FR3120873A1 - BIOMATERIAL FROM VAPOCRACKED LIGNOCELLULOSIC BIOMASS - Google Patents

BIOMATERIAL FROM VAPOCRACKED LIGNOCELLULOSIC BIOMASS Download PDF

Info

Publication number
FR3120873A1
FR3120873A1 FR2102660A FR2102660A FR3120873A1 FR 3120873 A1 FR3120873 A1 FR 3120873A1 FR 2102660 A FR2102660 A FR 2102660A FR 2102660 A FR2102660 A FR 2102660A FR 3120873 A1 FR3120873 A1 FR 3120873A1
Authority
FR
France
Prior art keywords
powder
fibrous
biomaterial
steam
cracked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR2102660A
Other languages
French (fr)
Other versions
FR3120873B1 (en
Inventor
Frédéric MARTEL
Adriana QUINTERO-MARQUEZ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Europeenne de Biomasse SAS
Original Assignee
Europeenne de Biomasse SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Europeenne de Biomasse SAS filed Critical Europeenne de Biomasse SAS
Priority to FR2102660A priority Critical patent/FR3120873B1/en
Priority to PCT/FR2022/050494 priority patent/WO2022195232A1/en
Priority to EP22714493.8A priority patent/EP4308352A1/en
Priority to AU2022237941A priority patent/AU2022237941A1/en
Publication of FR3120873A1 publication Critical patent/FR3120873A1/en
Application granted granted Critical
Publication of FR3120873B1 publication Critical patent/FR3120873B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/003Pretreatment of moulding material for reducing formaldehyde gas emission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/006Pretreatment of moulding material for increasing resistance to swelling by humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/007Manufacture of substantially flat articles, e.g. boards, from particles or fibres and at least partly composed of recycled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/04Manufacture of substantially flat articles, e.g. boards, from particles or fibres from fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/18Auxiliary operations, e.g. preheating, humidifying, cutting-off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N5/00Manufacture of non-flat articles
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21BFIBROUS RAW MATERIALS OR THEIR MECHANICAL TREATMENT
    • D21B1/00Fibrous raw materials or their mechanical treatment
    • D21B1/04Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres
    • D21B1/12Fibrous raw materials or their mechanical treatment by dividing raw materials into small particles, e.g. fibres by wet methods, by the use of steam
    • D21B1/30Defibrating by other means
    • D21B1/36Explosive disintegration by sudden pressure reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/0209Methods, e.g. characterised by the composition of the agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)
  • Mechanical Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)

Abstract

L’invention se rapporte au domaine des biomatériaux. Plus particulièrement, l’invention concerne un biomatériau biosourcé obtenu à partir d’une biomasse lignocellulosique vapocraquée sous forme de poudre, ainsi que son procédé de préparation et ses utilisations. L’invention concerne aussi l’utilisation d’une poudre obtenue par vapocraquage pour la préparation de biomatériaux.The invention relates to the field of biomaterials. More particularly, the invention relates to a biosourced biomaterial obtained from a steam-cracked lignocellulosic biomass in powder form, as well as its method of preparation and its uses. The invention also relates to the use of a powder obtained by steam cracking for the preparation of biomaterials.

Description

BIOMATERIAU A PARTIR DE BIOMASSE LIGNOCELLULOSIQUE VAPOCRAQUEEBIOMATERIAL FROM VAPOCRACKED LIGNOCELLULOSIC BIOMASS

L’invention se rapporte au domaine des biomatériaux. Plus particulièrement, l’invention concerne un biomatériau biosourcé obtenu à partir d’une biomasse lignocellulosique vapocraquée sous forme de poudre, ainsi que son procédé de préparation et ses utilisations. L’invention concerne aussi l’utilisation d’une poudre obtenue par vapocraquage pour la préparation de biomatériaux.The invention relates to the field of biomaterials. More particularly, the invention relates to a biosourced biomaterial obtained from a steam-cracked lignocellulosic biomass in powder form, as well as its preparation process and its uses. The invention also relates to the use of a powder obtained by steam cracking for the preparation of biomaterials.

Domaine de l’inventionField of invention

Les matériaux de type panneaux de particules, de fibres, contreplaqués, OSB, isolants, conçus à partir de bois utilisent différents procédés (broyage, mélange, pressage, traitement thermique) et différentes formulations (fibres + colles) pour obtenir des produits présentant des caractéristiques de résistance à l’eau (mesurée par gonflement), de résistance à la flexion (contrainte à la rupture), d’élasticité, de cohésion, d’arrachement, …Materials such as particle board, fibreboard, plywood, OSB, insulation, designed from wood use different processes (grinding, mixing, pressing, heat treatment) and different formulations (fibers + glues) to obtain products with specific characteristics. water resistance (measured by swelling), flexural strength (breaking stress), elasticity, cohesion, tearing, etc.

Dans le cas de panneaux de fibres par exemple, on humidifie les fibres pour être au-dessus du point de saturation des fibres, on mélange avec la colle choisie (colle phénolique, avec urée, et /ou formaldéhyde), on disperse les fibres dans un moule en essayant d'obtenir une répartition homogène, on presse selon un programme de montée en pression progressive (pouvant aller jusqu’à 5 à 10 N/mm2) par palier de quelques minutes, avec des températures jusqu’à 200°C. Les problématiques observées sont la rupture des fibres lors du mélange avec les colles, la consommation d’eau qui est ensuite perdue au pressage sous forme de vapeur, ce qui contribue à une surconsommation énergétique, et enfin la présence de composés organiques volatils toxiques lors de l’utilisation du matériau en atmosphère intérieure.In the case of fiberboard, for example, the fibers are moistened to be above the saturation point of the fibers, they are mixed with the chosen glue (phenolic glue, with urea, and/or formaldehyde), the fibers are dispersed in a mould, trying to obtain a homogeneous distribution, pressing according to a program of progressive pressure increase (which can go up to 5 to 10 N/mm2) in steps of a few minutes, with temperatures up to 200°C. The problems observed are the breakage of the fibers during mixing with the adhesives, the consumption of water which is then lost during pressing in the form of steam, which contributes to excessive energy consumption, and finally the presence of toxic volatile organic compounds during the use of the material in indoor atmosphere.

La fabrication de matériaux par chauffage et décomposition chimique du bois (procédé de rétification) permet d’éviter des composés chimiques ajoutés. Mais cela ne convient pas à toutes les applications, et la rétification du bois est un procédé batch (étuve), donc plus coûteux, et sans récupération d’énergie.The manufacture of materials by heating and chemical decomposition of wood (retification process) makes it possible to avoid added chemical compounds. But this is not suitable for all applications, and the retification of wood is a batch process (drying oven), therefore more expensive, and without energy recovery.

Les systèmes de traitement de la biomasse sèche et en continu sont utilisés chez les panneautiers (panneau moyenne densité à base de fibres) mais avec un ajout de colle d’imprégnation. Les systèmes de traitement de la biomasse sèche en batch (steam explosion) et en continu (vapocraquage) sont surtout utilisés chez les fabricants de black pellet et pour la biotechnologie (mais avec auxiliaires chimiques).Dry and continuous biomass treatment systems are used by panel makers (medium-density fiber-based panel) but with the addition of impregnating glue. Batch (steam explosion) and continuous (steam cracking) dry biomass processing systems are mainly used by black pellet manufacturers and for biotechnology (but with chemical auxiliaries).

Les procédés existants de vapocraquage permettent de produire une poudre de biomasse lignocellulosique, sèche, prétraitée, sans additif chimique, stable et viable économiquement pour des commodités comme l’énergie ou les biotechnologies, donc a fortiori viable pour des produits à haute valeur ajoutée.Existing steam cracking processes make it possible to produce a lignocellulosic biomass powder, dry, pretreated, without chemical additives, stable and economically viable for commodities such as energy or biotechnologies, therefore a fortiori viable for products with high added value.

