FR3102803B1 - HVAC Chamber Synchronized Split Aircraft Engine - Google Patents

HVAC Chamber Synchronized Split Aircraft Engine Download PDF

Info

Publication number
FR3102803B1
FR3102803B1 FR1912009A FR1912009A FR3102803B1 FR 3102803 B1 FR3102803 B1 FR 3102803B1 FR 1912009 A FR1912009 A FR 1912009A FR 1912009 A FR1912009 A FR 1912009A FR 3102803 B1 FR3102803 B1 FR 3102803B1
Authority
FR
France
Prior art keywords
several
phase
splitting
chambers
valves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
FR1912009A
Other languages
French (fr)
Other versions
FR3102803A1 (en
Inventor
Bernard Macarez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR1912009A priority Critical patent/FR3102803B1/en
Publication of FR3102803A1 publication Critical patent/FR3102803A1/en
Application granted granted Critical
Publication of FR3102803B1 publication Critical patent/FR3102803B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C5/00Gas-turbine plants characterised by the working fluid being generated by intermittent combustion
    • F02C5/12Gas-turbine plants characterised by the working fluid being generated by intermittent combustion the combustion chambers having inlet or outlet valves, e.g. Holzwarth gas-turbine plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

Un moteur (M) d’aéronef (AE) à combustion à volume constant, comportant plusieurs modules (A), agencé pour permettre un fractionnement synchronisé des phases (i) d’admission, de combustion, de détente, de balayage et/ou de refroidissement, et de purge, d’un fluide compressible à l’aide d’un procédé de contrôle de valves réalisé au cours d’un cycle thermodynamique, ledit moteur (M) comportant  plusieurs chambres de combustion (2),plusieurs vannes (3) situées à l’entrée,plusieurs vannes (4) (5)(6) situées en sortie des chambres (2),plusieurs carters (7)(8)(19) situés entre la sortie des chambres et les étages turbines (15)(16), plusieurs conduits (18), lesdites chambres (2) caractérisées en ce qu’au cours d’une phase (i) choisie, les ouvertures et les fermetures des vannes (3)(4)(5)(6), sont contrôlées pour fractionner en plusieurs fractions (j)  le déroulement d’une phase (i) afin de transférer vers les carters (7) (8) (19) (20) plusieurs fractions de masse dmi (30) égales à la masse transvasée au cours de la durée dtj (32) du fractionnement (j) choisi. Un procédé de fractionnement synchronisé des phases (i) permettant : de gérer le nombre de tubes (m)(22) d’un même groupe (B) pour que le début de la phase (i) d’une chambre (2) débute dès que la phase (i) d’un autre chambre (2) de ce même groupe (B) se termine.Appelée « synchronisation » des chambres (2) du groupe (B).au cours d’une phase (i),de décaler des durées de fractionnement dt i (32) (33),les instants de début de cycle des groupes (B) dans un module (A), appelé fractionnement (j) des phases (i),de telle sorte que les gaz sortant des vannes (4) (5) alimentent respectivement les carters (7) et (8) via les conduits (18) avec des pressions et températures moyennes distinctes HP (10) et BP (11) pour 2 fractionnements seulement.Le « fractionnement synchronisé » permettant d’obtenir à l’entrée des étages turbines (15) et (16) des fréquences d’ondes fj (34) (35) élevées (1000Hz) , augmentant les rendements turbines et les valeurs de pression et de températures à l’entrée des turbines. Figure à publier avec l’abrégé : [Fig 3]An aircraft engine (AE) with constant volume combustion, comprising several modules (A), arranged to allow a synchronized splitting of the phases (i) of intake, combustion, expansion, scavenging and/or cooling, and purging, a compressible fluid using a valve control method carried out during a thermodynamic cycle, said engine (M) comprising several combustion chambers (2), several valves ( 3) located at the inlet, several valves (4) (5) (6) located at the outlet of the chambers (2), several casings (7) (8) (19) located between the outlet of the chambers and the turbine stages ( 15)(16), several ducts (18), said chambers (2) characterized in that during a chosen phase (i), the openings and closings of the valves (3)(4)(5)( 6), are controlled to split into several fractions (j) the progress of a phase (i) in order to transfer to the casings (7) (8) (19) (20) several mass fractions dmi (30) equal to the mass tr ansvasée during the duration dtj (32) of the fractionation (j) chosen. A method of synchronized splitting of phases (i) allowing: to manage the number of tubes (m)(22) of the same group (B) so that the beginning of phase (i) of a chamber (2) begins as soon as the phase (i) of another room (2) of this same group (B) ends. Called "synchronization" of the rooms (2) of the group (B). during a phase (i), to shift the splitting times dt i (32) (33), the cycle start times of the groups (B) in a module (A), called splitting (j) of the phases (i), so that the gases coming out of the valves (4) (5) respectively feed the casings (7) and (8) via the conduits (18) with distinct average pressures and temperatures HP (10) and LP (11) for 2 fractionations only. synchronized" making it possible to obtain high (1000Hz) fj (34) (35) wave frequencies at the input of the turbine stages (15) and (16), increasing the turbine yields and the pressure and temperature values at turbine inlet . Figure to be published with abstract: [Fig 3]

