために、Al合金中で固溶限界を超えたTiがアルミニウムと一緒にアルマイト皮膜を形成し、皮膜のムラと皮膜厚さのバラツキが生じるためである Thus, Ti is added for the purpose of refining the crystal grains of the material. However, if the addition amount is wt% and Ti is in the range of 0.001 to 0.04 wt%, the addition amount is 0. When the amount is less than 0.001 wt%, the material cannot be sufficiently refined, and when the amount added exceeds 0.04 wt%, Ti itself is an element that anodizes, so in the Al alloy. This is because Ti exceeding the solid solution limit forms an alumite film together with aluminum, resulting in uneven film thickness and uneven film thickness.
 また、第一・第二アルミニウム合金にCrやMnを添加するのは、上述したように、鋳造した素材は、一般的に、鍛造し圧延加工した後に熱処理されて最終的なアルミニウム材料として使用されるが、再結晶温度を上げて熱処理の際に再結晶しにくくすることにより、再結晶による結晶粒の粗大化に起因する外観上やアルマイト皮膜形成上の問題の発生を防止するためである。 In addition, as described above, Cr and Mn are added to the first and second aluminum alloys. As described above, the cast material is generally heat-treated after being forged and rolled and used as a final aluminum material. However, by increasing the recrystallization temperature to make it difficult to recrystallize during the heat treatment, it is possible to prevent occurrence of problems in appearance and alumite film formation due to coarsening of crystal grains due to recrystallization.
 ここで、外観上の問題とは、結晶粒は、その面方位によって色味が異なる性質を有するため、粗大化した結晶粒の領域は、外観で色目として目視できると共に、硬質アルマイト処理を施した後においても、視認できる程度のものとなり、このようにして生じる色ムラが、プラズマ処理装置のチャンバー等に付着した異物等の有無を判別し難くすることである。 Here, the problem of appearance is that the crystal grains have the property that the color varies depending on the plane orientation, so that the area of the coarsened crystal grains can be visually observed as the color and the hard anodized treatment is applied. The color unevenness generated in this way is difficult to determine the presence or absence of foreign matter attached to the chamber or the like of the plasma processing apparatus.
 アルマイト皮膜形成上の問題とは、アルマイト被膜の成長時に、面方位によって成長に差が生じること、すなわち、アルミニウム素材表面の削れ具合(深度)に差が生じ、アルマイト皮膜の色味や面粗度に影響を及ぼすことである。 The problem with alumite film formation is that there is a difference in growth depending on the plane orientation during the growth of the alumite film, that is, there is a difference in the shaving condition (depth) of the aluminum material surface, and the color and surface roughness of the alumite film Is to affect.
 添加量をCr:0.001~0.01wt%、若しくはMn:0.005~0.01wt%の範囲とするのは、半導体製造装置の材料として金属汚染の観点から、これらの添加元素は極力添加を避けるべき元素であり、最小限に抑制した結果である。すなわち、高純度をベースとしたMg合金の場合、非常に微量なこれらの元素を添加することが再結晶時の結晶粒の微細化に関して有効であり、Cr:0.001wt%、若しくはMn:0.005wt%未満では結晶粒の微細化に効果が見られず、Cr:0.01wt%、若しくはMn:0.01wt%を超えると、半導体製造の上で金属汚染の対象として影響を受けてしまうことが確認されたからである。 The additive amount is in the range of Cr: 0.001 to 0.01 wt% or Mn: 0.005 to 0.01 wt%, as these materials are used as much as possible from the viewpoint of metal contamination as a material for semiconductor manufacturing equipment. It is an element that should be avoided and is the result of minimization. That is, in the case of a Mg alloy based on high purity, adding a very small amount of these elements is effective in terms of refining crystal grains during recrystallization, and Cr: 0.001 wt% or Mn: 0 If it is less than 0.005 wt%, no effect is seen in the refinement of crystal grains, and if it exceeds Cr: 0.01 wt% or Mn: 0.01 wt%, it is affected as a metal contamination target in semiconductor manufacturing. This is because it was confirmed.