Face aux enjeux environnementaux, il est souhaitable de disposer de nouveaux biomatériaux plus écologiques et dont les coûts de production sont viables.Faced with environmental challenges, it is desirable to have new biomaterials that are more ecological and whose production costs are viable.

Les inventeurs proposent de produire de nouveaux biomatériaux à partir de biomasse lignocellulosique vapocraquée.The inventors propose to produce new biomaterials from steam-cracked lignocellulosic biomass.

Ainsi, l’invention concerne un procédé de production d’un biomatériau à partir de biomasse lignocellulosique vapocraquée sous forme de poudre consistant à :Thus, the invention relates to a method for producing a biomaterial from steam-cracked lignocellulosic biomass in powder form, consisting of:

  • disposer d’une biomasse lignocellulosique ;have a lignocellulosic biomass;
  • traiter ladite biomasse par vapocraquage jusqu’à obtention d’une poudre ;treating said biomass by steam cracking until a powder is obtained;
  • presser ladite poudre seule ou en associant avec un matériau fibreux pour densification.pressing said powder alone or in association with a fibrous material for densification.

L’invention concerne également l’utilisation d’une poudre obtenue par vapocraquage d’une biomasse lignocellulosique en tant que matière première pour la préparation d’un biomatériau.The invention also relates to the use of a powder obtained by steam cracking of a lignocellulosic biomass as a raw material for the preparation of a biomaterial.

Enfin, l’invention concerne un biomatériau obtenu à partir de poudre vapocraquée et ses utilisations.Finally, the invention relates to a biomaterial obtained from steam-cracked powder and its uses.

Avantages de l’inventionAdvantages of the invention

L’aspect écologique de l’invention est primordial:les biomatériaux utilisant tout ou partie de poudres vapocraquées, avec ou sans fibres naturelles, ne nécessitent pas de produit chimique de synthèse, à la fois source de pollution atmosphérique par leur production ou leur fin de vie, mais aussi en termes de toxicité lors de la fabrication des biomatériaux. De plus, l’absence de produit chimique de synthèse dans le produit fini évite le relargage de produits toxiques lors de son utilisation : pas de contamination des espaces fermés.The ecological aspect of the invention is essential : biomaterials using all or part of steam-cracked powders, with or without natural fibers, do not require synthetic chemicals, both a source of atmospheric pollution by their production or their end of life, but also in terms of toxicity during the manufacture of biomaterials. In addition, the absence of synthetic chemicals in the finished product avoids the release of toxic products during use: no contamination of closed spaces.

Par ailleurs, l’absence d’eau ou sa diminution drastique pour le pressage lors de la fabrication (étape de densification) réduit les coûts énergétiques (moindre chauffage) et les effluents gazeux ou liquides.In addition, the absence of water or its drastic reduction for pressing during manufacturing (densification stage) reduces energy costs (less heating) and gaseous or liquid effluents.

Ce procédé permet le recyclage des bois de déchets et d’éléments d’ameublement ou de déconstruction (bois dit « B ») alors que ces bois impropres à la combustion comme biomasse naturelle n’ont à ce jour que les incinérateurs comme devenir. Réutilisés ainsi après vapocraquage (qui leur donne une forme neutre homogène), ils retournent à leur usage premier.This process allows the recycling of waste wood and furnishing or deconstruction elements (so-called “B” wood) while these woods are unsuitable for combustion as natural biomass so far only have to become incinerators. Reused in this way after steam cracking (which gives them a homogeneous neutral form), they return to their original use.

L’utilisation de biomasse (bois notamment) vapocraquée amenant des capacités naturelles de cohésion permet de réduire les impacts environnementaux (peu ou pas de produits chimiques, procédés de pressage sans eau et avec moins d’énergie).The use of steam-cracked biomass (wood in particular) bringing natural cohesion capacities makes it possible to reduce environmental impacts (few or no chemicals, pressing processes without water and with less energy).

Le vapocraquage de biomasse est principalement utilisé pour la production de biocombustibles sous la forme de granulés denses (black pellets). Les coûts de production en vue d’un usage de matière vapocraquée en tant que biomatériau, peuvent être réduits en prélevant, en parallèle d’un usage principal (black pellet), un produit intermédiaire de la production (poudre ou « granulettes », granulés de moyenne densité de compression), et de l’employer comme matière première (les poudres plus ou moins fibreuses fabriquées au vapocraquage, utilisées seules) ou auxiliaire de fabrication de matériau fibre (les poudres les plus fines, employées comme colle ou liant naturel). Les coûts de production peuvent également être réduits en optimisant le procédé par récupération de l’énergie produite pendant le vapocraquage (composés volatils organiques (VOC), vapeur, chaleur…).Biomass steam cracking is mainly used for the production of biofuels in the form of dense granules (black pellets). The production costs for the use of steam-cracked material as a biomaterial can be reduced by taking, in parallel with a main use (black pellet), an intermediate production product (powder or "granules", granules of medium compression density), and to use it as a raw material (more or less fibrous powders made by steam cracking, used alone) or as an auxiliary for the manufacture of fiber material (the finest powders, used as glue or natural binder) . Production costs can also be reduced by optimizing the process by recovering the energy produced during steam cracking (volatile organic compounds (VOC), steam, heat, etc.).

Le procédé est très intéressant du fait qu’il est modulable à façon. En effet, la poudre vapocraquée peut être utilisée seule, on obtient alors des panneaux ayant une faible résistance à la rupture (contrainte de flexion un peu faible), mais une bonne résistance au gonflement. Ce type de biomatériau est adapté à un usage en tant que matériau de garnissage (isolant par exemple), qui ne subit pas de flexion ou d’effort élevé (poudres vapocraquées d’une ou plusieurs espèces représentant 100% du biomatériau). Alternativement, la poudre vapocraquée peut être utilisée en tant que liant / colle naturelle en mélange avec des fibres de biomasse, on obtient alors des panneaux de fibres avec le renfort des fibres naturelles plus ou moins préparées, et une cohésion obtenue avec la poudre après un pressage sans eau et sans colles chimiques. Le biomatériau présente alors une bonne résistance mécanique et peut être utilisé dans la fabrication de panneaux composites.The process is very interesting because it is flexible. In fact, the steam-cracked powder can be used alone, in which case panels are obtained with low breaking strength (slightly low bending stress), but good resistance to swelling. This type of biomaterial is suitable for use as a packing material (insulation for example), which does not undergo bending or high stress (vapocracked powders of one or more species representing 100% of the biomaterial). Alternatively, the steam-cracked powder can be used as a binder / natural glue mixed with biomass fibers, we then obtain fiberboards with the reinforcement of more or less prepared natural fibers, and a cohesion obtained with the powder after a pressing without water and without chemical glues. The biomaterial then has good mechanical strength and can be used in the manufacture of composite panels.

Par ailleurs, on peut jouer sur la matière première et sur le traitement pour des applications différentes : un résineux donnera un produit fibreux ; un feuillu, un produit non fibreux. Une sévérité de traitement de vapocraquage très élevée ira dans le sens de la densité du produit et de la résistance au gonflement. Une sévérité faible ira dans le sens d’un produit fini léger.In addition, one can play on the raw material and on the treatment for different applications: a softwood will give a fibrous product; a hardwood, non-fibrous product. Very high steam cracking treatment severity will support product density and swelling resistance. A low severity will go in the direction of a light finished product.

