FR3124973A1 - Nappe électroconductrice tridimensionnelle tricotée pour constituer une paroi résistant à la foudre - Google Patents

Nappe électroconductrice tridimensionnelle tricotée pour constituer une paroi résistant à la foudre Download PDF

Info

Publication number
FR3124973A1
FR3124973A1 FR2107293A FR2107293A FR3124973A1 FR 3124973 A1 FR3124973 A1 FR 3124973A1 FR 2107293 A FR2107293 A FR 2107293A FR 2107293 A FR2107293 A FR 2107293A FR 3124973 A1 FR3124973 A1 FR 3124973A1
Authority
FR
France
Prior art keywords
electrically conductive
knit
sheet according
volume
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR2107293A
Other languages
English (en)
Inventor
Nicolas DUMONT
Gaëtan MAO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Performance Plastics France
Original Assignee
Saint Gobain Performance Plastics France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Performance Plastics France filed Critical Saint Gobain Performance Plastics France
Priority to FR2107293A priority Critical patent/FR3124973A1/fr
Priority to CA3223958A priority patent/CA3223958A1/fr
Priority to KR1020247000207A priority patent/KR20240029021A/ko
Priority to EP22744266.2A priority patent/EP4366937A1/fr
Priority to PCT/FR2022/051221 priority patent/WO2023281180A1/fr
Priority to CN202280047816.2A priority patent/CN117615901A/zh
Priority to IL309672A priority patent/IL309672A/en
Publication of FR3124973A1 publication Critical patent/FR3124973A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/003Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties
    • B29C70/0035Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised by the matrix material, e.g. material composition or physical properties comprising two or more matrix materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/083Combinations of continuous fibres or fibrous profiled structures oriented in one direction and reinforcements forming a two dimensional structure, e.g. mats
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/205Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres the structure being shaped to form a three-dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/22Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure
    • B29C70/222Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least two directions forming a two dimensional structure the structure being shaped to form a three dimensional configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/882Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding
    • B29C70/885Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced partly or totally electrically conductive, e.g. for EMI shielding with incorporated metallic wires, nets, films or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/02Lightning protectors; Static dischargers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/10Patterned fabrics or articles
    • D04B1/12Patterned fabrics or articles characterised by thread material
    • D04B1/123Patterned fabrics or articles characterised by thread material with laid-in unlooped yarn, e.g. fleece fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/20Metallic fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0241Fabric incorporating additional compounds enhancing mechanical properties
    • D10B2403/02411Fabric incorporating additional compounds enhancing mechanical properties with a single array of unbent yarn, e.g. unidirectional reinforcement fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Knitting Of Fabric (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Woven Fabrics (AREA)

Abstract

L’invention concerne une nappe électroconductrice tridimensionnelle constituée d’un tricot électroconducteur apte à répartir les charges électriques de manière homogène sur toute sa surface; un matériau composite comprenant une telle nappe, et 40 à 95 % en volume de matériau polymère thermoplastique et/ou thermodurcissable; et l’utilisation d’une telle nappe électroconductrice tridimensionnelle ou d’un tel matériau composite pour constituer une paroi résistant à la foudre. Pas de figure