 また、第一・第二アルミニウム合金において不可避不純物を0.01%以下に制限するのは、前述したCrやMnによる金属汚染を防ぎつつ、結晶粒の微細化を促進するためである。 The reason why the inevitable impurities are limited to 0.01% or less in the first and second aluminum alloys is to promote the refinement of crystal grains while preventing the metal contamination by Cr and Mn described above.
  従来より、前述のCrやMnは、不純物元素を多く含有する、高純度ではない一般的なアルミニウム合金に対しては、Mn:0.5~1.0wt%、Cr:0.05~0.35wt%程度と比較的多く添加しなければ、再結晶を抑制できない。これは、不純物元素がCrやMnと金属間化合物を形成することで、CrやMn単独としての再結晶抑制効果が得にくいからである。そこで、第一・第二アルミニウム合金のように、高純度のアルミニウムに微量のCrやMnを添加し不純物元素を低減することにより、CrやMnによる再結晶抑制効果を向上させ、金属汚染による影響を与えない範囲で再結晶粒の粗大化を防止することができる。 Conventionally, Cr and Mn described above contain Mn: 0.5 to 1.0 wt% and Cr: 0.05 to 0.00% for a general aluminum alloy that contains a large amount of impurity elements and is not highly pure. Recrystallization cannot be suppressed unless a relatively large amount of about 35 wt% is added. This is because the impurity element forms an intermetallic compound with Cr or Mn, so that it is difficult to obtain an effect of suppressing recrystallization as Cr or Mn alone. Therefore, by adding a small amount of Cr and Mn to high-purity aluminum like the first and second aluminum alloys to reduce impurity elements, the recrystallization suppression effect by Cr and Mn is improved and the influence of metal contamination The coarsening of the recrystallized grains can be prevented within a range not giving the above.
  このように、不可避不純物の低減は、CrやMnによる結晶粒の微細化に極めて有効である。そして、不可避不純物をwt%で0.01%以下とするのは、0.01%を超えた場合には、不可避不純物内の不純物元素がCrやMnと化合して金属間化合物を形成し、素材の微細化が充分に図れないためである。 Thus, the reduction of inevitable impurities is extremely effective for the refinement of crystal grains by Cr or Mn. And, inevitable impurities to be 0.01% or less in wt%, when exceeding 0.01%, impurity elements in the inevitable impurities combine with Cr and Mn to form an intermetallic compound, This is because the material cannot be sufficiently miniaturized.
 次に、本発明の実施例に係るアルミニウム合金の結晶粒の大きさ、アルマイト皮膜中の状態について、図2~図5を用いて、Cr(もしくはMn)を添加していないアルミニウム合金や、JIS規格の5000系合金等のアルミニウム合金と比較しながら説明する。 Next, with respect to the crystal grain size of the aluminum alloy according to the embodiment of the present invention and the state in the alumite film, an aluminum alloy to which Cr (or Mn) is not added, JIS The description will be made in comparison with a standard aluminum alloy such as a 5000 series alloy.
 図2は、圧延加工によって得られた第一アルミニウム合金(4NAl+Mg+Ti+Cr系)のマクロ組織を示す断面顕微鏡写真である。図3は、この第一アルミニウム合金でCrを添加していないアルミニウム合金(4NAl+Mg+Ti系)の圧延加工後のマクロ組織を示す断面顕微鏡写真である。 FIG. 2 is a cross-sectional photomicrograph showing the macrostructure of the first aluminum alloy (4NAl + Mg + Ti + Cr system) obtained by rolling. FIG. 3 is a cross-sectional photomicrograph showing the macrostructure after rolling of an aluminum alloy (4NAl + Mg + Ti system) to which Cr is not added with the first aluminum alloy.
