FR3096797B1 - DESIGN PROCESS OF A SUPRACONDUCTOR COMPONENT AND ASSOCIATED DEVICES - Google Patents

DESIGN PROCESS OF A SUPRACONDUCTOR COMPONENT AND ASSOCIATED DEVICES Download PDF

Info

Publication number
FR3096797B1
FR3096797B1 FR1905628A FR1905628A FR3096797B1 FR 3096797 B1 FR3096797 B1 FR 3096797B1 FR 1905628 A FR1905628 A FR 1905628A FR 1905628 A FR1905628 A FR 1905628A FR 3096797 B1 FR3096797 B1 FR 3096797B1
Authority
FR
France
Prior art keywords
component
thickness
junctions
associated devices
designing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
FR1905628A
Other languages
French (fr)
Other versions
FR3096797A1 (en
Inventor
Pawlowski Eliana Recoba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Priority to FR1905628A priority Critical patent/FR3096797B1/en
Priority to PCT/EP2020/064921 priority patent/WO2020239957A1/en
Publication of FR3096797A1 publication Critical patent/FR3096797A1/en
Application granted granted Critical
Publication of FR3096797B1 publication Critical patent/FR3096797B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/035Measuring direction or magnitude of magnetic fields or magnetic flux using superconductive devices
    • G01R33/0354SQUIDS
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0094Sensor arrays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/14Details relating to CAD techniques related to nanotechnology

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

Procédé de conception d’un composant supraconducteur et dispositifs associés L’invention se rapporte à un procédé de conception d’un composant supraconducteur (40) mis en œuvre par ordinateur comprenant un premier réseau (42) de jonctions Josephson (52) connectées électriquement en parallèles et présentant une épaisseur, le procédé comprenant les étapes de : fourniture de paramètres d’entrée initiaux et d’un profil de réponse requis du composant, les paramètres d’entrée comprenant le nombre et la position des jonctions, la température de mesure, la valeur d’un courant d’alimentation et l’épaisseur initiale de chaque jonction, et optimisation du composant par modification de paramètres variables pour respecter un critère qui est de minimiser la différence en valeur absolue entre les profils de réponse requis et calculé, le profil de réponse requis étant la variation de la tension en sortie du composant en fonction de la variation d’un champ magnétique extérieur, les paramètres variables comprenant l’épaisseur des jonctions, l’étape d’optimisation étant mise en œuvre par itération. Figure pour l'abrégé : figure 3A method of designing a superconducting component and associated devices The invention relates to a method of designing a computer-implemented superconducting component (40) comprising a first network (42) of Josephson junctions (52) electrically connected in parallel and having a thickness, the method comprising the steps of: providing initial input parameters and a required response profile of the component, the input parameters comprising the number and position of the junctions, the measurement temperature, the value of a supply current and the initial thickness of each junction, and optimization of the component by modifying variable parameters to meet a criterion which is to minimize the difference in absolute value between the required and calculated response profiles, the required response profile being the variation of the voltage at the output of the component as a function of the variation of an external magnetic field, the variable parameters including the thickness of the junctions, the optimization step being implemented by iteration. Figure for abstract: figure 3

FR1905628A 2019-05-28 2019-05-28 DESIGN PROCESS OF A SUPRACONDUCTOR COMPONENT AND ASSOCIATED DEVICES Active FR3096797B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1905628A FR3096797B1 (en) 2019-05-28 2019-05-28 DESIGN PROCESS OF A SUPRACONDUCTOR COMPONENT AND ASSOCIATED DEVICES
PCT/EP2020/064921 WO2020239957A1 (en) 2019-05-28 2020-05-28 Method for designing a superconducting component and associated devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1905628A FR3096797B1 (en) 2019-05-28 2019-05-28 DESIGN PROCESS OF A SUPRACONDUCTOR COMPONENT AND ASSOCIATED DEVICES
FR1905628 2019-05-28

Publications (2)

Publication Number Publication Date
FR3096797A1 FR3096797A1 (en) 2020-12-04
FR3096797B1 true FR3096797B1 (en) 2021-10-22

Family

ID=69172827

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1905628A Active FR3096797B1 (en) 2019-05-28 2019-05-28 DESIGN PROCESS OF A SUPRACONDUCTOR COMPONENT AND ASSOCIATED DEVICES

Country Status (2)

Country Link
FR (1) FR3096797B1 (en)
WO (1) WO2020239957A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116401993B (en) * 2023-03-13 2024-06-14 本源量子计算科技(合肥)股份有限公司 Capacitor design method and device, electronic equipment, medium and program product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033585A1 (en) * 1999-11-05 2001-05-10 Oxxel Oxide Electronics Technology, Inc. Synthesis and magnetoresistance test system using double-perovskite samples for preparation of a magnetoresistance device
US8179133B1 (en) * 2008-08-18 2012-05-15 Hypres, Inc. High linearity superconducting radio frequency magnetic field detector

Also Published As

Publication number Publication date
FR3096797A1 (en) 2020-12-04
WO2020239957A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
FR3096797B1 (en) DESIGN PROCESS OF A SUPRACONDUCTOR COMPONENT AND ASSOCIATED DEVICES
US6161054A (en) Cell control method and apparatus
Metzger et al. Heat transfer around sharp 180-deg turns in smooth rectangular channels
US11022968B2 (en) Methods and systems for applying run-to-run control and virtual metrology to reduce equipment recovery time
AU2014239855A1 (en) Electric power system control with measurement of energy demand and energy efficiency using t - distributions
CN106403166B (en) A kind of cooling load prediction control method and device
Mirkin et al. Dead-time compensation for systems with multiple I/O delays: A loop-shifting approach
US20160132042A1 (en) Intelligent processing tools
CN105279558B (en) A kind of multi-peak photovoltaic MPPT methods based on BP neural network
KR20160016623A (en) Semiconductor integrated circuit device and method of regulating output voltage thereof
US20110320026A1 (en) System and method for data mining and feature tracking for fab-wide prediction and control
US2813186A (en) Heat treatment apparatus
Nangru et al. Modified PSO based PID controller for stable processes
Ivashchenko et al. Analyzing probabilistic properties of electrical characteristics in the circuits containing stochastic load
Lenz et al. Virtual metrology in semiconductor manufacturing by means of predictive machine learning models
Pengfei et al. Flatness control strategy based on delay compensation for cold rolling mill
CN110112747B (en) Power distribution network voltage control method and system based on synchronous measurement and sensitivity estimation
DE112010000924T5 (en) Vacuum heater and vacuum heat treatment process
JPH11296204A (en) Multivariable process control system
KR20220074089A (en) Process Update and Defect Cause Analysis Method of Manufacturing Process of Semiconductor
Thummala et al. Estimation of the FRF through the improved local bandwidth selection in the local polynomial method
Bergauer et al. Process control strategy of the silicon sensors production for the CMS tracker
Li et al. Research on high performance control strategy of slab thickness based on TS fuzzy control
Kabuli et al. Improving static performance robustness of thermal processes
Salnikov et al. Review of the application of virtual metrology approach in semiconductor manufacturing

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20201204

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6