Enfin, le vapocraquage de la biomasse renforce le caractère d’hydrophobie du biomatériau, en limitant le gonflement du produit fini, ce qui est important pour des usages en atmosphères humides, notamment pendant les phases de construction des habitations en bois, alors que les contreventements sont exposés, tant que le bâtiment n’est ni hors d’eau, ni hors d’air.Finally, the steam cracking of the biomass reinforces the hydrophobic character of the biomaterial, by limiting the swelling of the finished product, which is important for uses in humid atmospheres, in particular during the construction phases of wooden dwellings, while the braces are exposed, as long as the building is neither out of water nor out of air.

DESCRIPTION DETAILLEE DE L’INVENTIONDETAILED DESCRIPTION OF THE INVENTION

Un premier objet de l’invention concerne un procédé de production d’un biomatériau à partir de biomasse lignocellulosique vapocraquée sous forme de poudre consistant à :A first object of the invention relates to a method for producing a biomaterial from steam-cracked lignocellulosic biomass in powder form, consisting of:

  • disposer d’une biomasse lignocellulosiquehave a lignocellulosic biomass
  • traiter ladite biomasse par vapocraquage jusqu’à obtention d’une poudretreating said biomass by steam cracking until a powder is obtained
  • presser ladite poudre, seule ou en association avec un matériau fibreux ou un liant, pour densification.pressing said powder, alone or in combination with a fibrous material or a binder, for densification.

Par « biomasse lignocellulosique », on entend une matière végétale dont les constituants majeurs sont la cellulose, l’hémicellulose et la lignine. Les proportions de ces composants varient selon les espèces végétales. Dans le cadre de l’invention, la biomasse lignocellulosique d’intérêt est principalement du bois, notamment de résineux ou de feuillus, mais peu aussi intégrer des résidus agricoles, coproduits de l’agriculture et de l’agro-industrie, ou bois de déchet d’ameublement ou de déconstruction.By “lignocellulosic biomass”, we mean plant material whose major constituents are cellulose, hemicellulose and lignin. The proportions of these components vary according to the plant species. In the context of the invention, the lignocellulosic biomass of interest is mainly wood, in particular softwood or hardwood, but can also incorporate agricultural residues, co-products of agriculture and agro-industry, or wood from furnishing or deconstruction waste.

Par « biomatériau », on entend un matériau intégrant au moins en partie une matière première d’origine naturelle ou biosourcée.By “biomaterial”, we mean a material integrating at least in part a raw material of natural or biosourced origin.

Dans un mode de réalisation préféré, le vapocraquage est réalisé en appliquant un facteur de sévérité compris entre 3 et 5.In a preferred embodiment, the steam cracking is carried out by applying a severity factor of between 3 and 5.

Dans un mode de réalisation particulier, la poudre vapocraquée est obtenue comme suit :In a particular embodiment, the steam-cracked powder is obtained as follows:

- obtention, à partir de plaquettes de bois, de fragments de bois dont la dimension est comprise entre 0,5 et 14 mm et présentant un taux d’humidité compris entre 5 et 27% ;- obtaining, from wood chips, wood fragments whose size is between 0.5 and 14 mm and with a humidity level between 5 and 27%;

- introduction en continu d’un volume prédéterminé par minute desdits fragments de bois dans un réacteur sous pression, ledit réacteur étant alimenté en vapeur d’eau sensiblement saturée dont la pression est comprise entre 10 et 25 bars et la température est comprise entre 180 et 220°C ;- continuous introduction of a predetermined volume per minute of said wood fragments into a pressurized reactor, said reactor being supplied with substantially saturated steam, the pressure of which is between 10 and 25 bars and the temperature is between 180 and 220°C;

- exposition des fragments de bois introduits dans ledit réacteur à ladite vapeur d’eau pendant une durée suffisante pour obtenir un vapocraquage comprise entre 5 et 30 minutes, la valeur de ladite durée d’exposition et la valeur de la température de ladite vapeur sensiblement saturée étant sélectionnées de sorte que le facteur de sévérité soit compris entre 3 et 5, de préférence entre 3,5 et 4,5;- exposure of the fragments of wood introduced into said reactor to said steam for a time sufficient to obtain steam cracking of between 5 and 30 minutes, the value of said exposure time and the value of the temperature of said substantially saturated steam being selected so that the severity factor is between 3 and 5, preferably between 3.5 and 4.5;

- extraction en continu dudit réacteur d’un même volume prédéterminé de fragments de bois par minute, au travers d’une pluralité d’orifices débouchant dans un conduit sensiblement à la pression atmosphérique, de sorte à provoquer une décompression explosive desdits fragments de bois extraits dudit réacteur dans ledit conduit ;- continuous extraction from said reactor of the same predetermined volume of wood fragments per minute, through a plurality of orifices opening into a conduit substantially at atmospheric pressure, so as to cause explosive decompression of said extracted wood fragments of said reactor in said conduit;

- séparation desdits fragments de bois décompressés et de la vapeur résiduelle extraite dudit réacteur, lesdits fragments de bois obtenus après séparation formant ladite matière combustible sous forme de poudre.- separation of said decompressed fragments of wood and of the residual steam extracted from said reactor, said fragments of wood obtained after separation forming said combustible material in powder form.

Le Facteur de Sévérité du traitement est défini par la formule :The Treatment Severity Factor is defined by the formula:

FS=Log10(temps(min)*exp((T°C-100) /14,75)).FS=Log10(time(min)*exp((T°C-100)/14.75)).

Plus la température est élevée et plus la durée de traitement est longue, plus la sévérité augmente, plus on constate de transformation dans le produit, plus on perd de la matière carbonée dans les évaporats.The higher the temperature and the longer the treatment time, the more the severity increases, the more transformation is observed in the product, the more carbonaceous matter is lost in the evaporates.

Le produit du procédé de vapocraquage est récupéré sous forme de poudre ou sous forme de granulés faiblement compressés aussi appelés « granulettes ». Ces granulettes correspondent à une forme de poudre compressée de sorte à donner à celle-ci la forme d’un granulé mais qui se transforme facilement en poudre par une simple action mécanique (mélange). Cette forme de granulette peut être adoptée lors du conditionnement du produit afin d’en faciliter la manipulation (transport, stockage) mais ses caractéristiques sont celles d’une poudre (friabilité, dispersion).The product of the steam cracking process is recovered in the form of powder or in the form of weakly compressed granules also called “granules”. These granules correspond to a form of compressed powder so as to give it the form of a granule but which is easily transformed into powder by a simple mechanical action (mixing). This form of granule can be adopted when packaging the product in order to facilitate handling (transport, storage) but its characteristics are those of a powder (friability, dispersion).

De plus, la poudre vapocraquée est sèche, elle peut ainsi être conservée et transportée, elle est stable.In addition, the steam cracked powder is dry, so it can be stored and transported, it is stable.

Dans un premier mode particulier de réalisation de l’invention, la biomasse est constituée à plus de 50% de résineux et la poudre obtenue peut être densifiée seule pour donner un biomatériau. En effet, le vapocraquage d’un bois résineux donnera une poudre fibreuse apte à être densifiée seule. Le biomatériau obtenu aura tendance à avoir une résistance moyenne et sera de préférence utilisé en tant que matériau de garnissage, en particulier en tant qu’isolant.In a first particular embodiment of the invention, the biomass consists of more than 50% resinous and the powder obtained can be densified alone to give a biomaterial. Indeed, the steam cracking of a resinous wood will give a fibrous powder suitable for being densified on its own. The resulting biomaterial will tend to have medium strength and will preferably be used as packing material, especially as insulation.

Dans un mode de réalisation particulier, le procédé de production d’un biomatériau est mis en œuvre par vapocraquage d’une biomasse de nature fibreuse. La poudre obtenue est de nature fibreuse et peut être densifiée seule.In a particular embodiment, the method for producing a biomaterial is implemented by steam cracking a fibrous biomass. The powder obtained is fibrous in nature and can be densified alone.

