FR3042353A1 - OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE - Google Patents
OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE Download PDFInfo
- Publication number
- FR3042353A1 FR3042353A1 FR1502143A FR1502143A FR3042353A1 FR 3042353 A1 FR3042353 A1 FR 3042353A1 FR 1502143 A FR1502143 A FR 1502143A FR 1502143 A FR1502143 A FR 1502143A FR 3042353 A1 FR3042353 A1 FR 3042353A1
- Authority
- FR
- France
- Prior art keywords
- optical device
- solar cells
- concave
- photovoltaic module
- convex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 36
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 238000005538 encapsulation Methods 0.000 claims abstract description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 4
- 239000002184 metal Substances 0.000 claims abstract description 4
- 230000005540 biological transmission Effects 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004698 Polyethylene Substances 0.000 claims description 3
- 229920000515 polycarbonate Polymers 0.000 claims description 3
- 239000004417 polycarbonate Substances 0.000 claims description 3
- -1 polyethylene Polymers 0.000 claims description 3
- 229920000573 polyethylene Polymers 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910003460 diamond Inorganic materials 0.000 claims description 2
- 239000010432 diamond Substances 0.000 claims description 2
- KQHQLIAOAVMAOW-UHFFFAOYSA-N hafnium(4+) oxygen(2-) zirconium(4+) Chemical compound [O--].[O--].[O--].[O--].[Zr+4].[Hf+4] KQHQLIAOAVMAOW-UHFFFAOYSA-N 0.000 claims description 2
- 229910000311 lanthanide oxide Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004408 titanium dioxide Substances 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 1
- MIQVEZFSDIJTMW-UHFFFAOYSA-N aluminum hafnium(4+) oxygen(2-) Chemical compound [O-2].[Al+3].[Hf+4] MIQVEZFSDIJTMW-UHFFFAOYSA-N 0.000 claims 1
- 229910044991 metal oxide Inorganic materials 0.000 claims 1
- 150000004706 metal oxides Chemical class 0.000 claims 1
- 229910052726 zirconium Inorganic materials 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 44
- 239000011521 glass Substances 0.000 description 17
- 239000005038 ethylene vinyl acetate Substances 0.000 description 10
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- RVYOQIHOUTVEKU-UHFFFAOYSA-N aluminum hafnium Chemical compound [Al].[Hf] RVYOQIHOUTVEKU-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 210000004692 intercellular junction Anatomy 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/20—Optical components
- H02S40/22—Light-reflecting or light-concentrating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
1 - Dispositif optique rapporté sur module photovoltaïque à miroir convexe centré et concave symétrique caractérisé ce qu'il comporte : - Les rangées de cellules solaires bifaciales cristallines (1) ayant une surface frontale (1f) et une surface arriÚre (1r) de ratio de conversion photovoltaïque minimum de 80% et interconnectées pour former une matrice (2) d'une surface (2s) et de face (1f) encapsulée entre un dioptre entrant (4) par un matériau encapsulant (5) et la face (1r) encapsulée avec un dioptre sortant (7) par un matériau encapsulant (6) et dont la distance (e) séparant deux rangées est égale ou inférieure au segment d'une cellule solaire (1) - La surface prise dans le plan de la matrice (2) forme une aire (2s) - Une aire de transmission lumineuse (6S) constituée de l'intervalle (e) par une rangée de cellules solaires (1) - Le laminé d'une épaisseur (8e) formé par l'encapsulation de la matrice de cellules (2) entre les dioptres (4) et (7) est encadré par un cadre (8) d'aluminium anodisé dont la paroi (8p) est la profondeur du cadre métallique de fixation et un pas de retour (8r) servant de support de fixation Un dispositif optique (9) rapporté et fixé sur le pas de retour (8r) du cadre d'un module photovoltaïque bifacial et parallÚle en tout point du dioptre sortant (7) en étant éloigné d'une distance H pour réfléchir les rayons lumineux vers la face arriÚre (1r) des cellules solaires par divergence des rayons diffractés du miroir convexe et par convergence des rayons diffractés du miroir concave Les formes convexe et concave du dispositif optique sont symétriques et l'axe médian de la forme convexe est positionné exactement en superposition de l'axe médian en deux rangées de cellules solaires - La surface du dispositif optique (9) dans le plan parallÚle au dioptre (7) est égale à la surface de la matrice de cellules solaires bifaciales (2s)1 - An optical device attached to a photovoltaic module with convex mirror centered and concave symmetrical characterized: - The rows of crystalline bifacial solar cells (1) having a front surface (1f) and a rear surface (1r) of the ratio of at least 80% photovoltaic conversion and interconnected to form a matrix (2) of a surface (2s) and a face (1f) encapsulated between an incoming diopter (4) by encapsulating material (5) and the encapsulated face (1r) with an outgoing diopter (7) by an encapsulating material (6) and whose distance (e) separating two rows is equal to or smaller than the segment of a solar cell (1) - The surface taken in the plane of the matrix (2) ) forms an area (2s) - A light transmission area (6S) consisting of the interval (e) by a row of solar cells (1) - The laminate of a thickness (8e) formed by the encapsulation of the matrix of cells (2) between the dioptres (4) and (7) is framed p ar an anodized aluminum frame (8) whose wall (8p) is the depth of the metal fixing frame and a return pitch (8r) serving as a fixing support An optical device (9) attached and fixed on the pitch of return (8r) of the frame of a bifacial and parallel photovoltaic module at any point of the outgoing diopter (7) while being distant from a distance H to reflect the light rays towards the rear face (1r) of the solar cells by divergence of the radii diffracted from the convex mirror and by convergence of the diffracted rays of the concave mirror The convex and concave shapes of the optical device are symmetrical and the median axis of the convex shape is positioned exactly in superposition of the median axis in two rows of solar cells - La surface of the optical device (9) in the plane parallel to the diopter (7) is equal to the surface of the matrix of bifacial solar cells (2s)