 このように、Crを添加した本実施例に係る第一アルミニウム合金は、Crを添加していないアルミニウム合金に比して、結晶粒の大きさを略22分の1程度に微細化することができる。更に、圧延方向に伸延した組織ではなく、等軸晶の方向性の無い結晶を形成することができる。 As described above, the first aluminum alloy according to the present embodiment to which Cr is added can reduce the size of crystal grains to about 1/22 as compared with the aluminum alloy to which Cr is not added. it can. Furthermore, it is possible to form a crystal having no direction of equiaxed crystal rather than a structure elongated in the rolling direction.
 なお、図4は、圧延加工後に焼鈍を行った第一アルミニウム合金(4NAl+Mg+Ti+Cr系)のマクロ組織を示す断面顕微鏡写真であるが、この場合も、Crを添加していないアルミニウム合金に比して、結晶粒の大きさを略11分の1程度に微細化することができると共に、圧延方向に伸延した組織ではなく、等軸晶の方向性の無い結晶を形成することができる。 FIG. 4 is a cross-sectional photomicrograph showing the macrostructure of the first aluminum alloy (4NAl + Mg + Ti + Cr system) annealed after the rolling process, but also in this case, compared to the aluminum alloy not added with Cr, The size of the crystal grains can be reduced to about 1/11, and a crystal having no orientation of equiaxed crystals can be formed instead of a structure elongated in the rolling direction.
 このように、微細な結晶粒を形成することができることや、等軸晶の方向性の無い結晶を形成できることは、他の第一アルミニウム合金(4NAl+Mg+Ti+Mn系)や、これらにSiが添加された本実施形態に係る第二アルミニウム合金(4NAl+Mg+Si+Ti+Cr系、4NAl+Mg+Si+Ti+Mn系)の全てについても同様である。 As described above, the ability to form fine crystal grains and the formation of crystals with no equiaxed crystal orientation are the other first aluminum alloys (4NAl + Mg + Ti + Mn system) and the book in which Si is added to these. The same applies to all of the second aluminum alloys (4NAl + Mg + Si + Ti + Cr system, 4NAl + Mg + Si + Ti + Mn system) according to the embodiment.
 また、図6は、鍛造後に溶体化処理・時効処理を行った第二アルミニウム合金(4NAl+Mg+Si+Ti+Cr系)の断面マクロ写真であり、図8は、その断面顕微鏡写真である。図7は、この第二アルミニウム合金(4NAl+Mg+Si+Ti+Cr系)でCrを添加していないアルミニウム合金(4NAl+Mg+Si+Ti系)の断面マクロ写真であり、図9は、その断面顕微鏡写真である。 FIG. 6 is a cross-sectional macrophotograph of a second aluminum alloy (4NAl + Mg + Si + Ti + Cr system) subjected to solution treatment / aging treatment after forging, and FIG. 8 is a cross-sectional micrograph thereof. FIG. 7 is a cross-sectional macrophotograph of this second aluminum alloy (4NAl + Mg + Si + Ti + Cr system) with no added Cr (4NAl + Mg + Si + Ti system), and FIG. 9 is a cross-sectional micrograph thereof.
 このように、Crを添加した本実施例に係る第二アルミニウム合金は、Crを添加していないアルミニウム合金に比して、結晶粒の大きさを略5分の1程度に微細化できると共に、結晶粒の均一化も図ることができる。このことは、Mnを添加した第二アルミニウム合金(4NAl+Mg+Si+Ti+Mn系)についても同様である。 As described above, the second aluminum alloy according to the present embodiment to which Cr is added can reduce the size of crystal grains to about one fifth as compared with the aluminum alloy to which Cr is not added. Uniform crystal grains can also be achieved. The same applies to the second aluminum alloy (4NAl + Mg + Si + Ti + Mn system) to which Mn is added.