Dans un second mode de réalisation de l’invention, la biomasse est constituée à plus de 50% de feuillus et la poudre obtenue (fine et non fibreuse) sera préférentiellement utilisée comme liant avec une matière fibreuse pour réaliser un biomatériau. Dans un mode de réalisation préféré, la poudre vapocraquée utilisée en tant que liant peut représenter jusqu’à 50% des constituants du biomatériau. Cela permet la production d’un biomatériau présentant une bonne cohésion et bonne résistance mécanique ; il peut être utilisé pour la fabrication de panneaux composites. Cette poudre permet la cohésion des matières fibreuses par pressage sans utilisation d’eau ou de produits chimiques, produisant ainsi un produit final écologique.In a second embodiment of the invention, the biomass consists of more than 50% hardwood and the powder obtained (fine and non-fibrous) will preferably be used as a binder with a fibrous material to produce a biomaterial. In a preferred embodiment, the steam-cracked powder used as a binder can represent up to 50% of the constituents of the biomaterial. This allows the production of a biomaterial with good cohesion and good mechanical resistance; it can be used for making composite panels. This powder allows the cohesion of fibrous materials by pressing without the use of water or chemicals, thus producing an ecological final product.

Dans un mode de réalisation particulier, le procédé de production d’un biomatériau est mis en œuvre par vapocraquage d’une biomasse de nature non fibreuse. La poudre obtenue est de nature non fibreuse et est utilisée en tant que liant en association avec une matière fibreuse.In a particular embodiment, the method for producing a biomaterial is implemented by steam cracking a non-fibrous biomass. The powder obtained is non-fibrous in nature and is used as a binder in combination with a fibrous material.

Dans un troisième mode de réalisation, le biomatériau est préparé à partir d’un mélange des poudres de bois vapocraquées de nature fibreuse et non fibreuse. Un tel mélange confère au biomatériau des propriétés intéressantes combinant résistance à l’eau, cohésion et rigidité. Notamment, un bois résineux comme l’épicéa va donner un produit fibreux et un bois feuillu comme le chêne va donner un produit non fibreux. D’autres types de bois au sein des familles de résineux ou de feuillus peuvent aussi donner des produits fibreux et non fibreux indépendamment de l’essence résineuse ou feuillue, l’objectif étant de disposer d’un produit final de mélange (avant ou après vapocraquage) présentant ces deux caractéristiques.In a third embodiment, the biomaterial is prepared from a mixture of steam-cracked wood powders of fibrous and non-fibrous nature. Such a mixture gives the biomaterial interesting properties combining water resistance, cohesion and rigidity. In particular, a resinous wood like spruce will give a fibrous product and a hardwood like oak will give a non-fibrous product. Other types of wood within the families of softwoods or hardwoods can also give fibrous and non-fibrous products independently of the softwood or hardwood species, the objective being to have a final product of mixture (before or after steam cracking) having these two characteristics.

Par « poudre vapocraquée fibreuse » au sens de l’invention, on entend une poudre contenant au moins 80% de particules dont le diamètre est supérieur à 500 µm.By "fibrous steam-cracked powder" within the meaning of the invention, is meant a powder containing at least 80% of particles whose diameter is greater than 500 μm.

Par « poudreuse vapocraquée non fibreuse » au sens de l’invention, on entend une poudre contenant au moins 80% de particules dont le diamètre est inférieur à 500 µm.By “non-fibrous steam-cracked powder” within the meaning of the invention, is meant a powder containing at least 80% of particles whose diameter is less than 500 μm.

La biomasse peut être elle-même un mélange de différentes espèces et, de manière générale, l’utilisation de la poudre obtenue sera adaptée en fonction de sa teneur en fibres.The biomass itself can be a mixture of different species and, in general, the use of the powder obtained will be adapted according to its fiber content.

Un deuxième objet de l’invention concerne l’utilisation d’une poudre obtenue par vapocraquage d’une biomasse lignocellulosique en tant que matière première pour la préparation d’un biomatériau.A second object of the invention relates to the use of a powder obtained by steam cracking of a lignocellulosic biomass as a raw material for the preparation of a biomaterial.

Comme mentionné précédemment, l’utilisation de la poudre dépendra de sa nature fibreuse ou non fibreuse.As mentioned earlier, the use of the powder will depend on whether it is fibrous or non-fibrous in nature.

Ainsi, une poudre fibreuse peut être utilisée en tant que seul composant du biomatériau. Une poudre non fibreuse peut être utilisée en tant que liant pour la préparation d’un biomatériau en mélange avec un matériau fibreux.Thus, a fibrous powder can be used as the only component of the biomaterial. A non-fibrous powder can be used as a binder for the preparation of a biomaterial mixed with a fibrous material.

La poudre vapocraquée peut donc être utilisée en mélange avec un matériau fibreux et/ou un liant. Dans un mode de réalisation préféré de l’invention, ledit matériau fibreux et/ou ledit liant sont des poudres vapocraquées. De manière tout à fait préférée, les différents composants du biomatériau sont tous issus du vapocraquage de biomasses lignocellulosiques, ces biomasses provenant d’espèces différentes.The steam-cracked powder can therefore be used as a mixture with a fibrous material and/or a binder. In a preferred embodiment of the invention, said fibrous material and/or said binder are steam cracked powders. Quite preferably, the different components of the biomaterial all come from the steam cracking of lignocellulosic biomasses, these biomasses coming from different species.

Ainsi, différentes espèces peuvent être mélangées avant vapocraquage, permettant de s’adapter au flux de biomasses disponibles et souvent hétérogènes, notamment en cas de biomasse provenant de matériaux à recycler. Il est également possible de mélanger les poudres provenant de lots de poudres vapocraquées différents. L’invention offre une grande flexibilité de mise en œuvre dans le traitement de la biomasse ainsi que de la préparation du biomatériau en fonction des poudres vapocraquées choisies ou disponibles.Thus, different species can be mixed before steam cracking, making it possible to adapt to the flow of available and often heterogeneous biomass, particularly in the case of biomass from materials to be recycled. It is also possible to mix powders from different batches of steam cracked powders. The invention offers a great flexibility of implementation in the treatment of the biomass as well as the preparation of the biomaterial according to the steam-cracked powders chosen or available.

Un troisième objet de l’invention concerne un biomatériau biosourcé obtenu à partir de biomasse lignocellulosique vapocraquée sous forme de poudre. Il peut en particulier être obtenu par le procédé décrit précédemment.A third object of the invention relates to a biosourced biomaterial obtained from steam-cracked lignocellulosic biomass in powder form. It can in particular be obtained by the process described above.

De manière préférée, ce biomatériau est 100% biosourcé et de manière encore plus préférée, il est composé de 100% de biomasse vapocraquée. Ce biomatériau est biodégradable.Preferably, this biomaterial is 100% biobased and even more preferably, it is composed of 100% steam-cracked biomass. This biomaterial is biodegradable.

Enfin, un quatrième objet de l’invention concerne l’utilisation d’un biomatériau tel que défini précédemment en tant que produit de garnissage, produit isolant, matériau de construction.Finally, a fourth object of the invention relates to the use of a biomaterial as defined above as a filling product, an insulating product, a construction material.

Les biomatériaux à base de biomasse vapocraquée seule, sans liant (poudre vapocraquée à partir de résineux par exemple) sont généralement destinés à un usage en tant que produit de garnissage ou produit isolant.Biomaterials based on steam-cracked biomass alone, without a binder (steam-cracked powder from resinous trees for example) are generally intended for use as a packing product or an insulating product.