Description

Nappe électroconductrice tridimensionnelle tricotée pour constituer une paroi résistant à la foudre
La présente invention a trait aux parois / surfaces devant résister à la foudre, à laquelle elles sont susceptibles d’être exposées de manière particulière. Elle est donc par exemple relative, à cet égard, aux pièces de carlingues d’avion.
Les avantages des composites notamment carbone / époxy ne sont plus à démontrer par rapport à l’aluminium en raison de leur performance mécanique et de leur légèreté. Toutefois la réalisation de pièces exposées à la foudre en composite nécessite de garantir leur résistance à l’impact de foudre, et leur capacité à écouler les charges électriques le long du fuselage d’avion, par exemple, sans endommagement des pièces, alors que la conductivité de l’aluminium est suffisante pour exercer cette fonction.
Cette fonction anti-foudre est généralement traitée dans les composites carbone / époxy de plusieurs manières différentes, ne s’excluant pas les unes les autres, mais éventuellement cumulatives. Bien qu’étant un bon conducteur, le carbone est endommagé lors du passage de la foudre, ce qui fait chuter les performances notamment mécaniques du composite.
Une première manière consiste en l’adjonction d’une couche de surface en tissage communément désignée sous les termes de tissu « gantois » (cuivre / aluminium / bronze) (appelé en anglais «copper mesh » par exemple) généralement de très faible grammage (50 – 300, notamment environ 80 g/m2), en métal déployé, en clinquant percé (disponible notamment chez la Société 3M), destinée à répartir les charges électriques de manière homogène sur toute la surface.
Une seconde manière consiste en l’adjonction d’un clinquant plein de largeur comprise entre 1 et 15 cm et d’épaisseur comprise entre 0,05 et 1 mm, qui peut avoir pour fonction de collecter les charges du tissu de cuivre et de les évacuer vers les autres pièces, à destination de l’arrière de l’avion. Lorsque l’utilisation d’une couche conductrice n’est pas possible, par exemple lorsque la pièce doit être radio-transparente comme dans le cas des radômes, on utilise un diverter qui peut prendre la forme d’un clinquant. Celui-ci a une fonction de paratonnerre, en attirant directement la foudre et en évacuant les charges. Dans certaines réalisations, le clinquant est positionné à la jonction entre deux pièces, constituant une bande d’équipotentiel vissée, la vis réalisant une conduction électrique entre les deux pièces.
Une troisième manière consiste à employer des matériaux composites à constituants électroconducteurs sous l’une des deux formes citées précédemment, en matrices thermodurcissables.
Ces solutions ne donnent pas satisfaction.
Tout d’abord, l’utilisation de tissus est particulièrement courante, en particulier de tissus pré-imprégnés de matière polymérique (ou « prépreg »). Ces tissus sont traditionnellement formés de fils de trame et de fils de chaine disposés perpendiculairement, et présentent classiquement une structure plane. Afin d’obtenir un produit en trois dimensions (ou 3D), les tissus sont généralement découpés et disposées dans un moule dont la forme générale correspond à celle de la pièce à réaliser, la matière polymérique (ou résine) étant ensuite injectée et polymérisée dans le moule afin notamment de donner une pièce rigide. Le drapage de renforts tissés sur un moule est une opération longue est délicate. Elle nécessite l’utilisation de plusieurs couches de « prépeg » qui doivent être découpées et disposées judicieusement suivant la forme du moule pour assurer une épaisseur suffisante tout en évitant trop de recouvrement. La découpe des tissus métalliques pré-imprégnés ou non implique des chutes de produit pouvant représenter 30% de matière. Les tissus électroconducteurs métalliques sont difficiles à draper d’autant plus que la forme de la pièce est tridimensionnelle.