Description
Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă miroir convexe centrĂ© et concave symĂ©trique Introduction Ă lâart :Optical device attached to photovoltaic module with convex mirror centered and concave symmetric Introduction to art:
La fabrication de module photovoltaĂŻque cristallin requiert le processus suivant : nettoyage du verre ou positionnement dâun matĂ©riau Ă forte transparence positionnement dâun film encapsulant EVA « EthylĂšne Vinyle AcĂ©tate » qui est en majoritĂ© de lâĂ©thylĂšne vinyle acĂ©tate sur le verre ou matĂ©riau Ă forte transparence soudure dâun ruban de cuivre ayant une couche de protection Ă base dâun alliage Ă base dâargent, de plomb et dâĂ©tain : la tempĂ©rature de la soudure nâexcĂšde pas 250°C et ne dure pas plus de 3 secondes par cellules solaires ayant des zones en forme de ligne collecteur de courant des mĂ©tallisations de lâĂ©metteur sur une largeur de 1,5 Ă 3 millimĂštres interconnexion de la polaritĂ© nĂ©gative âface avant dâune cellule dâun substrat de type P Ă la polaritĂ© positive âface arriĂšre dâune cellule dâun substrat de type Pâ par exemple disposition en rangĂ©e de cellules soudĂ©es interconnexion des rangĂ©es pour un montage en sĂ©rie des cellules solaires nĂ©cessitant une soudure de chaque ligne de collecteur de courant positionnement dâun film encapsulant sur la matrice de cellules positionnement dâun film arriĂšre de protection Ă©lectrique ou dâun verre ou autre matĂ©riaux isolant lamination Ă des fins dâencapsulation des cellules solairesThe manufacture of crystalline photovoltaic modules requires the following process: cleaning of the glass or positioning of a material with high transparency positioning of an encapsulating film EVA "Ethylene Vinyl Acetate" which is mostly ethylene vinyl acetate on the glass or material high-transparency welding of a copper ribbon having a protective layer based on an alloy based on silver, lead and tin: the temperature of the weld does not exceed 250 ° C and does not last more than 3 seconds per solar cells having current collector-like areas of the emitter metallizations over a width of 1.5 to 3 millimeters interconnection of the negative polarity front face of a cell of a substrate of type P at the positive polarity 'rear face of a cell of a P type substrate' for example row layout of welded cells row interconnection for a mounting in s solar cells requiring soldering of each current collector line positioning of a film encapsulating on the matrix of cells positioning of an electric protective backing film or glass or other lamination insulating material for encapsulation purposes solar cells
Cette technique est unilatĂ©ralement utilisĂ©e mais a des inconvĂ©nients : le matĂ©riau encapsulant EVA a une viscositĂ© dâune grande variabilitĂ© en fonction de la tempĂ©rature ce qui induit une pression mĂ©canique sur lâensemble du dispositif des cellules solaires interconnectĂ©es le matĂ©riau encapsulant EVA contenant 1% dâeau libĂšre de lâacide acĂ©tique et du peroxyde dâhydrogĂšne en permanence qui se retrouvent piĂ©gĂ©s dans le module photovoltaĂŻque entraĂźnant des corrosions, des rĂ©actions chimiques avec les surfaces des cellules solaires, des rĂ©actions chimiques avec la surface intĂ©rieure du verre et crĂ©e la corrosion du verre par la formation de halogĂ©nures qui sont des piĂšges dâĂ©lectrons mais aussi avec le polymĂšre utilisĂ© en protection Ă©lectrique du module le matĂ©riau EVA ayant un indice de rĂ©fraction part rĂ©elle variant entre 1,49 et 1,47 sur la bande de rayonnement solaire, ce qui correspond une rĂ©ponse spectrale proche du verre blanc utilisĂ©, Ă savoir que le verre ait un traitement particulier le matĂ©riau EVA Ă©tant rĂ©ticulĂ© Ă la surface du verre, il est trĂšs difficile de sĂ©parer par quelques techniques que ce soient le film EVA du verre et le recyclage du verre comportant lâEVA rend les matĂ©riaux constituant le verre trop polluĂ©s et donc rendent le recyclage du module non fonctionnel lâencapsulation de 60 cellules solaires sur silicium monocristallin de wafer de format pseudo carrĂ© de 156mm de cĂŽtĂ© obtenu par la mĂ©thode de croissance Czochralski, « CZ » cellule Ă homojonction et Ă©metteur homogĂšne de 18,6% de rendement entraĂźne les pertes suivantes : Ă partir dâun ruban interconnectant en sĂ©rie les cellules de 2mm de largeur par 0,2mm dâĂ©paisseur et interconnectant les rangĂ©es de cellules thermo-soudĂ©es par un ruban de 5 par 0,3mm, les pertes Ă©lectriques sont de 2,5% les pertes optiques sont de 1% pour un verre avec une couche de silice poreuse dâindice de rĂ©fraction variant entre 1,23 et 1,33 pour un verre de transmittance sur le spectre solaire de 93% le module cristallin de ces 60 cellules solaires de 18,6% aura un rendement de 15,85% soit 2,75% et son comportement en tempĂ©rature sera trĂšs affectĂ© par lâencapsulationThis technique is used unilaterally but has drawbacks: the encapsulating material EVA has a viscosity of great variability as a function of the temperature which induces a mechanical pressure on the entire device of the interconnected solar cells the encapsulating material EVA containing 1% of water releases acetic acid and hydrogen peroxide permanently trapped in the