Les biomatériaux obtenus par mélange d’une biomasse vapocraquée (poudre vapocraquée à partir de feuillus par exemple, en tant que liant) avec un matériau fibreux (issu d’une biomasse vapocraquée ou autre) constituent des matériaux denses et plus résistants, adaptés à un usage en tant que matériau de construction (panneaux composites).The biomaterials obtained by mixing a steam-cracked biomass (steam-cracked powder from hardwoods for example, as a binder) with a fibrous material (from a steam-cracked biomass or other) constitute dense and more resistant materials, suitable for a use as a construction material (composite panels).

Dans un mode de réalisation avantageux de l’invention, le biomatériau comprend un mélange de poudres de bois de nature fibreuse et de nature poudreuse préparées par vapocraquage. Dans un mode de réalisation particulier, la poudre de nature fibreuse est préparée à partir de résineux tel que l’épicéa et la poudre de nature poudreuse est préparée à partir de feuillus tel que le chêne.In an advantageous embodiment of the invention, the biomaterial comprises a mixture of wood powders of fibrous nature and of powdery nature prepared by steam cracking. In a particular embodiment, the powder of a fibrous nature is prepared from softwoods such as spruce and the powder of a powdery nature is prepared from hardwoods such as oak.

La présente invention sera mieux comprise à la lecture des exemples qui suivent, fournis à titre d’illustration et ne devant en aucun cas être considérés comme limitant la portée de la présente invention.The present invention will be better understood on reading the examples which follow, provided by way of illustration and should in no way be considered as limiting the scope of the present invention.

PARTIE EXPERIMENTALEEXPERIMENTAL PART

EXEMPLE 1 : Préparation de panneaux de fibres à partir de poudre vapocraquée sans additifEXAMPLE 1: Preparation of fiberboard from steam-cracked powder without additive

Des poudres de bois provenant d’épicéa et de chêne ont été préparées par vapocraquage. Les conditions de sévérités appliquées pendant le vapocraquage ont été d’un logarithme décimal de facteur de sévérité Log10FS = 4,05 pour le chêne (C4) et de Log10FS 4,15 pour l’épicéa (E6).Wood powders from spruce and oak were prepared by steam cracking. The severity conditions applied during steam cracking were a decimal logarithm of severity factor Log 10 FS = 4.05 for oak (C4) and Log 10 FS 4.15 for spruce (E6).

Les poudres ont ensuite été façonnées en suivant le protocole qui suit :The powders were then shaped according to the following protocol:

  • prélèvement de la masse de fibres à prélever en fonction de la taille du panneau test,sampling of the mass of fibers to be sampled according to the size of the test panel,
  • humidification des fibres pour être au-dessus du point de saturation des fibres (30% humidité),moistening the fibers to be above the fiber saturation point (30% humidity),
  • dispersion des fibres dans le moule (200 x 200 mm) en essayant d'obtenir une répartition homogène,dispersion of the fibers in the mold (200 x 200 mm) trying to obtain a homogeneous distribution,
  • pressage manuellement à l'aide d’une plaque qui permet de former un gâteau humide,manual pressing using a plate to form a moist cake,
  • démoulage du gâteau et introduction sous la presse entre 2 feuilles de papier hydrofuge (pour éviter les phénomènes d'adhésion),unmolding of the cake and introduction under the press between 2 sheets of water-repellent paper (to avoid adhesion phenomena),
  • pressage selon le programme incluant différents paliers successifs de temps et de pression, à différentes températures (Cf. tableau des Essais dans la colonne « temps de pressage »).pressing according to the program including different successive stages of time and pressure, at different temperatures (Cf. table of Tests in the column “pressing time”).

Les résultats sont présentés dans le Tableau 1 :The results are shown in Table 1:

