FR3061310B1 - Procede de formation de guide d'ondes optique, appareil de formation de guide d'ondes optique, accelerateur d'electrons, appareil d'irradiation laser a rayons x, generateur de rayons x diffuses - Google Patents

Procede de formation de guide d'ondes optique, appareil de formation de guide d'ondes optique, accelerateur d'electrons, appareil d'irradiation laser a rayons x, generateur de rayons x diffuses Download PDF

Info

Publication number
FR3061310B1
FR3061310B1 FR1763339A FR1763339A FR3061310B1 FR 3061310 B1 FR3061310 B1 FR 3061310B1 FR 1763339 A FR1763339 A FR 1763339A FR 1763339 A FR1763339 A FR 1763339A FR 3061310 B1 FR3061310 B1 FR 3061310B1
Authority
FR
France
Prior art keywords
wave guide
optical wave
guide formation
internal space
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
FR1763339A
Other languages
English (en)
Other versions
FR3061310A1 (fr
Inventor
Tomonao Hosokai
Alexey Zhidkov
Ryousuke Kodama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Publication of FR3061310A1 publication Critical patent/FR3061310A1/fr
Application granted granted Critical
Publication of FR3061310B1 publication Critical patent/FR3061310B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/04Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using magnetic fields substantially generated by the discharge in the plasma
    • H05H1/06Longitudinal pinch devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S4/00Devices using stimulated emission of electromagnetic radiation in wave ranges other than those covered by groups H01S1/00, H01S3/00 or H01S5/00, e.g. phonon masers, X-ray lasers or gamma-ray lasers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/003Production of X-ray radiation generated from plasma the plasma being generated from a material in a liquid or gas state
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/008Production of X-ray radiation generated from plasma involving an energy-carrying beam in the process of plasma generation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0037Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by spectrometry
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/02Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma
    • H05H1/04Arrangements for confining plasma by electric or magnetic fields; Arrangements for heating plasma using magnetic fields substantially generated by the discharge in the plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H15/00Methods or devices for acceleration of charged particles not otherwise provided for, e.g. wakefield accelerators

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lasers (AREA)
  • Particle Accelerators (AREA)
  • Plasma Technology (AREA)
  • X-Ray Techniques (AREA)

Abstract

Dans un procédé de formation de guide d'ondes optique, un guide d'ondes optique est formé en utilisant un récipient contenant un gaz qui comporte un espace interne dans lequel un gaz ionisable polyvalent est enfermé, un dispositif d'irradiation par faisceau laser qui irradie l'espace interne avec un faisceau laser pulsé, et un circuit de décharge qui amène un courant pulsé à circuler dans le récipient contenant un gaz. Le procédé de formation de guide d'ondes optique comprend : une première étape consistant à amener le courant pulsé à circuler dans le récipient contenant un gaz en utilisant le circuit de décharge de sorte que l'espace interne entre dans un état de plasma ; une deuxième étape consistant à former un canal d'ionisation polyvalent dans l'espace interne et à amener le canal d'ionisation polyvalent à se dilater par un effet de striction inverse en irradiant l'espace interne dans l'état de plasma avec le faisceau laser pulsé en tant que faisceau laser de déclenchement provenant du dispositif d'irradiation par faisceau laser ; et une troisième étape consistant à augmenter une valeur de courant du courant pulsé circulant dans le récipient contenant un gaz à partir d'un instant avant l'irradiation ou pendant l'irradiation avec le faisceau laser de déclenchement.
FR1763339A 2016-12-28 2017-12-28 Procede de formation de guide d'ondes optique, appareil de formation de guide d'ondes optique, accelerateur d'electrons, appareil d'irradiation laser a rayons x, generateur de rayons x diffuses Active FR3061310B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016255880A JP6319920B1 (ja) 2016-12-28 2016-12-28 光導波路形成方法、光導波路形成装置、電子加速器、x線レーザ照射装置、及び散乱x線発生装置
JP2016-255880 2016-12-28

Publications (2)

Publication Number Publication Date
FR3061310A1 FR3061310A1 (fr) 2018-06-29
FR3061310B1 true FR3061310B1 (fr) 2021-05-21