 また、図5は、圧延加工によって得られた第一アルミニウム合金(4NAl+Mg+Ti+Cr系)に硬質アルマイト処理を施した試料の断面を示す写真であり、Crの添加量を0.001~0.01wt%の範囲としたものである。アルマイト皮膜2中には空隙や不純物等は見られず、アルミニウム素地1の表面やアルマイト皮膜2の表面も均一で平滑に形成されていることが確認できる。これは、他の第一アルミニウム合金(4NAl+Mg+Ti+Mn系)や、これらにSiが添加された本実施形態に係る第二アルミニウム合金(4NAl+Mg+Si+Ti+Cr系、4NAl+Mg+Si+Ti+Mn系)の全てについても同様である。 FIG. 5 is a photograph showing a cross section of a sample obtained by subjecting the first aluminum alloy (4NAl + Mg + Ti + Cr system) obtained by rolling to a hard alumite treatment, and the amount of Cr added is 0.001 to 0.01 wt%. It is a range. There are no voids or impurities in the anodized film 2, and it can be confirmed that the surface of the aluminum substrate 1 and the surface of the anodized film 2 are also formed uniformly and smoothly. The same applies to all of the other first aluminum alloys (4NAl + Mg + Ti + Mn system) and the second aluminum alloys according to the present embodiment (4NAl + Mg + Si + Ti + Cr system, 4NAl + Mg + Si + Ti + Mn system) to which Si is added.
 以上に比して、不純物元素を多く含有する図10に示すJIS規格のA5052合金、A6061合金は、図11(A5052)、図12(A6061)に示すように、硬質アルマイト処理を施すことで、アルミニウム素地1からアルマイト皮膜2にかけて不純物(金属間化合物)3が析出されており、本実施例に係るアルミニウム合金とは大きく異なる。 Compared to the above, JIS standard A5052 alloy and A6061 alloy shown in FIG. 10 containing a large amount of impurity elements are subjected to hard anodizing treatment as shown in FIG. 11 (A5052) and FIG. 12 (A6061). Impurities (intermetallic compounds) 3 are deposited from the aluminum substrate 1 to the alumite film 2, which is greatly different from the aluminum alloy according to this embodiment.
 以上により、本発明の実施例に係るアルミニウム合金の結晶粒は、圧延加工後においても、鍛造後に溶体化処理・時効処理を行っても非常に微細であるため、面方位の影響による色味の違いを生じない。更に、硬質アルマイト処理を施しても、アルマイト皮膜の成長時に、面方位や不純物元素による影響を受けないことから、アルミニウム素地の表面の削れ具合に成長の差が生じないため、アルマイト皮膜表面の面粗度は滑らかとなり、硬質アルマイト処理後の表面においても色ムラを生じることはない。 As described above, the crystal grains of the aluminum alloy according to the embodiment of the present invention are very fine both after rolling and after solution treatment and aging treatment after forging. Make no difference. Furthermore, even if a hard anodizing treatment is applied, the growth of the anodized aluminum film is not affected by the plane orientation or impurity elements, so there is no difference in growth of the surface of the aluminum substrate. The roughness becomes smooth, and color unevenness does not occur even on the surface after the hard alumite treatment.
 従って、本技術の実施例に係る第一・第二アルミニウム合金は、充分な強度を備えつつ結晶粒の微細化を図ると共に、緻密で、しかも、不純物元素が少ない良質な硬質アルマイト皮膜を形成できるアルミニウム合金を提供することができる。 Therefore, the first and second aluminum alloys according to the embodiments of the present technology can form fine high-quality hard anodized coatings that are dense and have a small amount of impurity elements, while providing sufficient strength and miniaturization of crystal grains. An aluminum alloy can be provided.
 また、例えば、半導体製造装置を構成するプラズマ処理装置のチャンバー等に用いても、該合金の表面に付着した異物等を色ムラの影響を受けることなく容易に判別可能となり、清掃時の良否の判断を確実なものとすることができる。よって、異物等の残渣による被処理物上への付着が原因となる不良品の発生を改善できると共に、清掃作業の時間短縮を図ることができる。 In addition, for example, even when used in a chamber of a plasma processing apparatus constituting a semiconductor manufacturing apparatus, foreign matter adhering to the surface of the alloy can be easily discriminated without being affected by color unevenness, and whether or not it is good or bad at the time of cleaning. Judgment can be made sure. Therefore, it is possible to improve the generation of defective products caused by adhesion of foreign matters and the like on the object to be processed, and to shorten the cleaning work time.