Plusieurs pièces de tissus métalliques peuvent être cousues ensemble pour réaliser des surfaces complexes : leur mise en œuvre est complexe, et la continuité des fibres n’est alors pas assurée, diminuant l’homogénéité de la répartition des charges électriques sur toute la surface.
D’autre part, l’utilisation d’un clinquant plein nécessite une découpe relativement complexe, et la production de chutes à mettre au rebut.
Enfin, l’emploi d’une matrice thermodurcissable dans un composite électroconducteur présente l’inconvénient que le composite a tendance à absorber l’énergie thermique, à se dégrader et se percer.
L’invention a eu pour but de mettre à disposition une pièce anti-foudre, ou résistant à la foudre, dont la surface peut être de géométrie complexe tridimensionnelle, de fabrication et mise en œuvre aisément industrialisables, ne présentant pas les inconvénients décrits précédemment. A cette fin, l’invention a pour objet une nappe électroconductrice tridimensionnelle constituée d’un tricot électroconducteur apte à répartir les charges électriques de manière homogène sur toute sa surface.
Le tricot électroconducteur est obtenu à partir d’au moins un fil continu en matériau électroconducteur (qui peut être mono-ou multi-filament(s) et/ou formé de fibres discontinues liées par exemple par retordage ou guipage, ou tout autre procédé textile). Au sens de l’invention, on convient que le tricot comprend un ou plusieurs fils tricotés ou de tricotage pouvant consister en fil(s) de maille, en fil(s) de charge, en fil(s) flotté(s) mais non en fil(s) de trame. Différentes techniques de tricotage (en particulier circulaire ou rectiligne) permettent notamment d’obtenir des tricots formant une pièce unitaire, en 2 D ou en 3D, sans couture.
Ces structures tricotées présentent de nombreux avantages par rapport aux structures tissées. En effet, outre la possibilité de réaliser d’emblée une structure en 3D en une seule pièce sans couture, le tricotage peut se faire le cas échéant à partir d’une seule bobine de fil pour le fil de maille, alors que les tissus nécessitent toujours plusieurs bobines distinctes. En outre, alors que le drapage de structures tissées sur un moule est une opération longue et délicate, notamment lorsque la forme recherchée est complexe, nécessitant l’utilisation de plusieurs couches de tissus qui doivent être découpés (avec des chutes de produit pouvant représenter 30% de matière) et disposés judicieusement suivant la forme du moule pour assurer une épaisseur suffisante tout en évitant trop de recouvrement et nécessitant d'ajouter des pièces de renfort localement pour assurer la reprise de la résistance mécanique, cette reprise étant imparfaite car les fibres ne sont pas continues, le tricotage en 2D ou 3D permet pour sa part de réaliser un produit complexe, pouvant le cas échéant être directement drapé sur une forme en 2D ou en 3D et assurant la continuité des fils dans tout le produit obtenu, le tricot, présentant déjà une forme adaptée pour obtenir le produit recherché, n’ayant par exemple besoin que d’être positionné autour d’un support souple tel qu’une vessie en silicone, l’ensemble étant alors déposé dans un moule pour réaliser sous vide la consolidation permettant d’obtenir le produit fini.
De plus, les structures tissées, lorsqu’elles sont pré-imprégnées de matière polymérique (par exemple gélifiée) les plus couramment utilisées doivent en outre être manipulées délicatement, ces structures étant collantes lorsque le film de protection est enlevé, et ne se conservant que durant une période limitée à température ambiante. A contrario, le tricotage permet d’intégrer le cas échéant la matière polymérique thermoplastique sous forme de fils ou fibres mélangés avec les fils ou fibres électroconduc(teur)(trice)s et d’obtenir une préforme (forme intermédiaire/temporaire avant la forme définitive) dite « sèche », contenant à la fois le(s) matériau(x) électroconducteur(s) et la matrice.