photovoltaic module causing corrosions, chemical reactions with the surfaces of solar cells, chemical reactions with the inner surface of the glass and creates the corrosion of the glass by the formation of halides which are traps of electrons but also with the polymer used in electrical protection of the module the EVA material having a refractive index real part varying between 1.49 and 1.47 on the strip of solar radiation, which corresponds to a spectral response close to the white glass used, To know that the glass has a particular treatment the EVA material being crosslinked on the surface of the glass, it is very difficult to separate by some techniques that it is the EVA film of the glass and the recycling of the glass comprising the EVA makes the materials constituting the too polluted glass and therefore make the recycling of non-functional module the encapsulation of 60 solar cells on monocrystalline wafer silicon of square-shaped format of 156mm side obtained by Czochralski growth method, "CZ" homojunction cell and homogeneous transmitter of 18.6% yield results in the following losses: from a ribbon interconnecting in series cells 2mm wide by 0.2mm thick and interconnecting the rows of heat-sealed cells with a ribbon of 5 by 0, 3mm, the electrical losses are 2.5% the optical losses are 1% for a glass with a porous silica layer of refractive index varying between 1.23 and 1.33 for a glass of transmittance on the solar spectrum of 93% the crystalline modulus of these 60 solar cells of 18.6% will have a yield of 15,85% or 2,75% and its behavior in temperature will be very affected by encapsulation
la cellule solaire de 18,6% sur silicium CZ dâorientation « 1-0-0 » Ă Ă©metteur homogĂšne aura un coefficient de variation de sa puissance par rapport Ă la tempĂ©rature dâun facteur nĂ©gatif de 0,45%/°Kelvin et le module cristallin utilisant LEVA entre autre aura un coefficient de variation de sa puissance dâun facteur nĂ©gatif de 0,51%/°K la combinaison des matĂ©riaux verres Ă 93% de transmittance avec lâEVA et des cellules Ă Ă©metteur homogĂšne est compatible mais lâĂ©volution technologique des cellules Ă homojonction vers des Ă©metteurs sĂ©lectifs et des passivations arriĂšres, la rĂ©ponse spectrale des cellules Ă©voluent grandement rendant la combinaison des matĂ©riaux dâun module impropre et non efficiente le module cristallin silicium se caractĂ©rise Ă©galement par le comportement optique du silicium Ă savoir un fort coefficient dâabsorption dans les ultra-violets « UV » et une quasi transparence aux infrarouges « IR » et le comportement en fonction de la tempĂ©rature dâun module cristallin est intimement liĂ© Ă la capacitĂ© de capter la bande solaire spectrale dont les longueurs dâonde de 250 Ă 1300nm reprĂ©sentant 80% du spectre Lâeffet bifacial inefficace : en effet un module photovoltaĂŻque composĂ©e de cellules cristallines bifaciales et qui est transparent par lâutilisation dâun dioptre sortant transparent comme un verre, un polyacrylate ou un film de polyĂ©thylĂšne, la production de ce module bifacial restera sur lâabsorption dâune bande spectrale du rayonnement solaire convertissable selon le type de silicium cristallin et de jonction PN avec la seule face avant sous irradiation directe et la face arriĂšre en irradiation indirecte ne sera pas sollicitĂ©e. Pourtant cette face arriĂšre produit pour une technologie de PERT (Passivated Emitted Rear Technology ) ou de cellules HJT (hĂ©tĂ©ro-jonction) ou Ă effet tunnel 80 Ă 90% de la face avant : câest donc une source rĂ©elle de gĂ©nĂ©ration de coĂ»tant photovoltaĂŻque dont la tension est identique Ă la face avant mais dont le courant est moins Ă©levĂ© mais qui va sâajouter au courant de la face avant, dâoĂč une mise en Ćuvre qui doit ĂȘtre scrupuleusement Ă©valuĂ©e.the 18.6% solar cell on homogeneous emitter "1-0-0" CZ silicon will have a coefficient of variation of its power relative to the temperature of a negative factor of 0.45% / ° Kelvin and the crystalline module using LEVA among others will have a coefficient of variation of its power of a negative factor of 0.51% / ° K the combination of glass materials with 93% transmittance with EVA and cells with homogeneous emitter compatible but the technological evolution of homojunction cells to selective emitters and back passivations, the spectral response of cells evolve greatly making the combination of materials of a module unsuitable and inefficient the crystalline silicon module is also characterized by the optical behavior of silicon, namely a high absorption coefficient in ultraviolet "UV" and near-infrared transparency "IR" and the behavior as a function of the temperature of a crystal module is intimately linked to the ability to capture the spectral solar band whose wavelengths from 250 to 1300nm representing 80% of the spectrum The inefficient bifacial effect: indeed a photovoltaic module composed of bifacial crystalline cells and which is transparent by the use of a transparent outgoing diopter such as a glass, a polyacrylate or a polyethylene film, the production of this bifacial module will remain on the absorption of a spectral band of solar radiation convertible according to the type of crystalline silicon and PN junction with the single front face under direct irradiation and the back side in indirect irradiation will not be solicited. However, this backside produces for a technology of PERT (Passivated Emitted Rear Technology) or cells HJT (heterojunction) or tunnel effect 80 to 90% of the front panel: it is therefore a real source of photovoltaic cost generation whose voltage is identical to the front but whose current is lower but which will be added to the current of the front panel, hence an implementation that must be scrupulously evaluated.
