FR3090833A1 - Appareil et procédé pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante - Google Patents

Appareil et procédé pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante Download PDF

Info

Publication number
FR3090833A1
FR3090833A1 FR1873365A FR1873365A FR3090833A1 FR 3090833 A1 FR3090833 A1 FR 3090833A1 FR 1873365 A FR1873365 A FR 1873365A FR 1873365 A FR1873365 A FR 1873365A FR 3090833 A1 FR3090833 A1 FR 3090833A1
Authority
FR
France
Prior art keywords
liquid
bath
heat exchanger
richer
exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1873365A
Other languages
English (en)
Other versions
FR3090833B1 (fr
Inventor
Oumar Khan
Mathieu Leclerc
Paul TERRIEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority to FR1873365A priority Critical patent/FR3090833B1/fr
Priority to AU2019272029A priority patent/AU2019272029A1/en
Publication of FR3090833A1 publication Critical patent/FR3090833A1/fr
Application granted granted Critical
Publication of FR3090833B1 publication Critical patent/FR3090833B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0266Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0223H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/0605Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
    • F25J3/0625H2/CO mixtures, i.e. synthesis gas; Water gas or shifted synthesis gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/06Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
    • F25J3/063Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
    • F25J3/067Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/40Features relating to the provision of boil-up in the bottom of a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/70Flue or combustion exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/80Separating impurities from carbon dioxide, e.g. H2O or water-soluble contaminants
    • F25J2220/82Separating low boiling, i.e. more volatile components, e.g. He, H2, CO, Air gases, CH4
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/80Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/80Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Dans un procédé de séparation d’un courant d’alimentation comprenant du CO2, un gaz (7) dérivé de ce courant se condense partiellement dans un échangeur de chaleur (12) dans lequel le courant d’alimentation circule dans des tubes ou entre des plaques, les tubes ou les plaques étant plongés dans un bain de CO2 liquide à une température inférieure à -43°C qui se vaporise partiellement, au moins les deux tiers du liquide d’un système de séparation en aval de l’échangeur de chaleur étant envoyé au bain. Figure de l’abrégé : Fig. 1