La nappe tricotée de l’invention est donc avantageusement réalisée dans la forme de la pièce finale, y compris complexe tridimensionnelle. L’invention apporte une facilité de mise en œuvre et une continuité des fibres électroconductrices améliorant la conductivité électrique et l’homogénéité de la répartition des charges électriques.
De préférence, le tricot comprend au moins un fil continu électroconducteur, notamment un à quatre fils, par exemple quatre fils de cuivre de 0,1 mm de diamètre.
De préférence, le au moins un fil électroconducteur est alors métallique, tel qu’en cuivre, bronze ou aluminium.
De préférence, le tricot comprend alors un seul fil continu métallique tel qu’en cuivre de 0,01 à 1 mm de diamètre.
De préférence, le tricot électroconducteur comprend au moins un fil unidirectionnel UD électroconducteur apte à déplacer – évacuer les charges électriques dans la direction du fil UD. Chaque fil UD est un fil de trame.
De préférence, le ou les fil(s) UD électroconducteur(s) est (sont) alors métallique(s), tel(s) qu’en cuivre, bronze ou aluminium.
De préférence, les fils UD métalliques sont constitués d’un faisceau de douze fils de cuivre de 0,02 à 2 mm de diamètre, ou ont une conductivité électrique du même ordre que celle d’un tel faisceau. Ces fils UD ont par conséquent la capacité à évacuer une quantité importante de charges électriques correspondant à un impact de foudre, éventuellement répété.
Dans une alternative intéressante, le tricot électroconducteur comprend au moins deux matériaux électroconducteurs différents.
Dans une autre alternative intéressante, le tricot électroconducteur comprend 0 à 40 % en volume d’un ou plusieurs fil(s) de renfort tel(s) qu’en fibre de carbone, verre ou aramide. Ce ou ces fils de renfort peut ou peuvent par exemple être présent(s) sous la forme d’un ou plusieurs fils de maille, de charge et/ou flotté(s), et/ou d’un ou plusieurs fils de trame ajouté(s) dans le tricot sous forme de fil(s) unidirectionnel(s).
Un autre objet de l’invention consiste en un matériau composite caractérisé en ce qu’il comprend une nappe telle que décrite précédemment, et 40 à 95 % en volume de matériau polymère thermoplastique et/ou thermodurcissable. Le matériau composite (produit final) est obtenu à partir de plusieurs constituants décrits plus en détails dans la suite, parmi lesquels une nappe décrite précédemment comprenant un ajout facultatif de 0 à 60 % en volume de matériau polymère thermoplastique et/ou thermodurcissable, de préférence exclusivement thermoplastique (produit intermédiaire). Le matériau polymère peut être exclusivement thermoplastique ou exclusivement thermodurcissable. Le matériau polymère thermoplastique peut être intégré dans la structure tricotée métallique de la nappe sous la forme d’un ou plusieurs fil(s) de maille, de charge et/ou flotté(s) et/ou d’un ou plusieurs fil(s) de trame ajouté(s) dans le tricot sous forme de fil(s) unidirectionnel(s), par exemple. Comme exemples de polymères thermoplastiques, on peut citer les polycarbonate (PC), polyétherimide (PEI), polypropylène (PP), polyamide (PA), poly(méthacrylate de méthyle) (PMMA), poly(téréphtalate d'éthylène) (PET), poly(sulfure de phénylène) (PPS), polyétheréthercétone (PEEK), polyéthercétonecétone (PEKK), seuls ou en mélanges ou copolymères de plusieurs d’entre eux. Le matériau polymère thermodurcissable peut être intégré dans le tricot électroconducteur de la nappe par une imprégnation ultérieure. Comme matériau polymère thermodurcissable, on peut citer les polyuréthane (PU), résine époxy, ester de cyanate, résine phénolique, polyester insaturé.