La production de la face arriÚre dépend de :The production of the back side depends on:
Albédoalbedo
PiĂ©geage du spectre incident LâAlbĂ©do est la capacitĂ© dâun matĂ©riau Ă rĂ©flĂ©chir un rayon lumineux dont peu de matĂ©riaux Ă fort AlbĂ©do de 0,9 Ă 0,99 peuvent ĂȘtre intĂ©grĂ©s Ă un module photovoltaĂŻque bifacialTrapping the incident spectrum Albedo is the ability of a material to reflect a light ray of which few materials with high Albedo from 0.9 to 0.99 can be integrated into a bifacial photovoltaic module
Le piĂ©geage du spectre incident doit ĂȘtre conçu afin dâĂ©viter les effets dâombrage dĂ©portĂ© des structures supportant les modules photovoltaĂŻque mais doit ĂȘtre positionnĂ© de telle façon que le point focal coĂŻncide avec le plan de face arriĂšre des cellules solaires.The trapping of the incident spectrum must be designed to avoid the effects of remote shading of the structures supporting the photovoltaic modules but must be positioned in such a way that the focal point coincides with the rear plane of the solar cells.
Un module photovoltaĂŻque bifacial posĂ© sur une toiture de peinture blanche dâun albĂ©do de 0,75 et dont la matrice de cellules solaires aura un espace de 3mm entre les strings (rangĂ©es de cellules solaires) ne permettra de gĂ©nĂ©rer au mieux 10% de production et va gĂ©nĂ©rer un Ă©chauffement des cellules dâune part par une forte rĂ©flexion des IR (Infra-Rouge) et dâautre part une hausse brutale du courant.A bifacial photovoltaic module placed on a roof of white paint of an albedo of 0.75 and whose matrix of solar cells will have a gap of 3mm between the strings (rows of solar cells) will not generate at best 10% of production and will generate a heating of the cells on the one hand by a strong reflection of IR (Infra-Red) and on the other hand a sharp rise in the current.
La prĂ©sente invention dĂ©crit un dispositif optique permettant de filtrer le spectre lumineux par trois composants pour apporter Ă la jonction de cellule solaire les photons aux longueurs dâonde absorbĂ©es et transmettre les longueurs dâonde utiles Ă des applications sous le panneau photovoltaĂŻque et rĂ©flĂ©chir les longueurs dâonde qui ne sont pas utiles Ă la production photovoltaĂŻque. Ce dispositif est indĂ©pendant du module photovoltaĂŻque et sâapplique pour les modules photovoltaĂŻques transparent et les modules photovoltaĂŻques bifacials.The present invention discloses an optical device for filtering the light spectrum by three components to provide the solar cell junction with photons at absorbed wavelengths and to transmit useful wavelengths for applications under the photovoltaic panel and to reflect the wavelengths that are not useful for photovoltaic production. This device is independent of the photovoltaic module and is applicable for transparent photovoltaic modules and bifacial photovoltaic modules.
La prĂ©sente invention concerne la conception et lâĂ©laboration dâun dispositif rapportĂ© au dos dâun module photovoltaĂŻque bifacial cadrĂ© prĂ©dĂ©fini par les caractĂ©ristiques de la matrice de cellules solaires afin que le dispositif optique rapportĂ© puisse piĂ©ger la lumiĂšre indĂ©pendamment de lâAlbĂ©do du matĂ©riau de support au module qui est une toiture ou un sol selon son application et que lâAlbĂ©do de ce dispositif optique rapportĂ© sera au minimum de 0,93 par une rĂ©flexion sĂ©lective des longueurs dâonde du spectre solaire incident afin de ne pas gĂ©nĂ©rer dâIR au-delĂ de 1200nm pour Ă©chauffer les cellules dâune part et que la structure de piĂ©geage sera efficace pour des angles dâincidence faible afin de mieux rĂ©partir durant une pĂ©riode dâirradiation solaire la hausse de courant gĂ©nĂ©rĂ© par la face artiĂšte. Lâobjectif de la prĂ©sente invention est de lisser la hausse de courant de la face amĂšre dâun module photovoltaĂŻque bifacial et de fixer les paramĂštres du module photovoltaĂŻque bifacial pour gĂ©nĂ©rer une production complĂ©mentaire de 35% indĂ©pendamment de toute rĂ©fĂ©rence dâAlbĂ©do des matĂ©riaux environnants le module photovoltaĂŻque.The present invention relates to the design and development of a device attached to the back of a structured bifacial photovoltaic module predefined by the characteristics of the solar cell array so that the reported optical device can trap light independently of the Albedo of the support material to the module which is a roof or a ground according to its application and that the Albedo of this reported optical device will be at least 0.93 by a selective reflection of the wavelengths of the incident solar spectrum so as not to generate IR above 1200nm to heat the cells on the one hand and the trapping structure will be effective for low incidence angles to better distribute during a period of solar irradiation the rise in current generated by the face artiĂšte. The objective of the present invention is to smooth the current rise of the bitter face of a bifacial photovoltaic module and to set the parameters of the bifacial photovoltaic module to generate an additional production of 35% independently of any Albedo material reference. surrounding the photovoltaic module.