Description

Description
Titre de l'invention : Appareil et procédé pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante
[0001] La présente invention est relative à un procédé et à un appareil pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante, c'est-à-dire en dessous de 0°C. Un gaz riche en dioxyde de carbone contient au moins 60% mol. de dioxyde de carbone, voire au moins 80% mol. de dioxyde de carbone.
[0002] Le reste du gaz peut contenir un ou plusieurs des composants suivants :
• les composés plus volatils tels que de l’oxygène, de l’azote, de l’argon, du monoxyde de carbone, de l’hydrogène, du mercure, du méthane, • les composés plus lourds tels que de l’oxyde d’azote (NO ou NO2 ou N2O ou N2O4), SO2, SO3, les C2+, H2S, les composés aromatiques.
[0003] La purification peut être réalisée par une ou plusieurs étapes successives de condensation partielle et/ou par distillation.
[0004] EP 2685191 Al présente une solution de séparation du CO2 par voie cryogénique utilisant un échangeur à tubes et à calandre pour le refroidissement aux plus basses températures, proches du point triple du CO2 (entre -45 et -56°C). On refroidit le gaz jusqu’à des températures proches du point triple afin de condenser un maximum de CO 2 avec une consommation énergétique minimale.
[0005] Le gaz à condenser est refroidi dans les tubes contre le liquide présent dans la calandre. Ainsi, le gaz est refroidi jusqu’à la température du liquide se vaporisant dans le bain (à l’approche près dans l’échangeur qui est comprise entre 1 et 10°C). Le liquide dans le bain est le plus souvent une part du CO2 issue de la production de l’unité ou une part d’un cycle froid dédié détendue à une pression proche de celle du point triple du CO2 et à une température comprise entre -56 et -50°C. Les autres parts sont vaporisées à plus hautes pressions (plus hautes températures donc) dans l’échangeur principal (de type échangeur en aluminium brasé à plaques et à ailettes le plus souvent).
[0006] On peut injecter aussi plus de liquide que nécessaire à l’échange thermique dans l’échangeur à tube et à calandre afin d’obtenir une purge de liquide permettant d’éviter des phénomènes de concentration dans le bain. Cette purge est le plus souvent pompée et envoyée vers la production.
[0007] Dans le cas où le CO2 utilisé pour le refroidissement contient une part significative d’impuretés, sa température est plus élevée au sein du bain qu’avant son injection dans l’échangeur principal. Par impuretés, on entend tous les composés solubilisés dans le
C02, soit plus volatils comme N2, O2, Ar, CO, H2 ou CH4, soit plus lourdes comme CH 3OH, NO2/N2O4, SO2, SO3, les C2+, H2S, les composés aromatiques etc. Le phénomène d’élévation de température dans le bain est lié à la différence de composition au sein du bain et avant l’injection du CO2. En effet, le liquide dans le bain se vaporisant, s’il est impur, son changement d’état ne se réalise pas à température constante.
[0008] Comme l’échange de chaleur est réalisé entre le gaz à condenser et le bain, pour une approche donnée, le gaz à condenser ne pourra pas être refroidi autant que dans le cas où le bain est constitué de CO2 quasi pur.
[0009] Par exemple, si on considère 2°C d’approche, avec un CO2 de refroidissement quasi pur à -54°C, on pourra refroidir le gaz à condenser jusque -52°C. Par contre, même si le CO2 de refroidissement est à -54°C mais impur, la température du bain sera supérieure à -54°C donc le gaz à condenser ne pourra pas être refroidi jusqu’à -52°C. On ne récupère donc pas autant de CO2 condensé. Une solution pourrait consister à baisser la température du CO2 de refroidissement à une température plus basse afin d’obtenir la température souhaitée dans le bain. Mais cette opération a une température plus basse augmenterait le risque de solidification du CO2 puisque le CO2 de refroidissement aurait une température plus proche du point triple du CO2 avant son injection dans le bain.
[0010] Le débit de purge du bain étant le plus souvent faible, si on l’envoie vers la production, une petite pompe avec un très fort taux de compression est alors employée ce qui peut poser des problèmes technologiques. Une pompe à piston est alors le plus souvent choisie, mais ce type de pompe requiert une maintenance récurrente impliquant l’arrêt de la pompe et des coûts importants.