Dans ce matériau composite, le matériau polymère comprend avantageusement 100 à 5 % en volume de matériau thermoplastique et 0 à 95 % en volume de résine thermodurcissable. Comme la structure tricotée métallique présente une continuité des fibres améliorant la conductivité électrique, la répartition et l’évacuation des charges, elle chauffe moins sous l’effet de la foudre, et il est possible de constituer la matrice polymère exclusivement de matériau thermoplastique, en l’absence de résine thermodurcissable. Une absence de matériau thermoplastique est possible, comme déjà précisé, mais n’est pas préférée. En effet, une proportion mineure de polymère thermoplastique dans un matériau polymère majoritairement thermodurcissable rend le matériau polymère soudable. D’autre part, le matériau thermodurcissable risque moins de se percer eu égard à l’échauffement diminué sous l’effet de la foudre mentionné ci-dessus. On recherche de préférence une nature thermoplastique à relativement haute température de transition vitreuse Tg, en employant un polymère thermoplastique de température de transition vitreuse supérieure à celle de la résine thermodurcissable, en particulier une Tg supérieure à 120 °C, afin de garantir une résistance à la chaleur de la matrice polymère.
Une absence de matériau polymère thermodurcissable est possible. Si du polymère thermodurcissable est présent, sa proportion en volume est de préférence supérieure à celle du matériau polymère thermoplastique.
De préférence, le matériau composite de l’invention est obtenu en associant des fibres de renfort à une nappe électroconductrice tricotée décrite précédemment. Les fibres de renfort peuvent être ainsi associées sous forme de fils tissés, de mats, éventuellement eux-mêmes préalablement associés à des matériaux polymères thermoplastiques, et/ou préimprégnés de matériaux polymères thermodurcissables.
Cependant, dans une variante préférée de cette réalisation, le matériau composite est obtenu en superposant une nappe électroconductrice tricotée selon l’invention, et un ou plusieurs tricots de fil(s) de renfort. Chaque tricot de fil(s) de renfort peut également être préalablement associé à des matériaux polymères thermoplastiques, et/ou préimprégné de matériaux polymères thermodurcissables.
L’invention a également pour objet l’utilisation d’une nappe électroconductrice tridimensionnelle ou d’un matériau composite décrit(e) ci-dessus pour constituer la paroi résistant à la foudre d’un véhicule terrestre, aquatique ou aérien, ou d’un bâtiment, en particulier une partie de carrosserie de train, carlingue d’avion ou véhicule spatial.
L’invention sera mieux comprise à la lumière des exemples suivants.
Contre-exemple 1
On réalise un composite par l’adjonction côte à côte d’un tissu « gantois » de cuivre (appelé en anglais «copper mesh ») de grammage égal à 80 g/m2, destiné à répartir les charges électriques de manière homogène sur toute la surface, et d’un clinquant de cuivre de 10 cm de largeur et quelques dixièmes de mm d’épaisseur, qui a pour fonction de collecter les charges du tissu de cuivre et de les évacuer vers l’arrière de l’avion, puis par la superposition à l’ensemble ainsi obtenu, dont une partie de la surface est constituée du tissu gantois de cuivre et l’autre partie de la surface est constituée du clinquant de cuivre, d’une nappe de fibres tissées de carbone préimprégnées de résine époxy.
Ce matériau est très difficile à draper, d’autant plus en forme complexe tridimensionnelle. Ce matériau a été percé et s’est délaminé au premier impact de foudre.
Exemple 1