Description du Dispositif optique rapporté sur module pbotovoMque à miroir convexe centré et concert ^métriqueDescription of the Optical device attached to a convex convex mirror centered and metric concerto module
Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă miroir convexe centrĂ© et concave symĂ©trique caractĂ©risĂ© selon la figure 1 ce quâil comporte :An optical device attached to a photovoltaic module with convex mirror centered and concave symmetrical, characterized according to FIG. 1 which comprises:
Des rangĂ©es de cellules solaires bifaciales cristallines (1) ayant une surface frontale (lf) et une surface arriĂšre (lr) de ratio de conversion photovoltaĂŻque minimum de 80% et interconnectĂ©es pour former une matrice (2) dâune surface (2s) et de face (lf) encapsulĂ©e entre un dioptre entrant (4) par un matĂ©riau encapsulant (5) et la face (lr) encapsulĂ©e avec un dioptre sortant (7) par un matĂ©riau encapsulant (6) et dont la distance (e) sĂ©parant deux rangĂ©es est Ă©gale ou infĂ©rieure au segment dâune cellule solaire (1)Rows of crystalline bifacial solar cells (1) having a front surface (lf) and a rear surface (1r) of a minimum photovoltaic conversion ratio of 80% and interconnected to form a matrix (2) of a surface (2s) and face (lf) encapsulated between an incoming diopter (4) by an encapsulating material (5) and the face (lr) encapsulated with an outgoing diopter (7) by an encapsulating material (6) and whose distance (e) separating two rows is equal to or less than the segment of a solar cell (1)
La surface prise dans le plan de la matrice (2) forme une aire (2s)The surface taken in the plane of the matrix (2) forms an area (2s)
Une aire de transmission lumineuse (6S) constituĂ©e de lâintervalle (e) par une rangĂ©e de cellules solaires (1)A light transmission area (6S) consisting of the interval (e) by a row of solar cells (1)
Le laminĂ© dâune Ă©paisseur (8e) formĂ© par lâencapsulation de la matrice de cellules (2) entre les dioptres (4) et (7) est encadrĂ© par un cadre (8) dâaluminium anodisĂ© dont la paroi (8p) est la profondeur du cadre mĂ©tallique de fixation et un pas de retour (8r) servant de support de fixation Un dispositif optique (9) rapportĂ© et fixĂ© sur le pas de retour (8r) du cadre dâun module photovoltaĂŻque bifacial et parallĂšle en tout point du dioptre sortant (7) en Ă©tant Ă©loignĂ© dâune distance H pour rĂ©flĂ©chir les rayons lumineux vers la face arriĂšre (1 r) des cellules solaires par divergence des rayons diffractĂ©s du miroir convexe et par convergence des rayons diffractĂ©s du miroir concave Les formes convexe et concave du dispositif optique sont symĂ©triques et lâaxe mĂ©dian de la forme convexe est positionnĂ© exactement en superposition de lâaxe mĂ©dian en deux rangĂ©es de cellules solairesThe laminate of a thickness (8e) formed by the encapsulation of the matrix of cells (2) between the diopters (4) and (7) is framed by a frame (8) of anodized aluminum whose wall (8p) is the depth of the metal fixing frame and a return pitch (8r) serving as a fixing support An optical device (9) attached and fixed on the return pitch (8r) of the frame of a bifacial and parallel photovoltaic module in all point of the outgoing diopter (7) being away from a distance H to reflect the light rays towards the rear face (1 r) of the solar cells by divergence of the diffracted radii of the convex mirror and by convergence of the diffracted rays of the concave mirror. convex and concave optical device are symmetrical and the median axis of the convex shape is positioned exactly in superposition of the median axis in two rows of solar cells
La surface du dispositif optique (9) dans le plan parallĂšle au dioptre (7) est Ă©gale Ă la surface de la matrice de cellules solaires bifadales (2s)The surface of the optical device (9) in the plane parallel to the diopter (7) is equal to the surface of the matrix of bifadal solar cells (2s)
Le Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă miroir convexe et concave symĂ©trique selon la figure n°l caractĂ©risĂ© en ce que lâespace libre de passage de lumiĂšre entrant et sortant Ă travers soit dâune largeur (e) entre deux rangĂ©es de cellules solaires (1) et de la longueur de la rangĂ©e de cellules solaires (1) pour former lâaire (6S).The optical device mounted on a photovoltaic module with convex and concave symmetrical mirror according to FIG. 1, characterized in that the free space for the passage of light entering and exiting through is of a width (e) between two rows of solar cells. (1) and the length of the row of solar cells (1) to form the area (6S).
Ce Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă miroir convexe et concave symĂ©trique selon la figure 1 caractĂ©risĂ© en ce que la face supĂ©rieure de la matrice (2) de cellules solaires soit encapsulĂ©e avec la surface (4â) du dioptre entrant (4) par un matĂ©riau encapsulant (5) choisi parmi les silicones, les acryliques, les thermoplastiques et que la surface (4") soit dâun indice de rĂ©fraction infĂ©rieur de 10% Ă lâindice de rĂ©fraction du dioptre entrant (4).This optical device mounted on a photovoltaic module with a convex and concave symmetrical mirror according to FIG. 1 characterized in that the upper face of the matrix (2) of solar cells is encapsulated with the surface (4 ') of the incoming diopter (4) by a encapsulating material (5) selected from silicones, acrylics, thermoplastics and that the surface (4 ") has a refractive index 10% lower than the refractive index of the incoming diopter (4).