[0011] Enfin, quand une colonne à distiller est employée pour purifier le CO2 produit en composés légers, on rebout le plus souvent le liquide de cuve dans l’échangeur principal.
[0012] Afin que le liquide puisse s’écouler de la colonne vers l’échangeur, cette dernière doit être installée à un niveau plus haut que l’échangeur. Il est donc nécessaire d’installer une structure particulière sous la colonne.
[0013] Selon un objet de l’invention, il est prévu un procédé de séparation d’un courant d’alimentation comprenant du CO2, comprenant au moins les étapes suivantes : a. Refroidissement du courant d’alimentation dans un premier échangeur de chaleur en plaques d’aluminium brasées, constitué de tapis d’ondes séparés par des plaques.
b. Refroidissement et condensation partielle ou totale d’au moins une part du courant d’alimentation refroidi en a) ou d’un gaz dérivé de ce courant refroidi en a) jusqu’à une température inférieure à -45°C dans un deuxième échangeur de chaleur dans lequel le courant d’alimentation circule dans des tubes ou entre des plaques, les tubes ou les plaques étant plongés dans un bain de CO2 liquide à une température inférieure à -43 °C qui se vaporise partiellement.
c. Envoi d’au moins une partie du courant d’alimentation condensé partiellement ou totalement dans un système de séparation comprenant au moins un séparateur de phases et/ou au moins une colonne de distillation pour produire un liquide plus riche en CO2 que le courant d’alimentation.
d. Envoi d’au moins les deux tiers du liquide plus riche en CO2, voire tout le liquide plus riche en CO2, au deuxième échangeur de chaleur pour alimenter le bain de liquide.
e. Prélèvement d’une part du liquide contenu dans le bain.
f. Pompage d’au moins une partie de ce liquide pour former un liquide pompé et g. Injection dans le premier échangeur de chaleur d’au moins une partie de ce liquide pompé ou d’un fluide dérivé de ce liquide pompé afin de refroidir le courant d’alimentation.
[0014] Selon d’autres caractéristiques facultatives :
• le gaz partiellement condensé dans le deuxième échangeur de chaleur est envoyé à un premier séparateur de phases et le liquide de ce séparateur de phases alimente une colonne de distillation ou un deuxième séparateur de phases, un liquide de cuve de la colonne ou du deuxième séparateur constituant le liquide plus riche en CO2 que le courant d’alimentation.
• le liquide pompé de l’étape g) se vaporise dans le premier échangeur pour former partie du produit gazeux riche en CO2.
• une partie du liquide plus riche en CO2 se vaporise dans le bain, se réchauffe dans le premier échangeur et forme partie du produit gazeux riche en CO2.
• au moins une partie du liquide plus riche en CO2 se vaporise dans le bain, se réchauffe dans le premier échangeur et se mélange avec le courant d’alimentation à séparer.
• une partie du liquide plus riche en CO2 provenant du bain forme partie d’un produit liquide riche en CO2, sans avoir été réchauffé dans le premier échangeur.
• le système de séparation comprend une colonne de distillation et une partie du liquide plus riche en CO2 provenant du bain est vaporisée dans le premier échangeur et renvoyée sous forme gazeuse en cuve de la colonne de distillation.
• tout le produit riche en CO2 provient du deuxième échangeur de chaleur.
• le pompage est réalisé au moyen d’une pompe de type centrifuge.