On réalise un tricot électroconducteur avec un ou plusieurs fil(s) de maille, de charge et/ou flotté(s) consistant chacun en un fil de cuivre de 0,1 mm de diamètre et un matériau polymère thermoplastique intégré dans la structure tricotée métallique sous la forme d’un ou plusieurs fil(s) de maille, de charge et/ou flotté(s) et/ou un ou plusieurs fil(s) de trame ajouté(s) dans le tricot sous forme de fil(s) unidirectionnel(s). Ce tricot est directement réalisé à la forme voulue quelconque tridimensionnelle, quelle que soit sa complexité. Il présente une continuité de ses fils / fibres conducteur(trice)s.
A ce tricot électroconducteur tridimensionnel, on superpose une ou plusieurs nappe(s) de renfort de même géométrie tridimensionnelle, et constituée(s) d’un tissu, d’un mat ou d’un tricot de fibres de renfort telles que carbone, verre ou aramide, associé à un matériau polymère thermoplastique. Un premier exemple de tricot de renfort est un tricot de kevlar® (aramide) et de thermoplastique, c’est-à-dire ayant un ou plusieurs fil(s) de maille, de charge et/ou flotté(s) constitués d’aramide d’une part, de thermoplastique d’autre part, dans lequel sont insérés plusieurs fils de carbone unidirectionnels UD et plusieurs fils thermoplastiques unidirectionnels UD comme fils de trame. Un deuxième exemple de tricot de renfort est un tricot de verre et de thermoplastique. Un troisième exemple de tricot de renfort est un tricot de carbone et de thermoplastique.
Le matériau composite peut être obtenu à une forme quelconque complexe tridimensionnelle désirée, d’un seul tenant, avec continuité des fibres, après cuisson à une température supérieure à la Tg du thermoplastique, et refroidissement.
Exemple 2
On modifie le tricot électroconducteur de l’exemple 1 en y insérant douze fils unidirectionnels UD parallèles de cuivre de 0,2 mm de diamètre comme fils de trame du tricot. A ce tricot électroconducteur tridimensionnel, on superpose les mêmes tissus, mats et tricots de renfort qu’à l’exemple 1.
Exemples 3 et 4
On reproduit les exemples 1 et 2, à la différence près que les tissus, mats et tricots de renfort sont préimprégnés de résine thermodurcissable liquide en quantité telle que le matériau polymère du matériau composite en constitue au moins 40 % en volume, se répartissant en une majeure partie de polymère thermodurcissable et une partie mineure de polymère thermoplastique.
Exemples 5 et 6
On reproduit les exemples 1 et 2, mais sans utiliser une ou plusieurs nappes de renfort. Au lieu de celles-ci, on intègre la fonction de renfort dans le tricot de cuivre, au moyen d’un ou plusieurs fil(s) de maille, de charge et/ou flotté(s) et/ou d’un ou plusieurs fils unidirectionnels UD comme fils de trame, constitués de fibres de renfort telles que carbone, verre ou aramide.
Exemples 7 et 8
On reproduit les exemples 5 et 6 en imprégnant le tricot de cuivre renforcé de résine thermodurcissable liquide en quantité telle que le matériau polymère du matériau composite en constitue au moins 40 % en volume, se répartissant en une majeure partie de polymère thermodurcissable et une partie mineure de polymère thermoplastique.
La fonction de répartition homogène des charges sur toute la surface par le tricot de cuivre est très efficace : la peinture a été brûlée de manière homogène malgré au moins quatre impacts de foudre sans destruction du tricot de cuivre, qui conduit toujours de manière homogène le courant électrique même après ces impacts.
La fonction de déplacement / évacuation des charges par les fils unidirectionnels UD de cuivre de section et conductivité électrique relativement importantes reste très efficace, les fils UD ayant été suffisamment conducteurs pour drainer les charges sans brûlure de la peinture, donc sans échauffement.
La fonction mécanique assurée par les fibres / fils de renfort des tissus, mats et tricots de renfort reste intègre après les tirs répétés sans dégradation structurelle par l’onde de choc qui a été absorbée par le matériau très tenace sans percement de la matière, alors que le composite du contre-exemple 1 a été percé et s’est délaminé dès le premier impact de foudre.