Ce dispositif est caractĂ©risĂ© en ce que lâaire (6S) se dĂ©finit par les dimensions de lâintervalle (e) et de la longueur des rangĂ©es de cellules.This device is characterized in that the area (6S) is defined by the dimensions of the interval (e) and the length of the rows of cells.
Le Dispositif optique rapporté sur module photovoltaïque à miroir convexe et concave symétrique selon la figure n°3 caractérisé en ce que le dispositif optique (9) comporte :The optical device attached to a symmetrical convex and concave mirror photovoltaic module according to FIG. 3, characterized in that the optical device (9) comprises:
Un matériaux (11) choisi parmi les matériaux acryliques, polyéthylÚne, les polycarbonatesA material (11) selected from acrylic materials, polyethylene, polycarbonates
La face supĂ©rieure a une interface (lli) ayant une texturation par des formes prismatiques ayant une base de losange avec des angles dâinclinaison de 60° ou une base de carrĂ© avec des angles de 45°The upper face has an interface (11i) having texturing by prismatic shapes having a diamond base with tilt angles of 60 ° or a square base with 45 ° angles
Le miroir de Bragg est une combinaison de couches (10a) et (10b) formant un nano-laminĂ© dont chaque (10a) et (10b) varie en Ă©paisseur comprise entre lOOAngstrĂŽm et lOOOAngstrĂŽm chacune la couche (10a) est la combinaison dâoxydes mĂ©talliques choisi parmi le dioxyde dâhafnium, le dioxyde de zirconium, le dioxyde de titane, le penta-oxyde de tantale, lâoxyde dâaluminium, les alliages dâoxyde dâhafnium zirconium, les alliages dâoxyde dâhafnium aluminium, dâoxyde de lanthanides, dâoxyde dâaluminium et silicate, le penta-oxyde de nobium la couche (10b) est la premiĂšre et la derniĂšre couche du nano-laminĂ© dâun matĂ©riau choisi parmi lâaluminium, le nickel, lâargent, le chrome, la couche (10a) est la premiĂšre et la derniĂšre couche de ce nano-laminĂ©The Bragg mirror is a combination of layers (10a) and (10b) forming a nano-laminate each of which (10a) and (10b) varies in thickness between 100 Angstrom and 1000 Angstrom each layer (10a) is the combination of oxides metal selected from hafnium dioxide, zirconium dioxide, titanium dioxide, tantalum penta-oxide, aluminum oxide, hafnium zirconium oxide alloys, aluminum oxide alloys, aluminum hafnium, lanthanide oxide, aluminum oxide and silicate, nobium penta-oxide the layer (10b) is the first and last layer of the nano-laminate of a material selected from aluminum, nickel, silver, chromium, the layer (10a) is the first and last layer of this nano-laminate
Le Dispositif optique (9) rapportĂ© sur module photovoltaĂŻque a une forme convexe et concave symĂ©trique et dont le diamĂštre (Î) de la forme convexe soit au plus Ă©gale à « 3*e » soit trois fois lâintervalle entre rangĂ©es de cellules solaires et dont la profondeur (hâ) doit ĂȘtre supĂ©rieure ou Ă©gale Ă (e) pour former un miroir paraboloĂŻde hyperbolique convexe.The optical device (9) attached to a photovoltaic module has a convex and concave symmetrical shape and whose diameter (Î) of the convex shape is at most equal to "3 * e", ie three times the interval between rows of solar cells and whose depth (h ') must be greater than or equal to (e) to form a convex hyperbolic paraboloidal mirror.
Le dispositif optique (9) caractĂ©risĂ© en ce que la forme concave dont le diamĂštre (T) de la forme concave et de profondeur (h^ pour former un miroir paraboloĂŻde hyperbolique concave. Lâaxe mĂ©dian de la forme convexe du dispositif optique (9) doit ĂȘtre Ă positionnĂ©e exactement et confondue avec lâaxe mĂ©dian entre deux rangĂ©es de cellules solaires (1).The optical device (9) characterized in that the concave shape of which the diameter (T) of the concave shape and depth (h ^ to form a concave hyperbolic paraboloid mirror.The median axis of the convex shape of the optical device (9 ) must be positioned exactly and coincident with the center line between two rows of solar cells (1).
Le dispositif optique (9) a une surface texturĂ©e selon la figure n°2 caractĂ©risĂ©e en ce que la base de la texturation soit de forme pyramidale de section (10â) et (10â) et de hauteur (10ââ) et que la base pyramidale peut ĂȘtre de section Ă©gale ou non Ă©gale pour former un losange en sa base.The optical device (9) has a textured surface according to FIG. 2 characterized in that the base of the texturing is of pyramidal section (10 ') and (10 ") and height (10'") and that the pyramidal base may be of equal or non-equal section to form a rhombus at its base.
Les prismes formés par les pyramides ont des axes de plan de rotation de 15 degré de telle sorte que la réflexion des interférences du dichroïsme résultant sera réfléchi équitablement sur un tiers de la surface (lr) de cellule solaire.The prisms formed by the pyramids have rotational plane axes of 15 degrees so that the reflection of the resulting dichroism interferences will be reflected equitably over a third of the solar cell surface (1r).