 1  アルミニウム素地
 2  アルマイト皮膜
 3  不純物元素(金属間化合物)
1 Aluminum substrate 2 Anodized film 3 Impurity element (intermetallic compound)

Claims (8)

  1.  wt%で、Mg:2.0~3.5%、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなることを特徴とするアルミニウム合金。 wt%, Mg: 2.0-3.5%, Cr: 0.001-0.01% or Mn: 0.005-0.01%, Ti: 0.001-0.04%, An aluminum alloy characterized in that the balance consists of inevitable impurities of 0.01% or less and Al.
  2.  真空チャンバー内でプラズマあるいはプラズマ化することによって得られる活性種を利用して被処理物に所定の処理を施すプラズマ処理装置であって、前記真空チャンバーまたはその内部に設けられた部品のうちの1種以上が、wt%で、Mg:2.0~3.5%、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるアルミニウム合金により構成されることを特徴とするプラズマ処理装置。 A plasma processing apparatus for performing predetermined processing on an object to be processed by using active species obtained by plasma or plasmatization in a vacuum chamber, wherein one of the vacuum chamber and components provided therein More than seeds are wt%, Mg: 2.0-3.5%, Cr: 0.001-0.01% or Mn: 0.005-0.01%, Ti: 0.001-0.04 %, And the balance is made of an aluminum alloy composed of inevitable impurities of 0.01% or less and Al, and a plasma processing apparatus.
  3.  真空チャンバー内でプラズマあるいはプラズマ化することによって得られる活性種を利用して被処理物に所定の処理を施すプラズマ処理装置であって、前記真空チャンバーまたはその内部に設けられた部品のうちの1種以上が、wt%で、Mg:2.0~3.5%、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるアルミニウム合金に陽極酸化処理を施したアルミニウム合金部材により構成されることを特徴とするプラズマ処理装置。 A plasma processing apparatus for performing predetermined processing on an object to be processed by using active species obtained by plasma or plasmatization in a vacuum chamber, wherein one of the vacuum chamber and components provided therein More than seeds are wt%, Mg: 2.0-3.5%, Cr: 0.001-0.01% or Mn: 0.005-0.01%, Ti: 0.001-0.04 %, With the balance being 0.01% or less of inevitable impurities, and an aluminum alloy member obtained by anodizing an aluminum alloy made of Al.
  4.   請求項2または請求項3のプラズマ処理装置を備えることを特徴とする半導体製造装置。 A semiconductor manufacturing apparatus comprising the plasma processing apparatus according to claim 2.
  5.   wt%で、Si:0.35~2.5%、Mg≧1.73×Si、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなることを特徴とするアルミニウム合金。 wt%, Si: 0.35-2.5%, Mg ≧ 1.73 × Si, Cr: 0.001-0.01% or Mn: 0.005-0.01%, Ti: 0.001 An aluminum alloy comprising: 0.04%, the balance being inevitable impurities of 0.01% or less, and Al.
  6.  真空チャンバー内でプラズマあるいはプラズマ化することによって得られる活性種を利用して被処理物に所定の処理を施すプラズマ処理装置であって、前記真空チャンバーまたはその内部に設けられた部品のうちの1種以上が、wt%で、Si:0.35~2.5%、Mg≧1.73×Si、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるアルミニウム合金により構成されることを特徴とするプラズマ処理装置。 A plasma processing apparatus for performing predetermined processing on an object to be processed by using active species obtained by plasma or plasmatization in a vacuum chamber, wherein one of the vacuum chamber and components provided therein More than seeds are wt%, Si: 0.35 to 2.5%, Mg ≧ 1.73 × Si, Cr: 0.001 to 0.01% or Mn: 0.005 to 0.01%, Ti A plasma processing apparatus comprising an aluminum alloy containing 0.001 to 0.04%, the balance being 0.01% or less of inevitable impurities, and Al.