Family

ID=61009120

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1763339A Active FR3061310B1 (fr) 2016-12-28 2017-12-28 Procede de formation de guide d'ondes optique, appareil de formation de guide d'ondes optique, accelerateur d'electrons, appareil d'irradiation laser a rayons x, generateur de rayons x diffuses

Country Status (5)

Country Link
US (1) US10104753B2 (fr)
JP (1) JP6319920B1 (fr)
DE (1) DE102017131343A1 (fr)
FR (1) FR3061310B1 (fr)
GB (1) GB2559676B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7219956B2 (ja) * 2018-11-13 2023-02-09 国立大学法人大阪大学 光導波路形成方法、及び光導波路形成装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035691A (ja) * 1999-07-16 2001-02-09 Japan Atom Energy Res Inst Zピンチ放電によるレーザー光ガイド用プラズマチャンネルの形成法
US6972421B2 (en) * 2000-06-09 2005-12-06 Cymer, Inc. Extreme ultraviolet light source
JP5483175B2 (ja) * 2009-11-20 2014-05-07 独立行政法人日本原子力研究開発機構 荷電粒子加速方法及び荷電粒子加速装置、粒子線照射装置、医療用粒子線照射装置
US9370085B2 (en) * 2014-07-14 2016-06-14 The United States Of America, As Represented By The Secretary Of The Navy Compact, all-optical generation of coherent X-rays

Also Published As

Publication number Publication date
GB2559676A (en) 2018-08-15
JP6319920B1 (ja) 2018-05-09
FR3061310A1 (fr) 2018-06-29
GB2559676B (en) 2020-05-13
GB201721197D0 (en) 2018-01-31
US10104753B2 (en) 2018-10-16
DE102017131343A1 (de) 2018-06-28
JP2018107092A (ja) 2018-07-05
US20180184510A1 (en) 2018-06-28
GB2559676A8 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
Theobald et al. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion
JP2016522887A5 (fr)
FR3061310B1 (fr) Procede de formation de guide d'ondes optique, appareil de formation de guide d'ondes optique, accelerateur d'electrons, appareil d'irradiation laser a rayons x, generateur de rayons x diffuses
EA202191749A1 (ru) Источник лазерного излучения, лазерный прибор и способ разрезания ткани
Ono et al. Gas density in a pulsed positive streamer measured using laser shadowgraph
Brieschenk et al. Visualization of jet development in laser-induced plasmas
MX341993B (es) Concentracion localizada de energia.
FR3008822A1 (fr) Creation d'isotopes par faisceaux laser
Diaz et al. LIBS for aerosol analysis
Spence et al. Simulations of the propagation of high-intensity laser pulses in discharge-ablated capillary waveguides
Starikovskiy et al. Nonequilibrium liquid plasma generation
Kanda et al. Comparison of Measured and Computed Plasma Densities at Laser Supported Detonation Waves
Geints et al. Filament formation beyond linear focus during femtosecond laser pulse propagation in air
Sanny Strong Optical Scattering by Femtosecond Laser Induced Microbubbles Inside Water and Other Microscopic Observations
Krása et al. Target current: an appropriate parameter for characterizing the dynamics of laser-matter interaction
Buz et al. Effects of phonological confusability on speech duration
Adamovsky et al. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses
Sayed Ahmed Strong optical scattering by femtosecond laser induced microbubbles inside water and other microscopic observations/Sayed Ahmed Islam Sanny
Radović et al. Convolution based model of breakdown voltage distributions in neon at 1.33 mbar with corona appearance in pre-breakdown regime
Cai et al. Burning damage threshold and combustion wave spread velocity of fused silica induced by long pulsed laser
Campbell et al. Investigation of Enhanced Laser-Induced Breakdown (LIB) for Application in Highenergy Laser (HEL) Damage Mitigation
Ranjeva Characterizing laser induced cavitation: effects of air content, beam angle, and laser power
Shimamura et al. Laser supported detonation in argon atmosphere
JP2021092476A (ja) 評価装置、評価方法、学習装置、及び学習方法
Xue High-throughput underwater elemental analysis through optical emission spectroscopy with ultrasound-assisted μJ-laser-induced breakdown at kHz repetition rate

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

PLSC Publication of the preliminary search report

Effective date: 20200904

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7