FR1912009A 2019-10-30 2019-10-30 HVAC Chamber Synchronized Split Aircraft Engine Active FR3102803B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1912009A FR3102803B1 (en) 2019-10-30 2019-10-30 HVAC Chamber Synchronized Split Aircraft Engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1912009A FR3102803B1 (en) 2019-10-30 2019-10-30 HVAC Chamber Synchronized Split Aircraft Engine
FR1912009 2019-10-30

Publications (2)

Publication Number Publication Date
FR3102803A1 FR3102803A1 (en) 2021-05-07
FR3102803B1 true FR3102803B1 (en) 2022-07-15

Family

ID=70154452

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1912009A Active FR3102803B1 (en) 2019-10-30 2019-10-30 HVAC Chamber Synchronized Split Aircraft Engine

Country Status (1)

Country Link
FR (1) FR3102803B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1988456A (en) * 1930-03-24 1935-01-22 Milo Ab Gas turbine system
US2750735A (en) * 1951-12-24 1956-06-19 Schilling Estate Company Apparatus for the generation of driving gases by explosion and process for operating the same
FR2829528B1 (en) 2001-09-07 2004-02-27 Bernard Gilbert Macarez PULSOMOTOR-IMPULSE TURBOMOTOR-GAS TURBINE WITH IMPULSE COMBUSTION CHAMBER AND JET EXPANSION
US7228683B2 (en) * 2004-07-21 2007-06-12 General Electric Company Methods and apparatus for generating gas turbine engine thrust using a pulse detonator

Also Published As

Publication number Publication date
FR3102803A1 (en) 2021-05-07

Similar Documents

Publication Publication Date Title
US3708979A (en) Circuital flow hot gas engines
US2906101A (en) Fluid expansion refrigeration method and apparatus
US5454426A (en) Thermal sweep insulation system for minimizing entropy increase of an associated adiabatic enthalpizer
DE60218853T2 (en) COMPOSITE GAS TURBINE AND METHOD FOR THEIR OPERATION
RU2019115293A (en) Ice cream machine
AU2007200019A1 (en) Method for converting thermal energy into mechanical work
FR3032235B1 (en) THERMAL MOTOR WITH TRANSFER-RELAXATION AND REGENERATION
FR3102803B1 (en) HVAC Chamber Synchronized Split Aircraft Engine
RU2720868C2 (en) Constant volume combustion module for a gas turbine engine comprising an ignition system by means of a communication line
US5179839A (en) Alternative charging method for engine with pressurized valved cell
RU2626881C2 (en) Cooling method
US3546877A (en) Hot-gas piston engine
WO1992002723A1 (en) Piston engine for converting heat into power by the stirling process with the heat supplied by internal combustion
SU1567804A1 (en) Combined diesel gas-turbine plant
US6273038B1 (en) Rotary distribution system internal combustion engine
RU2649523C2 (en) External combustion engine based on gamma-type stirling engine, drive system and method of engine power regulation
US2102946A (en) Internal combustion engine
RU2549745C2 (en) Operation of two-stroke ice running on hydrogen and with application of exhaust power in pulsating pipe
EP3426905B1 (en) Stirling engine type energy generating system
RU2297612C2 (en) Device for determination of characteristics and boundaries of steady operation of compressor in gas-turbine engine system
RU2814992C1 (en) Method for obtaining mechanical energy from action of gas pressure and piston expander for its implementation
US930564A (en) Method of operating multistage prime motors.
RU2810958C1 (en) Heat supply system and method for organizing its operation
RU2747244C1 (en) Four-cylinder internal combustion engine with the addition of the fifth stroke
RU2170834C1 (en) Method of operation of adaptable internal combustion engine

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20210507

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5