[0015] Selon un autre objet de l’invention, il est prévu un appareil de séparation d’un courant d’alimentation comprenant du CO2, comprenant un premier échangeur de chaleur en plaques d’aluminium brasées, constitué de tapis d’ondes séparés par des plaques, un deuxième échangeur de chaleur comprenant un bain de liquide et des tubes ou des plaques plongés dans le bain, un système de séparation comprenant au moins un séparateur de phases et/ou au moins une colonne de distillation, une conduite pour envoyer le courant d’alimentation se refroidir dans le premier échangeur de chaleur, une conduite pour envoyer un débit qui est une part du courant d’alimentation refroidi dans le premier échangeur de chaleur ou un gaz dérivé de ce courant refroidi se refroidir jusqu’à une température inférieure à -45°C dans les tubes ou entre les plaques du deuxième échangeur de chaleur plongés dans le bain de CO2 liquide à une température inférieure à -43 °C, une conduite pour envoyer un liquide produit en condensant le débit partiellement ou totalement dans un système de séparation comprenant au moins un séparateur de phases et/ou au moins une colonne de distillation pour produire un liquide plus riche en CO2 que le courant d’alimentation, une conduite reliée au bain de liquide du deuxième échangeur de chaleur pour y envoyer tout le liquide plus riche en CO2, une pompe, une conduite pour prélever une part du liquide contenu dans le bain, reliée à la pompe, une conduite reliée à la sortie de la pompe et au premier échangeur de chaleur et une conduite pour sortir le liquide pompé vaporisé du premier échangeur de chaleur.
[0016] Eventuellement, la cuve de la colonne de distillation et/ou la cuve du séparateur de phases est installée à un niveau égal ou inférieur à celui du premier échangeur de chaleur.
[0017] La présente invention consiste premièrement à augmenter significativement la part du CO2 envoyé dans le bain bien que la quantité de CO2 liquide de refroidissement envoyée à l’échangeur soit alors nettement supérieure à celle qui est nécessaire pour la condensation du gaz à refroidir. Ainsi, le débit de liquide vaporisé dans le bain restant la même, sa part a diminué relativement au débit de liquide injecté dans le bain. Le changement de composition dû à cette vaporisation est alors réduit et la température dans le bain est quasi constante. On peut alors refroidir le gaz à condenser à des températures plus basses permettant une optimisation énergétique.
[0018] De cette manière, on a alors diminué la quantité de liquide de refroidissement disponible à plus haute pression. On utilisera alors la pompe de purge du bain pour augmenter la pression du liquide purgé. Le liquide à nouveau pressurisé pourra alors être vaporisé et/ou envoyé à la production. Dans ce cas la pompe de purge a significativement augmenté de taille, ce qui peut affecter son coût. Mais dans ce cas, une pompe de type centrifuge peut le plus souvent être utilisée permettant alors une réduction des coûts de maintenance.
[0019] Une part du liquide pompé peut d’ailleurs être vaporisée dans l’échangeur principal et renvoyée à la colonne de distillation afin d’assurer son rebouillage. Dans ce cas la colonne n’a plus besoin d’être en charge sur l’échangeur principal. On peut donc installer la colonne à terre et faire des économies de coûts de structure.
[0020] Enfin, la purge étant significativement augmentée dans l’échangeur, on diminue encore les risques de concentration d’impuretés dans le bain. C’est d’autant plus important quand ces impuretés peuvent se solidifier comme NO2/N2O4 par exemple.
[0021] Il est également possible d’utiliser cette étape pour rebouillir le liquide. En effet dans un schéma sans colonne, envoyer la totalité du liquide provenant du ou des pots permet de rebouillir les impuretés légères. En recyclant alors le gaz vaporisé et en utilisant uniquement le liquide sortant du bain de l’échangeur comme produit final, on peut purifier au-delà d’un simple schéma de condensation partielle. Dans ce cas le gaz vaporisé dans l’échangeur est recyclé à l’entrée de la boîte froide (dans un compresseur de courant d’alimentation, un compresseur de recycle ou un booster dédié selon le schéma).
[0022] On peut ainsi opérer une unité de séparation cryogénique du CO2 sans colonne à distiller mais avec de meilleures performances qu’un simple schéma de condensation partielle.
[0023] Un fluide est dérivé d’un autre fluide dans les cas suivants :
• quand un fluide est divisé en plusieurs parties sans changement de composition, • quand un fluide est réchauffé, • quand un fluide est refroidi, • quand un fluide est pressurisé, • quand un fluide est détendu, • quand un fluide est refroidi et partiellement condensé, le fluide dérivé du fluide pouvant être le gaz non-condensé ou le liquide condensé.