Claims (15)

  1. Nappe électroconductrice tridimensionnelle constituée d’un tricot électroconducteur apte à répartir les charges électriques de manière homogène sur toute sa surface.
  2. Nappe selon la revendication 1, caractérisée en ce que le tricot comprend au moins un fil continu électroconducteur.
  3. Nappe selon la revendication 2, caractérisée en ce que le au moins un fil électroconducteur est métallique, tel qu’en cuivre, bronze ou aluminium.
  4. Nappe selon la revendication 3, caractérisée en ce que le tricot comprend un seul fil continu métallique tel qu’en cuivre de 0,01 à 1 mm de diamètre.
  5. Nappe selon l’une des revendications 1 à 3, caractérisée en ce que le tricot électroconducteur comprend au moins un fil unidirectionnel UD électroconducteur apte à déplacer – évacuer les charges électriques dans la direction du fil UD.
  6. Nappe selon la revendication 5, caractérisée en ce que le ou les fil(s) UD électroconducteur(s) est (sont) métallique(s), tel(s) qu’en cuivre, bronze ou aluminium.
  7. Nappe selon la revendication 6, caractérisée en ce que les fils UD métalliques sont constitués d’un faisceau de douze fils de cuivre de 0,02 à 2 mm de diamètre, ou ont une conductivité électrique du même ordre que celle d’un tel faisceau.
  8. Nappe selon l’une des revendications précédentes, caractérisée en ce que le tricot électroconducteur comprend au moins deux matériaux électroconducteurs différents.
  9. Nappe selon l’une des revendications précédentes, caractérisée en ce que le tricot électroconducteur comprend 0 à 40 % en volume d’un ou plusieurs fil(s) de renfort tel(s) qu’en fibre de carbone, verre ou aramide.
  10. Matériau composite, caractérisé en ce qu’il comprend une nappe selon l’une des revendications précédentes, et 40 à 95 % en volume de matériau polymère thermoplastique et/ou thermodurcissable.
  11. Matériau composite selon la revendication 10, caractérisé en ce que le matériau polymère comprend 100 à 5 % en volume de matériau thermoplastique et 0 à 95 % en volume de résine thermodurcissable.
  12. Matériau composite selon la revendication 11, caractérisé en ce que la proportion en volume de matériau polymère thermodurcissable est supérieure à la proportion en volume de matériau polymère thermoplastique.
  13. Matériau composite selon l’une des revendications 10 à 12, caractérisé en ce qu’il est obtenu en associant des fibres de renfort à une nappe selon l’une des revendications 1 à 9.
  14. Matériau composite selon la revendication 13, caractérisé en ce qu’il est obtenu en superposant une nappe selon l’une des revendications 1 à 9, et un ou plusieurs tricots de fil(s) de renfort.
  15. Utilisation d’une nappe électroconductrice tridimensionnelle selon l’une des revendications 1 à 9 ou d’un matériau composite selon l’une des revendications 10 à 14 pour constituer la paroi résistant à la foudre d’un véhicule terrestre, aquatique ou aérien, ou d’un bâtiment, en particulier une partie de carrosserie de train, carlingue d’avion ou véhicule spatial.
FR2107293A 2021-07-06 2021-07-06 Nappe électroconductrice tridimensionnelle tricotée pour constituer une paroi résistant à la foudre Pending FR3124973A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FR2107293A FR3124973A1 (fr) 2021-07-06 2021-07-06 Nappe électroconductrice tridimensionnelle tricotée pour constituer une paroi résistant à la foudre
CA3223958A CA3223958A1 (fr) 2021-07-06 2022-06-22 Nappe electroconductrice tridimensionnelle tricotee pour constituer une paroi resistant a la foudre
KR1020247000207A KR20240029021A (ko) 2021-07-06 2022-06-22 번개 저항성 벽으로 사용하기 위한 편직 3차원 전기전도성 매트
EP22744266.2A EP4366937A1 (fr) 2021-07-06 2022-06-22 Nappe electroconductrice tridimensionnelle tricotee pour constituer une paroi resistant a la foudre
PCT/FR2022/051221 WO2023281180A1 (fr) 2021-07-06 2022-06-22 Nappe electroconductrice tridimensionnelle tricotee pour constituer une paroi resistant a la foudre
CN202280047816.2A CN117615901A (zh) 2021-07-06 2022-06-22 用作抗雷电墙的针织三维导电垫
IL309672A IL309672A (en) 2021-07-06 2022-06-22 Knitted three-dimensional electroconductive mat for use as a lightning-resistant wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2107293A FR3124973A1 (fr) 2021-07-06 2021-07-06 Nappe électroconductrice tridimensionnelle tricotée pour constituer une paroi résistant à la foudre
FR2107293 2021-07-06