N°EssaiTest No. Type matièrematerial type MasseMass
Echantillon (g)Sample (g)
Quantité d'eau ou colleAmount of water or glue Température (°C)Temperature (°C) Tps pressagePressing time Commentaires sur le biomatériau obtenuComments on the obtained biomaterial
11 C4C4 120120 Particules NoyéesEmbedded Particles 200200 2,5 minutes à 80kN et
2,5 minutes à 40kN
2.5 minutes at 80kN and
2.5 mins at 40kN
Particules trop humides
-->
migration de l'eau pendant
le pressage
Particles too wet
-->
water migration during
pressing
22 C4C4 125125 Partiellement NoyéesPartially Drowned 200200 1 min à 8 kN, 1,5 min à 20 kN,
1 min à 40 kN, 1 min à 12 kN
1 min at 8 kN, 1.5 min at 20 kN,
1 min at 40 kN, 1 min at 12 kN
Particules trop humides
-->
migration de l'eau pendant
le pressage
Particles too wet
-->
water migration during
pressing
33 C4C4 120120 40 g40g 200200 30 sec à 8 kN, 1,5 min à 20 kN,
1 min à 80 kN, 1 min à 20 kN
30 sec at 8 kN, 1.5 min at 20 kN,
1 min at 80 kN, 1 min at 20 kN
Première structure complète,
phénomène d'effritement du panneau
First complete structure,
panel crumbling phenomenon
44 E6E6 120120 60 g60g 200200 30 sec à 8 kN, 1,5 min à 20 kN,
1 min à 80 kN, 1 min à 20 kN
30 sec at 8 kN, 1.5 min at 20 kN,
1 min at 80 kN, 1 min at 20 kN
Bonne structure, la présence
d'eau vient améliorer la rigidité et l'état de surface (à comparer avec le panneau N°7)
Good structure, presence
of water improves the rigidity and the surface finish (to be compared with panel N°7)
55 Epicéa natifNative spruce 120120 60 g60g 200200 30 sec à 8 kN, 1,5 min à 20 kN,
1 min à 80 kN, 1 min à 20 kN
30 sec at 8 kN, 1.5 min at 20 kN,
1 min at 80 kN, 1 min at 20 kN
Epicéa Natif : la structure est existante
mais néanmoins très friable et non résistante à l'eau
Native Spruce: the structure is existing
but nevertheless very crumbly and not water resistant
66 Chêne natifnative oak 120120 40 g40g 200200 30 sec à 8 kN, 1,5 min à 20 kN,
1 min à 80 kN, 1 min à 20 kN
30 sec at 8 kN, 1.5 min at 20 kN,
1 min at 80 kN, 1 min at 20 kN
Chêne Natif : la structure est
existante mais extrêmement friable. Impossibilité de découper un carré de 5 cm pour réaliser les essais normés pour le gonflement
Native Oak: the structure is
existing but extremely friable. Impossibility of cutting a 5 cm square to carry out the standardized tests for swelling
77 E6E6 120120 00 200200 30 sec à 8 kN, 1,5 min à 20 kN,
1 min à 80 kN, 1 min à 20 kN
30 sec at 8 kN, 1.5 min at 20 kN,
1 min at 80 kN, 1 min at 20 kN
E6 sans Eau, la résistance mécanique
semble moins importante par rapport au panneau N°4 (E6 avec Eau)
E6 without Water, the mechanical resistance
seems less important compared to panel N°4 (E6 with Water)
88 C4C4 120120 00 200200 30 sec à 8 kN, 1,5 min à 20 kN,
1 min à 80 kN, 1 min à 20 kN
30 sec at 8 kN, 1.5 min at 20 kN,
1 min at 80 kN, 1 min at 20 kN
C4 sans Eau, la résistance mécanique
semble encore une fois moins importante par rapport au panneau N°3 (C4 avec Eau)
C4 without Water, the mechanical resistance
once again seems less important compared to panel N°3 (C4 with Water)
99 E6E6 110110 Colle Phénolique 12,1 gPhenolic Glue 12.1 g
BAKELITE PF 1866 HW Kundenmuster UN 3267 (52% Extrait sec)BAKELITE PF 1866 HW Kundenmuster UN 3267 (52% Dry extract)
200200 30 sec à 8 kN, 1,5 min à 20 kN,
1 min à 80 kN, 1 min à 20 kN
30 sec at 8 kN, 1.5 min at 20 kN,
1 min at 80 kN, 1 min at 20 kN
Le panneau n'est pas convaincant,
très poudreux et effritable mais il semble être léger. Cela provient du mélangeur qui a cassé les fibres
The panel is not convincing,
very powdery and crumbly but it seems to be light. This is from the blender breaking the fibers
1010 E6E6 110110 Colle Phénolique 12,1 gPhenolic Glue 12.1g
BAKELITE PF 1866 HW Kundenmuster UN 3267 (52% Extrait sec)BAKELITE PF 1866 HW Kundenmuster UN 3267 (52% Dry extract)
200200 2,5 min à 150 kN
2,5 min à 80 kN, 1 min à 20 kN
2.5 mins at 150 kN
2.5 mins at 80 kN, 1 min at 20 kN
Le panneau n'est pas convaincant,
très poudreux et effritable mais il semble être léger. Cela provient du mélangeur qui a cassé les fibres. L'augmentation de la pression n'a pas un grand impact sur ces 2 panneaux
The panel is not convincing,
very powdery and crumbly but it seems to be light. This is from the mixer breaking the fibers. The increase in pressure does not have a big impact on these 2 panels
1111 E6 et C4E6 and C4 120 (60 et 60)120 (60 and 60) 50 g50g 200200 2,5 min à 150 kN
2,5 min à 80 kN, 1 min à 20 kN
2.5 mins at 150 kN
2.5 mins at 80 kN, 1 min at 20 kN
Le mélange vient augmenter la cohésion
générale du panneau. La poudre de chêne cohésive est ajoutée aux fibres d'épicéa donnant une bonne résistance mécanique (on supprime également l'effet effritable)
The mixture increases the cohesion
general of the panel. The cohesive oak powder is added to the spruce fibers giving good mechanical resistance (we also remove the crumbling effect)
1212 E6 et C4E6 and C4 160 (80 et 80 avec epicéa
- chêne - épicéa)
160 (80 and 80 with spruce
- oak - spruce)
65 g65g 200200 2,5 min à 300 kN
2,5 min à 150 kN, 1 min à 50 kN
2.5 mins at 300 kN
2.5 mins at 150 kN, 1 min at 50 kN
Augmentation de la masse volumique (passage
de 600 à 800 kg/m3) et de la pression pour obtenir un panneau plus compact (augmentation de la rigidité)
Increase in density (transition
from 600 to 800 kg/m 3 ) and pressure to obtain a more compact panel (increased rigidity)
1313 E6 et C4E6 and C4 160 (80 et 80 avec epicéa
- chêne - épicéa)
160 (80 and 80 with spruce
- oak - spruce)
40 g (10 - 20 -10)40g (10 - 20 -10) 200200 2,5 min à 250 kN
2,5 min à 150 kN, 1 min à 50 kN
2.5 mins at 250 kN
2.5 mins at 150 kN, 1 min at 50 kN
Essais sur des mélanges de couches
successives pour augmenter la cohésion avec la poudre adhésive au centre (C4) et le E6 fibreux sur les extérieurs
Bonne rigidité
Tests on mixtures of layers
successive to increase the cohesion with the adhesive powder in the center (C4) and the fibrous E6 on the outsides
Good rigidity
1414 E6 et C4E6 and C4 160 (80 et 80 avec chêne - epicéa - chêne)160 (80 and 80 with oak - spruce - oak) 35 g (7,5 - 20 - 7,5)35g (7.5 - 20 - 7.5) 200200 2,5 min à 250 kN
2,5 min à 150 kN, 1 min à 50 kN
2.5 mins at 250 kN
2.5 mins at 150 kN, 1 min at 50 kN
Même essai mais avec la poudre cohésive
de C4 sur les extérieurs et les fibres de E6 au centre. La rigidité semble équivalente au panneau n°13 mais les couches de chêne sont effritables
Bonne rigidité
Same test but with cohesive powder
of C4 on the outsides and fibers of E6 in the center. Rigidity seems equivalent to panel n°13 but the layers of oak are crumbling
Good rigidity
1515 E6 et C4E6 and C4 160 (80 et 80 avec chêne - epicéa - chêne)160 (80 and 80 with oak - spruce - oak) 00 200200 2,5 min à 300 kN
2,5 min à 150 kN, 1 min à 50 kN
2.5 mins at 300 kN
2.5 mins at 150 kN, 1 min at 50 kN
Même panneau que le n°14 mais
sans eau en augmentant la pression sur les 2,5 premières minutes.
Adhésion moins importante (par rapport au n°14) mais bonne rigidité
Same panel as n°14 but
without water by increasing the pressure for the first 2.5 minutes.
Less adhesion (compared to n°14) but good rigidity
1616 E6 et C4E6 and C4 160 (80 et 80 mélange)160 (80 and 80 mix) 00 200200 2,5 min à 500 kN
2,5 min à 300 kN, 1 min à 150 kN
2.5 mins at 500 kN
2.5 mins at 300 kN, 1 min at 150 kN
Mélange avec augmentation de la pression mais sans eau.
Très bonne rigidité et bonne cohésion
Mixture with increased pressure but without water.
Very good rigidity and good cohesion
1717 E6 et C4E6 and C4 160 (80 et 80 mélange)160 (80 and 80 mix) 3535 200200 2,5 min à 500 kN
2,5 min à 300 kN, 1 min à 150 kN
2.5 mins at 500 kN
2.5 mins at 300 kN, 1 min at 150 kN
Panneau semblable au n°16 avec ajout d'eau qui
vient augmenter la cohésion du mélange, très bonne rigidité. Mise en lamelle pour essai de flexion 3 points
Panel similar to No. 16 with the addition of water which
increases the cohesion of the mixture, very good rigidity. Lamination for 3-point bending test

Tableau 1 :Récapitulatif des essais de préparation des biomatériaux à partir de produits de vapocraquage. Table 1: Summary of tests for the preparation of biomaterials from steam cracking products.

EXEMPLE 2 : Caractérisation des biomatériaux obtenusEXAMPLE 2: Characterization of the biomaterials obtained

1. Mesure du gonflement à l’eau :1. Water swell measurement:

La capacité de résistance à l’humidité a été évaluée par la mesure de l'épaisseur de chaque éprouvette carrée (5 x 5 cm) avant et après immersion dans de l'eau à 20°C pendant 24h.The humidity resistance capacity was evaluated by measuring the thickness of each square specimen (5 x 5 cm) before and after immersion in water at 20°C for 24 hours.

Le calcul du gonflement est effectué comme suit :The calculation of the swelling is carried out as follows:

dans laquelle :in which :

  • G est le gonflementG is the swelling
  • e est l’épaisseure is the thickness

2. Mesure de la densité réelle :2. Actual density measurement:

La masse volumique ou densité réelle est le produit des longueurs, largeurs et épaisseurs des éprouvettes utilisées pour les essais de gonflementThe actual density or density is the product of the lengths, widths and thicknesses of the specimens used for the swelling tests

Les résultats sont présentés dans le Tableau 2The results are presented in Table 2

Essai
Essay
Densité réelle (kg/mActual density (kg/m 33 )) Gonflement (%)Swelling (%)
33 613,2613.2 13,1%13.1% 44 606,0606.0 9,4%9.4% 55 556,8556.8 217,4%217.4% 77 565,6565.6 25,4%25.4% 88 548,1548.1 10,0%10.0% 99 484,5484.5 28,1%28.1% 1010 461,6461.6 16,0%16.0% 1111 632,7632.7 11,4%11.4% 1313 833,4833.4 17,2%17.2% 1414 796,9796.9 12,7%12.7% 1515 729,0729.0 16,1%16.1%

Tableau 2: Essais de résistance à la flexion selon l'EN 310 : Mise en forme des éprouvettes (largeur = 5 cm et longueur = 20 x épaisseur + 50 mm soit 150 mm (éprouvette de 5 mm d'épaisseur). La machine donne directement la force maximale à la rupture soitF max et on peut recalculer la résistance à la flexionf m . Table 2 : Bending strength tests according to EN 310: Shaping of the specimens (width = 5 cm and length = 20 x thickness + 50 mm or 150 mm (5 mm thick specimen). The machine gives directly the maximum force at break is F max and one can recalculate the resistance to bending f m .