La distance de positionnement du dispositif optique (9) se dĂ©finit par : H = (8p) â (8e) â (hâ)The positioning distance of the optical device (9) is defined by: H = (8p) - (8e) - (h ')
Un exemple de construction dâun tel dispositif photovoltaĂŻque se compose de : - une matrice de cellules solaires bifadales Ă passivation arriĂšre de lâemetteur formĂ©e sur silicium monocristallin dopĂ© au Phosphore dont les dimensions du substrat pseudo-carrĂ©s sont 156,75x156,75mm pour un layon de lingot de 205mm : la cellule solaire a une efficacitĂ© de conversion de 20,8% minimum pour une puissance maximale de 5,06Watt, interconnectĂ©e par un ruban enrobĂ© colle conductrice dâune rĂ©sine de silicone et de cuivre et nano-fils de cuivre sans plomb : la matrice (2) est constituĂ©e de 6 rangĂ©es de 10 cellules solaires la matrice est organisĂ©e pour avoir 18mm dâespace (e) entre les rangĂ©es de cellules connectĂ©es en sĂ©rie - dioptre entrant (4) est un verre solaire imprimĂ© trempĂ© thermiquement de silicate Ă transmission de 96% sur le spetre solaire 1.5AM dâĂ©paisseur de 2mm avec un anti-reflet en interface supĂ©rieure et en interface infĂ©rieure - la matrice (2) formĂ©e est encapsulĂ©e par sa face avant soumis en radiation solaire directe par un encapsulant (5) de silicone liquide transparent aux UV laminĂ© par une lamination liquide - un cadre aluminium anodisĂ© dâĂ©paisseur (8p) de 40mm et de pas de retour de 30mm - le dispositif optique (9) est en polycarbonate dont lâonde de formation de la forme convexe a un hauteur (hâ) de 18mm et de largeur (h*) 54mm et la forme concave a une hauteur (hâ) de 18mm et une largeur (1â) de 54mm - le dioptre sortant (7) est un verre solaire imprimĂ© dâĂ©paisseur de 2mm de silicate Ă trempe de durcissement. - le miroir de Bragg variable composĂ© dâaluminium (10b) en combinaison avec un alliage combinĂ© dâoxyde dâaluminium A1203 et dâoxyde hafnium silicate.An example of a construction of such a photovoltaic device consists of: a matrix of bifadal solar cells with passive passivation of the emitter formed on Phosphorus-doped monocrystalline silicon whose dimensions of the pseudo-square substrate are 156.75 Ă 156.75 mm for a 205mm ingon strip: the solar cell has a conversion efficiency of 20.8% minimum for a maximum power of 5.06Watt, interconnected by a coated tape conductive glue of a silicone resin and copper and nano-wires lead-free copper: the matrix (2) consists of 6 rows of 10 solar cells the matrix is organized to have 18mm of space (e) between rows of cells connected in series - incoming diopter (4) is a solar glass 96% Heat-Treated Silicone Printed Film on 1.5mm Thickness 1.5AM solar spherre with superior interface and lower interface anti-glare - formed die (2) is encapsulated by its front side subjected to direct solar radiation by an encapsulant (5) of UV-transparent liquid silicone laminated by a liquid lamination - an anodized aluminum frame of thickness (8p) of 40mm and no return of 30mm - the optical device (9) is made of polycarbonate whose forming wave of the convex shape has a height (h ") of 18mm and width (h *) 54mm and the concave shape has a height (h ') of 18mm and a width (1 ") of 54mm - the outgoing diopter (7) is a printed 2mm thick solar glass of hardening quenching silicate. - The variable Bragg mirror composed of aluminum (10b) in combination with a combined alloy of aluminum oxide A1203 and hafnium silicate oxide.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1502143A FR3042353B1 (en) | 2015-10-12 | 2015-10-12 | OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1502143A FR3042353B1 (en) | 2015-10-12 | 2015-10-12 | OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE |
FR1502143 | 2015-10-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3042353A1 true FR3042353A1 (en) | 2017-04-14 |
FR3042353B1 FR3042353B1 (en) | 2018-06-08 |
Family
ID=55072724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1502143A Expired - Fee Related FR3042353B1 (en) | 2015-10-12 | 2015-10-12 | OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3042353B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110600568A (en) * | 2018-05-25 | 2019-12-20 | ćæł°ćæ°ïŒćäșŹïŒç§ææéć Źćž | Double-sided power generation photovoltaic module |
EP3599650A1 (en) * | 2018-07-27 | 2020-01-29 | DWP Energy Solutions, LLC | High-efficiency translucent solar module assembly |
EP4084088A1 (en) * | 2021-04-27 | 2022-11-02 | HS Holding GmbH | Reflector unit for a bifacial solar module and solar module system comprising the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127331A (en) * | 1999-10-29 | 2001-05-11 | Sanyo Electric Co Ltd | Solar battery module |
WO2007124462A2 (en) * | 2006-04-21 | 2007-11-01 | Sunpower Corporation, Systems | Solar collector arrangement with reflecting surface |