Publications (1)

Publication Number Publication Date
FR3124973A1 true FR3124973A1 (fr) 2023-01-13

Family

ID=77711039

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2107293A Pending FR3124973A1 (fr) 2021-07-06 2021-07-06 Nappe électroconductrice tridimensionnelle tricotée pour constituer une paroi résistant à la foudre

Country Status (7)

Country Link
EP (1) EP4366937A1 (fr)
KR (1) KR20240029021A (fr)
CN (1) CN117615901A (fr)
CA (1) CA3223958A1 (fr)
FR (1) FR3124973A1 (fr)
IL (1) IL309672A (fr)
WO (1) WO2023281180A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755904A (en) * 1986-06-06 1988-07-05 The Boeing Company Lightning protection system for conductive composite material structure
US20200290296A1 (en) * 2019-03-11 2020-09-17 Saint-Gobain Performance Plastics France Preparation of a composite material comprising different functionality areas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1238129T3 (da) * 1999-12-15 2004-04-05 Bekaert Sa Nv Vævet kompositstof
DE202014009963U1 (de) * 2014-12-16 2015-01-15 Tec-Knit Creativcenter Für Technische Textilien Gmbh Gewirk mit unidirektional verlaufenden Fasern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4755904A (en) * 1986-06-06 1988-07-05 The Boeing Company Lightning protection system for conductive composite material structure
US20200290296A1 (en) * 2019-03-11 2020-09-17 Saint-Gobain Performance Plastics France Preparation of a composite material comprising different functionality areas

Also Published As

Publication number Publication date
IL309672A (en) 2024-02-01
WO2023281180A1 (fr) 2023-01-12
KR20240029021A (ko) 2024-03-05
CA3223958A1 (fr) 2023-01-12
EP4366937A1 (fr) 2024-05-15
CN117615901A (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
EP2943330B1 (fr) Pièce structurale en matériau composite renforcée
EP2373484B1 (fr) Pièce en matériau composite incluant des moyens de protection contre la foudre
EP0270411A1 (fr) Structure textile permettant la réalisation d'articles stratifiés composites par moulage par injection
EP3024640B1 (fr) Piece en materiau composite avec portion de conductivite thermique et electrique et procede de fabrication d'une telle piece
FR2949791A1 (fr) Procede de fabrication d'un materiau fibreux pre-impregne de polymere thermoplastique
WO2016020257A1 (fr) Procédé de fabrication d'une pièce renforcée comportant un matériau composite
WO2011098291A1 (fr) Dispositif multicouche pour un moule a chauffage endogene et procede de fabrication dudit dispositif
EP0717585B1 (fr) Elément en matériau composite avec assemblage(s) de continuité électrique à travers l'élément, son procédé de fabrication et son utilisation en aéronautique
EP3507085B1 (fr) Préforme, pièce d'ossature et procédé de fabrication d'une telle préforme
FR3124973A1 (fr) Nappe électroconductrice tridimensionnelle tricotée pour constituer une paroi résistant à la foudre
WO2010089464A1 (fr) Noyau pour realiser un raidisseur dans un panneau composite
WO2007068847A1 (fr) Complexe textile destine a etre utilise comme couche de renfort pour la fabrication de pieces composites, et procede de fabrication d'un tel complexe
FR2834726A1 (fr) Structure fibreuse pour la realisation de materiaux composites
WO2018227309A1 (fr) Procede de fabrication d' un panneau composite
JP2004346190A (ja) プリプレグ及び繊維強化樹脂複合材料
EP3168353A1 (fr) Non tisse
FR3089854A1 (fr) Procede de preparation d’un materiau composite sous forme de sandwich
EP1365055A1 (fr) Renfort fibreux à fonction de barrière pour la réalisation de pièces composites et pièces composites en faisant application
FR2582255A1 (fr) Procede de fabrication d'un materiau stratifie a base de resines thermoplastiques et articles stratifies obtenus a l'aide d'un tel materiau
WO2022195208A1 (fr) Preforme realisee par tricotage, produit composite incorporant une telle preforme et procedes de fabrication
FR2919820A1 (fr) Canal drainant pour composite
FR2999469A1 (fr) Procede de fabrication de pieces en materiau composite a ame a cellule ouverte
FR2919519A1 (fr) Noyau pour realiser un raidisseur dans un panneau composite
FR3026981A1 (fr) Insert structure permettant d'ameliorer l'isotropie thermique et electrique a coeur et aux interfaces de pieces composites
EP2961583A1 (fr) Preparation d'un produit textile semi-fini destine a l'injection thermoplastique, et produit ainsi obtenu

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20230113

PLFP Fee payment

Year of fee payment: 3