  7.  真空チャンバー内でプラズマあるいはプラズマ化することによって得られる活性種を利用して被処理物に所定の処理を施すプラズマ処理装置であって、前記真空チャンバーまたはその内部に設けられた部品のうちの1種以上が、wt%で、Si:0.35~2.5%、Mg≧1.73×Si、Cr:0.001~0.01%もしくはMn:0.005~0.01%、Ti:0.001~0.04%を含み、残部が0.01%以下の不可避不純物、及びAlからなるアルミニウム合金に陽極酸化処理を施したアルミニウム合金部材により構成されることを特徴とするプラズマ処理装置。 A plasma processing apparatus for performing predetermined processing on an object to be processed by using active species obtained by plasma or plasmatization in a vacuum chamber, wherein one of the vacuum chamber and components provided therein More than seeds are wt%, Si: 0.35 to 2.5%, Mg ≧ 1.73 × Si, Cr: 0.001 to 0.01% or Mn: 0.005 to 0.01%, Ti A plasma treatment characterized by comprising an aluminum alloy member containing 0.001 to 0.04%, the remainder being 0.01% or less of inevitable impurities, and an anodized aluminum alloy composed of Al apparatus.
  8.   請求項6または請求項7のプラズマ処理装置を備えることを特徴とする半導体製造装置。 A semiconductor manufacturing apparatus comprising the plasma processing apparatus according to claim 6.
PCT/JP2014/078043 2013-10-23 2014-10-22 Aluminum alloy, and semiconductor production device and plasma treatment device each manufactured using same WO2015060331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2013/078705 2013-10-23
PCT/JP2013/078705 WO2015059785A1 (en) 2013-10-23 2013-10-23 Aluminum alloy, and semiconductor production device and plasma treatment device each using same

Publications (1)

Publication Number Publication Date
WO2015060331A1 true WO2015060331A1 (en) 2015-04-30

Family

ID=52992423

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/078705 WO2015059785A1 (en) 2013-10-23 2013-10-23 Aluminum alloy, and semiconductor production device and plasma treatment device each using same
PCT/JP2014/078043 WO2015060331A1 (en) 2013-10-23 2014-10-22 Aluminum alloy, and semiconductor production device and plasma treatment device each manufactured using same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078705 WO2015059785A1 (en) 2013-10-23 2013-10-23 Aluminum alloy, and semiconductor production device and plasma treatment device each using same

Country Status (1)

Country Link
WO (2) WO2015059785A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008704A1 (en) * 2018-07-04 2020-01-09 昭和電工株式会社 Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
WO2020213307A1 (en) * 2019-04-16 2020-10-22 昭和電工株式会社 Aluminum alloy member for forming fluoride coating film thereon, and aluminum alloy member having fluoride coating film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269599A (en) * 1995-03-31 1996-10-15 Kobe Steel Ltd Aluminum alloy supporting body for printing plate and its production
JPH1088271A (en) * 1996-09-17 1998-04-07 Kyushu Mitsui Alum Kogyo Kk Aluminum alloy and plasma treatment apparatus using the same
JP2002256488A (en) * 2001-02-28 2002-09-11 Showa Denko Kk Aluminium alloy for anodizing and aluminium alloy material superior in gas corrosion resistance
JP2003119539A (en) * 2001-10-12 2003-04-23 Showa Denko Kk Aluminum alloy to be film-formed, aluminum alloy material superior in corrosion resistance and manufacturing method therefor
JP2003119540A (en) * 2001-10-12 2003-04-23 Showa Denko Kk Aluminum alloy to be film-formed, aluminum alloy material superior in corrosion resistance and manufacturing method therefor
JP2003171727A (en) * 2001-12-03 2003-06-20 Showa Denko Kk Aluminum alloy for film deposition treatment, aluminum alloy material having excellent corrosion resistance, and production method therefor
JP2004099972A (en) * 2002-09-10 2004-04-02 Kyushu Mitsui Alum Kogyo Kk Aluminum alloy for anodizing and plasma treatment apparatus using the alloy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08269599A (en) * 1995-03-31 1996-10-15 Kobe Steel Ltd Aluminum alloy supporting body for printing plate and its production
JPH1088271A (en) * 1996-09-17 1998-04-07 Kyushu Mitsui Alum Kogyo Kk Aluminum alloy and plasma treatment apparatus using the same