3. Résistance à la flexion3. Resistance to bending

La résistance à la flexionf m (en newtons par millimètre carré) de chaque éprouvette, est calculée à partir de la formule suivante :The flexural strength f m (in newtons per square millimeter) of each specimen is calculated from the following formula:

dans laquelle :in which :

  • F max est la charge de rupture, en newtons F max is the breaking load, in newtons
  • t est l’épaisseur de l’éprouvette exprimée en millimètret is the thickness of the specimen expressed in millimeters
  • lest la longueur de l’éprouvette,exprimée en millimètres l is the length of the specimen , expressed in millimeters
  • best la largeur, exprimée en millimètres b is the width, expressed in millimeters

La résistance à la flexion de chaque éprouvette étant exprimée avec trois chiffres significatifs.The flexural strength of each specimen being expressed with three significant figures.

Les résultats pour l’éprouvette n° 17 sont présentés dans le Tableau 3 ci-dessous :The results for test specimen no. 17 are presented in Table 3 below:

Résistance àResistance to
la rupture (N)breaking (N)
Epaisseur Eprouvette (mm)Specimen thickness (mm) Largeur Eprouvette (mm)Specimen width (mm) ContrainteConstraint
Flexion (Mpa)Bending (Mpa)
-0,128-0.128 4,244.24 48,348.3 0,00120.0012

Tableau 3: Paramètres relatifs à la résistance à la flexion de l’éprouvette n°17 Table 3 : Parameters relating to the flexural strength of specimen no. 17

4. Analyse des résultats4. Analysis of results

Le test de gonflement permet de voir la résistance du matériau à l'eau. On remarque une nette amélioration entre les natifs et les simples explosés (217,4% contre 10%). De plus, les panneaux de chêne C4 semblent très résistants à l'eau (n°3 et n°8 avec 13 et 10% respectivement) ce qui peut être lié à l'aspect poudreux.The swelling test shows the resistance of the material to water. We notice a clear improvement between the natives and the simple exploded (217.4% against 10%). Also, the C4 oak panels seem to be very water resistant (#3 and #8 with 13 and 10% respectively) which may be related to the powdery look.

Les panneaux sandwichs ou mélanges oscillent entre 11 et 17% ce qui est en dessous des valeurs maximales normatives pour des panneaux soumis aux classes d'emploi 2 (très impressionnant pour des panneaux sans colle et sans eau pour certains). L’observation après gonflement montre que les panneaux sandwichs absorbent moins d'eau (prise de masse moins importante et évacuation d'eau sur le papier moins importante).The sandwich panels or mixtures oscillate between 11 and 17% which is below the maximum normative values for panels subject to use classes 2 (very impressive for panels without glue and without water for some). Observation after swelling shows that the sandwich panels absorb less water (lower weight gain and lower water evacuation on the paper).

La pression n'influe pas sur la résistance à l'eau mais plutôt sur la rigidité du panneau tout comme la quantité de matière à presser. La présence d'eau ou non comme liant vient jouer un rôle sur la résistance au gonflement : en effet, un panneau pressé avec eau est, selon les résultats, plus résistant au gonflement car sa cohésion est sûrement meilleure.The pressure does not affect the water resistance but rather the rigidity of the panel as well as the quantity of material to be pressed. Whether or not there is water as a binder plays a role in the resistance to swelling: indeed, a panel pressed with water is, according to the results, more resistant to swelling because its cohesion is certainly better.

Les panneaux avec la colle phénolique ne donnent pas de bons résultats.Panels with phenolic glue do not give good results.

En conclusion, le chêne semble apporter de la cohésion et de la résistance à l'eau mais fait des panneaux facilement effritables (poudre fine) alors que l'épicéa permet de rigidifier l'ensemble (longues fibres) mais est moins cohésif. Les résultats sont toutefois meilleurs qu’avec de la colle phénolique. Le mélange chêne-épicéa (ou résineux-feuillu, ou produit fibreux-produit poudreux) donne les résultats les plus satisfaisants quant aux 3 critères évalués : résistance à l’eau, cohésion et rigidité.In conclusion, oak seems to bring cohesion and resistance to water but makes panels easily crumbled (fine powder) while spruce makes it possible to stiffen the whole (long fibres) but is less cohesive. However, the results are better than with phenolic glue. The oak-spruce mix (or softwood-hardwood, or fibrous product-powdery product) gives the most satisfactory results for the 3 criteria assessed: water resistance, cohesion and rigidity.

Avec un gonflement moyen autour de 15% sur les panneaux vapocraqués de 5 mm d'épaisseur, on remarque que cette valeur est inférieure (pour des panneaux sans colle et même parfois sans eau) par rapport au gonflement sur 24h pour tous les autres types de panneaux (fibres, MDF, particules, OSB, isolants) qui varient entre 15% et 25-30%. Pour ce qui est de la résistance mécanique à la flexion les résultats expérimentaux sont bien inférieurs aux résistances pour les autres types de panneaux (0,9 MPa étant la valeur la plus faible pour des panneaux en usage sec).With an average swelling of around 15% on steam-cracked panels 5 mm thick, we note that this value is lower (for panels without glue and even sometimes without water) compared to the swelling over 24 hours for all other types of panels (fibre, MDF, particles, OSB, insulation) which vary between 15% and 25-30%. As regards the mechanical resistance to bending, the experimental results are much lower than the resistances for the other types of panels (0.9 MPa being the lowest value for panels in dry use).

Le caractère très hydrophobe et cohésif des poudres vapocraquées a de nombreux avantages, elles pourraient par exemple être utilisées en remplacement de la colle ou alors en ajout pour diminuer la quantité de colle afin d'obtenir les mêmes caractéristiques mécaniques. Cette poudre pourrait également être utilisée en tant que couche hydrophobe pour des panneaux utilisés dans des conditions humides. Ou encore créer des panneaux isolants résistants à l'eau grâce à cette poudre vapocraquée.
The highly hydrophobic and cohesive character of steam-cracked powders has many advantages, they could for example be used to replace glue or else as an addition to reduce the quantity of glue in order to obtain the same mechanical characteristics. This powder could also be used as a hydrophobic layer for panels used in humid conditions. Or create water-resistant insulating panels with this steam-cracked powder.