[0024] L’invention sera décrite de manière plus détaillée en se référant à la figure, qui représente un procédé selon l’invention.
[0025] [fig-1] montre un procédé de séparation d’un gaz riche en CO2 1, contenant 60% mol. de dioxyde de carbone, voire au moins 80% mol. de dioxyde de carbone.
[0026] Le reste du gaz peut contenir un ou plusieurs des composants suivants :
• les composés plus volatils tels que de l’oxygène, de l’azote, de l’argon, du monoxyde de carbone, de l’hydrogène, du mercure, du méthane ou • les composés plus lourds tels que de l’oxyde d’azote (NO ou NO2 ou N2O ou N2O4), SO2, SO3, les C2+, H2S, les composés aromatiques.
[0027] Le gaz 1 est à une pression d’au moins 5,5 bars, éventuellement après compression dans un compresseur. Le gaz 1 se refroidit et se condense partiellement dans un premier échangeur de chaleur 3 en plaques d’aluminium brasées, constitué de tapis d’ondes séparés par des plaques. Le gaz partiellement condensé est séparé dans un sé parateur de phases 5. Le gaz 7 du séparateur de phases 5 subit un refroidissement jusqu’à une température inférieure à -45°C qui entraîne une condensation partielle ou totale dans un deuxième échangeur de chaleur 12 dans lequel le courant d’alimentation circule dans des tubes ou entre des plaques, les tubes ou les plaques étant plongés dans un bain de CO2 liquide à une température inférieure à -43°C. Le liquide du bain se vaporise partiellement.
[0028] Le gaz 7 ici partiellement condensé est envoyé à un séparateur de phases 15. Le liquide du séparateur de phases 15 est envoyé en tête d’une colonne de distillation 21. Le gaz 11 du séparateur de phases 15 se réchauffe dans l’échangeur de chaleur 3. Le liquide 9 du séparateur de phases 5 est mélangé avec le liquide 13, le mélange est détendu dans une vanne 17 et envoyé comme liquide 19 en tête de la colonne 21.
[0029] Le gaz de tête 43 de la colonne 21 se réchauffe dans l’échangeur de chaleur 3.
[0030] Le liquide 23 constitue un liquide plus riche en CO2 que le gaz 1. Au moins les deux tiers de ce liquide 23 sont envoyés après détente dans le deuxième échangeur de chaleur pour former le bain de liquide et échanger de la chaleur avec le gaz 7. Eventuellement tout le liquide 23 peut y être envoyé comme illustré.
[0031] Une partie du liquide envoyé au deuxième échangeur de chaleur se vaporise pour former un gaz 29 qui se réchauffe dans l’échangeur de chaleur 3 et qui est riche en CO2 . Ce liquide peut comprendre au moins 90% mol, voire au moins 99% mol de CO2.
[0032] Une forte proportion du liquide 23 ne se vaporise pas dans l’échangeur de chaleur et est soutiré de l’échangeur 12 comme liquide 27. Ce liquide est pressurisé par une pompe 25 de type centrifuge jusqu’à une pression de 80 bara. Le liquide 27 est divisé en deux. Une partie 33 est détendu dans la vanne 35 et vaporisé dans l’échangeur de chaleur 3 pour former un gaz. Le gaz est divisé en deux. Une partie 37 est renvoyée sans avoir été refroidie en cuve de la colonne de distillation 21 pour fournir du rebouillage. Le gaz 29 entre dans un compresseur 31 et une autre partie 39 du gaz formé en vaporisant le liquide 33 est envoyée à un niveau intermédiaire du compresseur 31. Le compresseur 31 produit un gaz pressurisé 45 qui peut être condensé et mélangé avec le liquide 41 pour former un produit liquide sous pression 47.
[0033] Il sera noté que si le gaz 7 est totalement condensé dans l’échangeur 12, le séparateur de phases 15 n’est pas requis et le liquide 13 peut passer directement à la colonne.
[0034] De même la colonne 21 peut être remplacée par un séparateur de phases. Dans ce cas, le liquide de ce séparateur de phases alimente le bain du deuxième échangeur 12 comme le liquide 23. Le gaz du dernier séparateur de phases est réchauffé et mélangé avec le gaz à séparer 1.
[0035] La cuve de la colonne de distillation (quand présente) et/ou la cuve du séparateur de phases ou du dernier séparateur de phases (en absence de colonne de distillation) est installée à un niveau égal ou inférieur à celui du premier échangeur de chaleur. Ainsi aucune structure de support n’est requise.