FR2954000A1 (en) * | 2009-12-14 | 2011-06-17 | Commissariat Energie Atomique | REFLECTIVE DEVICE FOR PHOTOVOLTAIC MODULE WITH BIFACIAL CELLS |
EP2346092A1 (en) * | 2008-10-13 | 2011-07-20 | Chin-Huai Young | Photoelectric module |
-
2015
- 2015-10-12 FR FR1502143A patent/FR3042353B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001127331A (en) * | 1999-10-29 | 2001-05-11 | Sanyo Electric Co Ltd | Solar battery module |
WO2007124462A2 (en) * | 2006-04-21 | 2007-11-01 | Sunpower Corporation, Systems | Solar collector arrangement with reflecting surface |
EP2346092A1 (en) * | 2008-10-13 | 2011-07-20 | Chin-Huai Young | Photoelectric module |
FR2954000A1 (en) * | 2009-12-14 | 2011-06-17 | Commissariat Energie Atomique | REFLECTIVE DEVICE FOR PHOTOVOLTAIC MODULE WITH BIFACIAL CELLS |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110600568A (en) * | 2018-05-25 | 2019-12-20 | ćæł°ćæ°ïŒćäșŹïŒç§ææéć Źćž | Double-sided power generation photovoltaic module |
EP3599650A1 (en) * | 2018-07-27 | 2020-01-29 | DWP Energy Solutions, LLC | High-efficiency translucent solar module assembly |
US11631778B2 (en) | 2018-07-27 | 2023-04-18 | Dwp Energy Solutions Llc | High-efficiency translucent solar module assembly |
EP4084088A1 (en) * | 2021-04-27 | 2022-11-02 | HS Holding GmbH | Reflector unit for a bifacial solar module and solar module system comprising the same |
Also Published As
Publication number | Publication date |
---|---|
FR3042353B1 (en) | 2018-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2007040065A1 (en) | Solar cell and solar cell module | |
FR3042353A1 (en) | OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE | |
FR3042350A1 (en) | PHOTONIC NON-ENCAPSULATED PHOTOVOLTAIC YIELD INCREASING DEVICE | |
FR3042346A1 (en) | OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH BIFACIAL PLASMON FILTRATION AND VARIABLE MULTIREFRIGENCE WITH LOCAL CONCAVE DICHROIC MIRROR | |
FR3042342A1 (en) | PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMONIC FILTRATION AND VARIABLE REVERSE MULTIPLEFRINGENCE SIMPLE CONVEX AND DOUBLE CONCAVE LOCALLY | |
FR3042354A1 (en) | OPTICAL DEVICE REPORTED ON A PHOTOVOLTAIC MODULE WITH A CONVEX CENTER DICHROIC MIRROR AND A DISSYMMETRIC CONCAVE | |
FR3042352A1 (en) | OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND DISSYMMETRIC CONCAVE | |
WO2018078659A1 (en) | Refined light trapping technique using 3-dimensional globule structured solar cell | |
FR3042351A1 (en) | OPTICAL DEVICE REPORTED ON A CONVERTED DICHROIC MIRROR DIGROCAMIC MODULE AND SYMMETRIC CONVEX | |
FR3042336A1 (en) | OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH VARIABLE DICHROIC FILTRATION WITH SINGLE CONCAVE DICHROIC MIRROR AND DOUBLE CONVEX LOCALLY | |
FR3042337A1 (en) | VARIALBLE DICHROIC FILTRATION PHOTOVOLTAIC OPTICAL DEVICE WITH LOCAL CONVEX DICHROIC MIRROR | |
FR3042338A1 (en) | VARIABLE DICHROIC FILTRATION PHOTOVOLTAIC OPTICAL DEVICE WITH LOCAL CONCAVE DICHROIC MIRROR | |
FR3042355A1 (en) | OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX CENTER DICHROIC MIRROR AND SYMMETRIC CONCAVE | |
FR3042345A1 (en) | OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH BIFACIAL PLASMON FILTRATION AND VARIABLE MULTIREFRINGENCE WITH LOCAL CONVEX DICHROIC MIRROR | |
FR3058599A1 (en) | OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MOSULE WITH DICHROIC MIRROR CONCAVE CENTER AND DISSYMMETRIC CONVEX | |
FR3042333A1 (en) | PHOTOVOLTAIC OPTICAL DEVICE WITH DOUBLE FILTRATION PLASMONIC REAR SIDE AND SIMPLE PLASMONIC FILTRATION FRONT PANEL | |
JP2016086154A (en) | Solar battery module | |
US20190353882A1 (en) | Solar concentrator apparatus and solar collector array | |
FR3042341A1 (en) | PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMONIC FILTRATION AND VARIABLE REVERSE MULTIPLEFRINGENCE SIMPLE CONVAVE AND DOUBLE CONVEX LOCALLY | |
FR3042335A1 (en) | PHOVALTAIC OPTICAL DEVICE WITH VARIABLE DICHROIC FILTRATION WITH SIMPLE CONVEX DICHROIC MIRROR AND DOUBLE CONCAVE LOCALLY | |
FR3042344A1 (en) | OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMON FILTRATION AND REVERSE VARIABLE MULTIREFRINGENCE AND LOCAL CONCAVE | |
FR3042339A1 (en) | OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH PLASMONIC FILTRATION BIFACIAL AND VARIABLE REVERSE MULTIPLEFRINGENCE SIMPLE CONCAVE AND DOUBLE CONVEX LOCALLY | |
FR3042343A1 (en) | OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMON FILTRATION AND REVERSE VARIABLE MULTIREFRINGENCE AND LOCAL CONVEX | |
FR3042340A1 (en) | PHOTOVOLTAIC OPTICAL DEVICE WITH BIFACIAL PLASMONIC FILTRATION AND MULTIREFRINGENCE VARIABLE REAR SINGLE CONVEX AND DUAL CONCAVE LOCALLY | |
FR3042347A1 (en) | PHOTOVOLTAIC OPTICAL DEVICE WITH PLASMON FILTRATION |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20170414 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
ST | Notification of lapse |
Effective date: 20230606 |