Claims (11)

Procédé de production d’un biomatériau à partir de biomasse lignocellulosique vapocraquée sous forme de poudre consistant à :
  • disposer d’une biomasse lignocellulosique
  • traiter ladite biomasse par vapocraquage jusqu’à obtention d’une poudre
  • presser ladite poudre, seule ou en association avec un matériau fibreux, pour densification.
Process for producing a biomaterial from steam-cracked lignocellulosic biomass in powder form, consisting of:
  • have a lignocellulosic biomass
  • treating said biomass by steam cracking until a powder is obtained
  • pressing said powder, alone or in combination with a fibrous material, for densification.
Procédé selon la revendication 1 dans lequel ladite poudre densifiée seule est de nature fibreuse.A method according to claim 1 wherein said densified powder alone is fibrous in nature. Procédé selon la revendication 1 dans lequel ladite poudre est de nature non fibreuse et est densifiée en association avec un matériau fibreux.A method according to claim 1 wherein said powder is non-fibrous in nature and is densified in association with a fibrous material. Procédé selon la revendication 1 dans lequel ladite poudre densifiée seule est un mélange de poudres vapocraquées de nature fibreuse et non fibreuse.Process according to Claim 1, in which the said densified powder alone is a mixture of steam-cracked powders of fibrous and non-fibrous nature. Utilisation d’une poudre obtenue par vapocraquage d’une biomasse lignocellulosique en tant que matière première pour la préparation d’un biomatériau.Use of a powder obtained by steam cracking of a lignocellulosic biomass as raw material for the preparation of a biomaterial. Utilisation selon la revendication 5 dans laquelle ladite poudre est le seul composant du biomatériau.Use according to claim 5 wherein said powder is the sole component of the biomaterial. Utilisation d’une poudre non fibreuse obtenue par vapocraquage d’une biomasse lignocellulosique en tant que liant pour la préparation d’un biomatériau.Use of a non-fibrous powder obtained by steam cracking of a lignocellulosic biomass as a binder for the preparation of a biomaterial. Utilisation selon la revendication 5 dans laquelle ladite poudre est mélangée avec un matériau fibreux et/ou un liant.Use according to claim 5 wherein said powder is mixed with a fibrous material and/or a binder. Biomatériau obtenu à partir de biomasse lignocellulosique vapocraquée sous forme de poudre fibreuse ou non fibreuse.Biomaterial obtained from steam-cracked lignocellulosic biomass in the form of fibrous or non-fibrous powder. Biomatériau selon la revendication 9 comprenant un mélange de poudres de bois de nature fibreuse et de nature non fibreuse préparées par vapocraquage.Biomaterial according to claim 9 comprising a mixture of wood powders of fibrous nature and of non-fibrous nature prepared by steam cracking. Utilisation d’un biomatériau tel que défini à l’une des revendications 9 ou 10 en tant que produit de garnissage, produit isolant et/ou panneaux composites.Use of a biomaterial as defined in one of claims 9 or 10 as a packing product, insulating product and/or composite panels.
FR2102660A 2021-03-17 2021-03-17 BIOMATERIAL FROM VAPOCRACKED LIGNOCELLULOSIC BIOMASS Active FR3120873B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR2102660A FR3120873B1 (en) 2021-03-17 2021-03-17 BIOMATERIAL FROM VAPOCRACKED LIGNOCELLULOSIC BIOMASS
PCT/FR2022/050494 WO2022195232A1 (en) 2021-03-17 2022-03-17 Biomaterial from steam-cracked lignocellulosic biomass
EP22714493.8A EP4308352A1 (en) 2021-03-17 2022-03-17 Biomaterial from steam-cracked lignocellulosic biomass
AU2022237941A AU2022237941A1 (en) 2021-03-17 2022-03-17 Biomaterial from steam-cracked lignocellulosic biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2102660A FR3120873B1 (en) 2021-03-17 2021-03-17 BIOMATERIAL FROM VAPOCRACKED LIGNOCELLULOSIC BIOMASS
FR2102660 2021-03-17

Publications (2)

Publication Number Publication Date
FR3120873A1 true FR3120873A1 (en) 2022-09-23
FR3120873B1 FR3120873B1 (en) 2024-03-15

Family

ID=75539625

Family Applications (1)

Application Number Title Priority Date Filing Date
FR2102660A Active FR3120873B1 (en) 2021-03-17 2021-03-17 BIOMATERIAL FROM VAPOCRACKED LIGNOCELLULOSIC BIOMASS

Country Status (4)

Country Link
EP (1) EP4308352A1 (en)
AU (1) AU2022237941A1 (en)
FR (1) FR3120873B1 (en)
WO (1) WO2022195232A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3134109A1 (en) * 2022-04-05 2023-10-06 Europeenne De Biomasse PROCESS FOR OPTIMIZING THE PRODUCTION OF LEVOGLUCOSENONE DURING STEAM CRACKING OF LIGNOCELLULOSIC BIOMASS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105856379A (en) * 2016-04-14 2016-08-17 华南理工大学 Environment-friendly high-strength lignocellulose plate and preparing method thereof
CN110253708A (en) * 2019-05-05 2019-09-20 江苏建筑职业技术学院 A kind of stalk of high intensity is without glue plank stuff production technology and plate
WO2020260801A1 (en) * 2019-06-24 2020-12-30 Europeenne De Biomasse Method for producing a biofuel by steam cracking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105856379A (en) * 2016-04-14 2016-08-17 华南理工大学 Environment-friendly high-strength lignocellulose plate and preparing method thereof
CN110253708A (en) * 2019-05-05 2019-09-20 江苏建筑职业技术学院 A kind of stalk of high intensity is without glue plank stuff production technology and plate
WO2020260801A1 (en) * 2019-06-24 2020-12-30 Europeenne De Biomasse Method for producing a biofuel by steam cracking

Also Published As

Publication number Publication date
FR3120873B1 (en) 2024-03-15
EP4308352A1 (en) 2024-01-24
AU2022237941A1 (en) 2023-09-28
WO2022195232A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
Stelte et al. A study of bonding and failure mechanisms in fuel pellets from different biomass resources
Ayrilmis et al. Utilization of pine (Pinus pinea L.) cone in manufacture of wood based composite
Pirayesh et al. Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard
Akinyemi et al. Durability and strength properties of particle boards from polystyrene–wood wastes
Essid et al. Comparison of the properties of flax shives based particleboards prepared using binders of bio-based lignin and partially bio-based epoxy resin
WO2010000983A1 (en) Novel plant-based material
Pirayesh et al. Particleboard from wood particles and sycamore leaves Physico-mechanical properties
Aisien et al. Particle boards produced from cassava stalks: Evaluation of physical and mechanical properties
Xing et al. Impact of bark content on the properties of medium density fiberboard (MDF) in four species grown in eastern Canada.
FR3120873A1 (en) BIOMATERIAL FROM VAPOCRACKED LIGNOCELLULOSIC BIOMASS
Tufan et al. Potential use of hazelnut husk in recycled high-density polyethylene composites
Santos et al. Particleboard manufactured from Tauari (Couratari oblongifolia) wood waste using castor oil based polyurethane resin
Mao et al. Flakeboard bonded with polymeric diphenylmethane diisocyanate/bio-oil adhesive systems
EP2718361B1 (en) Protective and/or combustible material made from cellulosic plant material, and corresponding method for manufacturing same
EP3353256B1 (en) Adhesive composition comprising a silicate ester
Ojewumi et al. Production of Particleboard from Agricultural Waste-A Sustainable Approach to Waste Management
FR2526366A1 (en) PROCESS FOR MANUFACTURING AGGLOMERATED PANELS
EP0987089B1 (en) Method for making shaped objects from a vegetable raw material by pressing
Brito et al. Technological properties of medium density particleboards produced with peanut (Arachis Hypogaea) and Pinus Oocarpa hulls
RU2240334C1 (en) Wood-based composition
EP2398856B1 (en) Method for obtaining an agro-material, in particular an agro-binder or agro-composite, and agro-material obtained by said method
Gumowska et al. The potential of utilisation of birch bark suberinic acid residues as a component of the adhesive mass for bonding of wood composites
Valyova et al. Influence of pressing time on physical and mechanical properties of particleboards made from scots pine (Pinus sylvestris L.)
Ekhuemelo et al. Physical and mechanical properties of wood plastic composite particle boards produced from the combination of Gmelina arborea and Khaya senegalensis sawdust and polyethylene terephthalate
Taskirawati et al. Characteristics of the Cement Board Using CO2 Injection Technology from Wood and Non-Wood Species

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20220923

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4