Claims (1)

  1. Revendications [Revendication 1] Procédé de séparation d’un courant d’alimentation comprenant du CO2, comprenant au moins les étapes suivantes : a) Refroidissement du courant d’alimentation (1) dans un premier échangeur de chaleur (3) en plaques d’aluminium brasées, constitué de tapis d’ondes séparés par des plaques. b) Refroidissement et condensation partielle ou totale d’au moins une part du courant d’alimentation refroidi en a) ou d’un gaz (7) dérivé de ce courant refroidi en a) jusqu’à une température inférieure à -45°C dans un deuxième échangeur de chaleur (12) dans lequel le courant d’alimentation circule dans des tubes ou entre des plaques, les tubes ou les plaques étant plongés dans un bain de CO2 liquide à une température inférieure à -43 °C qui se vaporise partiellement. c) Envoi d’au moins une partie (13,19) du courant d’alimentation condensé partiellement ou totalement dans un système de séparation comprenant au moins un séparateur de phases (15) et/ou au moins une colonne de distillation (21) pour produire un liquide (23) plus riche en CO2 que le courant d’alimentation. d) Envoi d’au moins les deux tiers du liquide plus riche en CO2, voire tout le liquide plus riche en CO2, au deuxième échangeur de chaleur pour alimenter le bain de liquide. e) Prélèvement d’une part du liquide contenu dans le bain. f) Pompage d’au moins une partie de ce liquide pour former un liquide pompé (27) et g) Injection dans le premier échangeur de chaleur d’au moins une partie (33) de ce liquide pompé ou d’un fluide dérivé de ce liquide pompé afin de refroidir le courant d’alimentation. [Revendication 2] Procédé selon la revendication 1 dans lequel le gaz partiellement condensé dans le deuxième échangeur de chaleur (12) est envoyé à un premier séparateur de phases (15) et le liquide (13) de ce séparateur de phases alimente une colonne de distillation (21) ou un deuxième séparateur de phases, un liquide de cuve (23) de la colonne ou du deuxième séparateur constituant le liquide plus riche en CO2 que le courant d’alimentation. [Revendication 3] Procédé selon la revendication 1 ou 2 dans lequel le liquide pompé (27) de l’étape g) se vaporise dans le premier échangeur (3) pour former partie du produit gazeux (47) riche en CO2.
    [Revendication 4] Procédé selon la revendication 1,2 ou 3 dans lequel une partie du liquide plus riche en CO2 se vaporise dans le bain, se réchauffe dans le premier échangeur et forme partie (29) du produit gazeux (47) riche en CO2. [Revendication 5] Procédé selon la revendication 1, 2, 3 ou 4 dans lequel au moins une partie du liquide plus riche en CO2 se vaporise dans le bain, se réchauffe dans le premier échangeur et se mélange avec le courant d’alimentation à séparer. [Revendication 6] Procédé selon l’une des revendications précédentes dans lequel une partie (41) du liquide plus riche en CO2 provenant du bain forme partie d’un produit liquide riche en CO2, sans avoir été réchauffé dans le premier échangeur (3). [Revendication 7] Procédé selon l’une des revendications précédentes dans lequel le système de séparation comprend une colonne de distillation (23) et une partie du liquide plus riche en CO2 provenant du bain est vaporisée dans le premier échangeur (3) et renvoyée sous forme gazeuse (37) en cuve de la colonne de distillation. [Revendication 8] Procédé selon l’une des revendications précédentes dans lequel tout le produit riche en CO2 (47) provient du deuxième échangeur de chaleur (12). [Revendication 9] Procédé selon l’une des revendications précédentes dans lequel le pompage est réalisé au moyen d’une pompe de type centrifuge (25). [Revendication 10] Appareil de séparation d’un courant d’alimentation comprenant du CO2, comprenant un premier échangeur de chaleur (3) en plaques d’aluminium brasées, constitué de tapis d’ondes séparés par des plaques, un deuxième échangeur de chaleur (12) comprenant un bain de liquide et des tubes ou des plaques plongés dans le bain, un système de séparation comprenant au moins un séparateur de phases (15) et/ou au moins une colonne de distillation (21), une conduite pour envoyer le courant d’alimentation (1) se refroidir dans le premier échangeur de chaleur, une conduite pour envoyer un débit qui est une part du courant d’alimentation refroidi dans le premier échangeur de chaleur ou un gaz (7) dérivé de ce courant refroidi se refroidir jusqu’à une température inférieure à -45°C dans les tubes ou entre les plaques du deuxième échangeur de chaleur plongés dans le bain de CO2 liquide à une température inférieure à -43°C, une conduite pour envoyer un liquide (13) produit en condensant le débit partiellement ou totalement dans un système de séparation comprenant au moins un séparateur de phases (15) et/ou au moins une colonne de distillation (21) pour produire un
    liquide (23) plus riche en CO2 que le courant d’alimentation, une conduite reliée au bain de liquide du deuxième échangeur de chaleur pour y envoyer tout le liquide plus riche en CO2, une pompe (25), une conduite pour prélever une part du liquide contenu dans le bain, reliée à la pompe, une conduite reliée à la sortie de la pompe et au premier échangeur de chaleur et une conduite pour sortir le liquide pompé vaporisé du premier échangeur de chaleur.
FR1873365A 2018-12-19 2018-12-19 Appareil et procédé pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante Active FR3090833B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1873365A FR3090833B1 (fr) 2018-12-19 2018-12-19 Appareil et procédé pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante
AU2019272029A AU2019272029A1 (en) 2018-12-19 2019-11-29 Apparatus and process for separating a gas rich in co2 by distillation and/or partial condensation at subambient temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1873365A FR3090833B1 (fr) 2018-12-19 2018-12-19 Appareil et procédé pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante

Publications (2)

Publication Number Publication Date
FR3090833A1 true FR3090833A1 (fr) 2020-06-26
FR3090833B1 FR3090833B1 (fr) 2023-03-24

Family

ID=66776463

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1873365A Active FR3090833B1 (fr) 2018-12-19 2018-12-19 Appareil et procédé pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante

Country Status (2)

Country Link
AU (1) AU2019272029A1 (fr)
FR (1) FR3090833B1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685191A1 (fr) 2012-07-13 2014-01-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil pour la séparation d'un gaz riche en dioxyde de carbone
FR3002312A1 (fr) * 2013-02-21 2014-08-22 Air Liquide Separation a temperature subambiante d'un melange gazeux contenant du dioxyde de carbone et un contaminant plus leger
US20150253076A1 (en) * 2012-07-13 2015-09-10 L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Method and apparatus for purifying a carbon dioxide-rich mixture at a low temperature
WO2016156691A1 (fr) * 2015-04-02 2016-10-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de traitement du gaz naturel pour minimiser la perte d'éthane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685191A1 (fr) 2012-07-13 2014-01-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil pour la séparation d'un gaz riche en dioxyde de carbone
US20150253076A1 (en) * 2012-07-13 2015-09-10 L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Method and apparatus for purifying a carbon dioxide-rich mixture at a low temperature
FR3002312A1 (fr) * 2013-02-21 2014-08-22 Air Liquide Separation a temperature subambiante d'un melange gazeux contenant du dioxyde de carbone et un contaminant plus leger
WO2016156691A1 (fr) * 2015-04-02 2016-10-06 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé de traitement du gaz naturel pour minimiser la perte d'éthane

Also Published As

Publication number Publication date
AU2019272029A1 (en) 2020-07-09
FR3090833B1 (fr) 2023-03-24

Similar Documents

Publication Publication Date Title
EP2268989B1 (fr) Procédé et appareil de séparation cryogénique d'un mélange d'hydrogène et de monoxyde de carbone
EP0768502B1 (fr) Procédé et dispositif de liquéfaction et de traitement d'un gaz naturel
EP2122282B1 (fr) Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et d'azote par distillation cryogénique
EP2344821B1 (fr) Procédé de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en hélium et d'un courant d'hydrocarbures déazoté et installation associée
EP0677483B1 (fr) Procédé et installation de séparation d'un mélange gazeux
FR2780391A1 (fr) Procede de production de monoxyde de carbone
FR2973864A1 (fr) Procede et appareil de liquefaction d'un gaz riche en co2
FR3090833A1 (fr) Appareil et procédé pour séparer un gaz riche en CO2 par distillation et/ou condensation partielle à température subambiante
EP3252408B1 (fr) Procédé de purification de gaz naturel et de liquéfaction de dioxyde de carbone
FR3038973B1 (fr) Production d'helium a partir d'un courant de gaz naturel
WO2018020091A1 (fr) Procédé et appareil de lavage à température cryogénique pour la production d'un mélange d'hydrogène et d'azote
FR2973485A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR3052159A1 (fr) Procede et installation pour la production combinee d'un melange d'hydrogene et d'azote ainsi que de monoxyde de carbone par distillation et lavage cryogeniques
FR3052240A1 (fr) Procede de liquefaction de dioxyde de carbone issu d'un courant de gaz naturel
FR3090832A1 (fr) Procédé et appareil de séparation d’un courant d’alimentation comprenant au moins du CO2 ainsi qu’au moins un composé léger
FR2837564A1 (fr) Procede et installation de production d'oxygene et/ou d'azote sous pression et d'argon pur
EP1697690A2 (fr) Procede et installation d enrichissement d'un flux gazeux en l'un de ses constituants
WO2022162041A1 (fr) Procédé et appareil de séparation d'un débit riche en dioxyde de carbone par distillation pour produire du dioxyde de carbone liquide
FR3039080A1 (fr) Methode de purification d'un gaz riche en hydrocarbures
EP4368929A1 (fr) Procédé et appareil de distillation de dioxyde de carbone
FR3120431A1 (fr) Purification de monoxyde de carbone par distillation cryogénique
EP3913310A1 (fr) Procédé et appareil de séparation d'air par distillation cryogénique
FR3074274A1 (fr) Procede et appareil de separation d'air par distillation cryogenique
FR3122488A1 (fr) Procédé et appareil de séparation d’un débit riche en dioxyde de carbone par distillation pour produire du dioxyde de carbone liquide
FR3118144A3 (fr) Procede et appareil de separation cryogenique d’un melange d’hydrogene, de methane, d’azote et de monoxyde de carbone

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20200626

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6