JP2002256488A (en) * 2001-02-28 2002-09-11 Showa Denko Kk Aluminium alloy for anodizing and aluminium alloy material superior in gas corrosion resistance
JP2003119539A (en) * 2001-10-12 2003-04-23 Showa Denko Kk Aluminum alloy to be film-formed, aluminum alloy material superior in corrosion resistance and manufacturing method therefor
JP2003119540A (en) * 2001-10-12 2003-04-23 Showa Denko Kk Aluminum alloy to be film-formed, aluminum alloy material superior in corrosion resistance and manufacturing method therefor
JP2003171727A (en) * 2001-12-03 2003-06-20 Showa Denko Kk Aluminum alloy for film deposition treatment, aluminum alloy material having excellent corrosion resistance, and production method therefor
JP2004099972A (en) * 2002-09-10 2004-04-02 Kyushu Mitsui Alum Kogyo Kk Aluminum alloy for anodizing and plasma treatment apparatus using the alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008704A1 (en) * 2018-07-04 2020-01-09 昭和電工株式会社 Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
JPWO2020008704A1 (en) * 2018-07-04 2021-08-02 昭和電工株式会社 Aluminum alloy member for forming a fluoride film and aluminum alloy member having a fluoride film
JP7190491B2 (en) 2018-07-04 2022-12-15 昭和電工株式会社 Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
WO2020213307A1 (en) * 2019-04-16 2020-10-22 昭和電工株式会社 Aluminum alloy member for forming fluoride coating film thereon, and aluminum alloy member having fluoride coating film
JP7468512B2 (en) 2019-04-16 2024-04-16 株式会社レゾナック Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film

Also Published As

Publication number Publication date
WO2015059785A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
JP6077102B2 (en) Titanium target for sputtering and manufacturing method thereof
JP6922009B2 (en) Manufacturing method of sputtering target
EP2733235B1 (en) Sputtering target and manufacturing method therefor
JP3413782B2 (en) Titanium target for sputtering and method for producing the same
WO2014017297A1 (en) Aluminum alloy having excellent anodic oxidation treatability, and anodic-oxidation-treated aluminum alloy member
US20160208377A1 (en) Tantalum sputtering target and method for producing same
JP3249400B2 (en) Plasma processing equipment using plasma resistant aluminum alloy
JP2004099972A (en) Aluminum alloy for anodizing and plasma treatment apparatus using the alloy
WO2015060331A1 (en) Aluminum alloy, and semiconductor production device and plasma treatment device each manufactured using same
JP2000034562A (en) Sputtering target and part used in apparatus for forming thin film
WO2019058721A1 (en) Titanium sputtering target, production method therefor, and method for producing titanium-containing thin film
US10381203B2 (en) Backing plate obtained by diffusion-bonding anticorrosive metal and Mo or Mo alloy, and sputtering target-backing plate assembly provided with said backing plate
JPH08260196A (en) Surface treating method of vacuum chamber member made of al or al alloy
WO2019187767A1 (en) Insulating substrate and method for manufacturing same
TWI582254B (en) Sputtering target
WO2017154888A1 (en) Sputtering target capable of stabilizing ignition
JP5950632B2 (en) Manufacturing method of sputtering target
JP2002241992A (en) Parts for surface treatment apparatus having excellent voltage resistance
JP2003231995A (en) Phosphor-containing copper anode for copper electroplating, copper electroplating method using phosphor-containing copper anode, and semiconductor wafer plated by using them with few adhering particles
JP2008144238A (en) Method for producing aluminum alloy sheet for positive pressure can lid
CN111705276B (en) Ultra-pure copper-manganese alloy and treatment method thereof
WO2023042812A1 (en) Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
JP2002121636A (en) Method for manufacturing chamber-deposition shield and aluminum alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP