FR3042353A1 - OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE - Google Patents

OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE Download PDF

Info

Publication number
FR3042353A1
FR3042353A1 FR1502143A FR1502143A FR3042353A1 FR 3042353 A1 FR3042353 A1 FR 3042353A1 FR 1502143 A FR1502143 A FR 1502143A FR 1502143 A FR1502143 A FR 1502143A FR 3042353 A1 FR3042353 A1 FR 3042353A1
Authority
FR
France
Prior art keywords
optical device
solar cells
concave
photovoltaic module
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1502143A
Other languages
French (fr)
Other versions
FR3042353B1 (en
Inventor
Lionel Girardie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR1502143A priority Critical patent/FR3042353B1/en
Publication of FR3042353A1 publication Critical patent/FR3042353A1/en
Application granted granted Critical
Publication of FR3042353B1 publication Critical patent/FR3042353B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

1 - Dispositif optique rapporté sur module photovoltaïque à miroir convexe centré et concave symétrique caractérisé ce qu'il comporte : - Les rangées de cellules solaires bifaciales cristallines (1) ayant une surface frontale (1f) et une surface arriÚre (1r) de ratio de conversion photovoltaïque minimum de 80% et interconnectées pour former une matrice (2) d'une surface (2s) et de face (1f) encapsulée entre un dioptre entrant (4) par un matériau encapsulant (5) et la face (1r) encapsulée avec un dioptre sortant (7) par un matériau encapsulant (6) et dont la distance (e) séparant deux rangées est égale ou inférieure au segment d'une cellule solaire (1) - La surface prise dans le plan de la matrice (2) forme une aire (2s) - Une aire de transmission lumineuse (6S) constituée de l'intervalle (e) par une rangée de cellules solaires (1) - Le laminé d'une épaisseur (8e) formé par l'encapsulation de la matrice de cellules (2) entre les dioptres (4) et (7) est encadré par un cadre (8) d'aluminium anodisé dont la paroi (8p) est la profondeur du cadre métallique de fixation et un pas de retour (8r) servant de support de fixation Un dispositif optique (9) rapporté et fixé sur le pas de retour (8r) du cadre d'un module photovoltaïque bifacial et parallÚle en tout point du dioptre sortant (7) en étant éloigné d'une distance H pour réfléchir les rayons lumineux vers la face arriÚre (1r) des cellules solaires par divergence des rayons diffractés du miroir convexe et par convergence des rayons diffractés du miroir concave Les formes convexe et concave du dispositif optique sont symétriques et l'axe médian de la forme convexe est positionné exactement en superposition de l'axe médian en deux rangées de cellules solaires - La surface du dispositif optique (9) dans le plan parallÚle au dioptre (7) est égale à la surface de la matrice de cellules solaires bifaciales (2s)1 - An optical device attached to a photovoltaic module with convex mirror centered and concave symmetrical characterized: - The rows of crystalline bifacial solar cells (1) having a front surface (1f) and a rear surface (1r) of the ratio of at least 80% photovoltaic conversion and interconnected to form a matrix (2) of a surface (2s) and a face (1f) encapsulated between an incoming diopter (4) by encapsulating material (5) and the encapsulated face (1r) with an outgoing diopter (7) by an encapsulating material (6) and whose distance (e) separating two rows is equal to or smaller than the segment of a solar cell (1) - The surface taken in the plane of the matrix (2) ) forms an area (2s) - A light transmission area (6S) consisting of the interval (e) by a row of solar cells (1) - The laminate of a thickness (8e) formed by the encapsulation of the matrix of cells (2) between the dioptres (4) and (7) is framed p ar an anodized aluminum frame (8) whose wall (8p) is the depth of the metal fixing frame and a return pitch (8r) serving as a fixing support An optical device (9) attached and fixed on the pitch of return (8r) of the frame of a bifacial and parallel photovoltaic module at any point of the outgoing diopter (7) while being distant from a distance H to reflect the light rays towards the rear face (1r) of the solar cells by divergence of the radii diffracted from the convex mirror and by convergence of the diffracted rays of the concave mirror The convex and concave shapes of the optical device are symmetrical and the median axis of the convex shape is positioned exactly in superposition of the median axis in two rows of solar cells - La surface of the optical device (9) in the plane parallel to the diopter (7) is equal to the surface of the matrix of bifacial solar cells (2s)

Description

Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe centrĂ© et concave symĂ©trique Introduction Ă  l’art :Optical device attached to photovoltaic module with convex mirror centered and concave symmetric Introduction to art:

La fabrication de module photovoltaĂŻque cristallin requiert le processus suivant : nettoyage du verre ou positionnement d’un matĂ©riau Ă  forte transparence positionnement d’un film encapsulant EVA « EthylĂšne Vinyle AcĂ©tate » qui est en majoritĂ© de l’éthylĂšne vinyle acĂ©tate sur le verre ou matĂ©riau Ă  forte transparence soudure d’un ruban de cuivre ayant une couche de protection Ă  base d’un alliage Ă  base d’argent, de plomb et d’étain : la tempĂ©rature de la soudure n’excĂšde pas 250°C et ne dure pas plus de 3 secondes par cellules solaires ayant des zones en forme de ligne collecteur de courant des mĂ©tallisations de l’émetteur sur une largeur de 1,5 Ă  3 millimĂštres interconnexion de la polaritĂ© nĂ©gative ‘face avant d’une cellule d’un substrat de type P Ă  la polaritĂ© positive ‘face arriĂšre d’une cellule d’un substrat de type P‘ par exemple disposition en rangĂ©e de cellules soudĂ©es interconnexion des rangĂ©es pour un montage en sĂ©rie des cellules solaires nĂ©cessitant une soudure de chaque ligne de collecteur de courant positionnement d’un film encapsulant sur la matrice de cellules positionnement d’un film arriĂšre de protection Ă©lectrique ou d’un verre ou autre matĂ©riaux isolant lamination Ă  des fins d’encapsulation des cellules solairesThe manufacture of crystalline photovoltaic modules requires the following process: cleaning of the glass or positioning of a material with high transparency positioning of an encapsulating film EVA "Ethylene Vinyl Acetate" which is mostly ethylene vinyl acetate on the glass or material high-transparency welding of a copper ribbon having a protective layer based on an alloy based on silver, lead and tin: the temperature of the weld does not exceed 250 ° C and does not last more than 3 seconds per solar cells having current collector-like areas of the emitter metallizations over a width of 1.5 to 3 millimeters interconnection of the negative polarity front face of a cell of a substrate of type P at the positive polarity 'rear face of a cell of a P type substrate' for example row layout of welded cells row interconnection for a mounting in s solar cells requiring soldering of each current collector line positioning of a film encapsulating on the matrix of cells positioning of an electric protective backing film or glass or other lamination insulating material for encapsulation purposes solar cells

Cette technique est unilatĂ©ralement utilisĂ©e mais a des inconvĂ©nients : le matĂ©riau encapsulant EVA a une viscositĂ© d’une grande variabilitĂ© en fonction de la tempĂ©rature ce qui induit une pression mĂ©canique sur l’ensemble du dispositif des cellules solaires interconnectĂ©es le matĂ©riau encapsulant EVA contenant 1% d’eau libĂšre de l’acide acĂ©tique et du peroxyde d’hydrogĂšne en permanence qui se retrouvent piĂ©gĂ©s dans le module photovoltaĂŻque entraĂźnant des corrosions, des rĂ©actions chimiques avec les surfaces des cellules solaires, des rĂ©actions chimiques avec la surface intĂ©rieure du verre et crĂ©e la corrosion du verre par la formation de halogĂ©nures qui sont des piĂšges d’électrons mais aussi avec le polymĂšre utilisĂ© en protection Ă©lectrique du module le matĂ©riau EVA ayant un indice de rĂ©fraction part rĂ©elle variant entre 1,49 et 1,47 sur la bande de rayonnement solaire, ce qui correspond une rĂ©ponse spectrale proche du verre blanc utilisĂ©, Ă  savoir que le verre ait un traitement particulier le matĂ©riau EVA Ă©tant rĂ©ticulĂ© Ă  la surface du verre, il est trĂšs difficile de sĂ©parer par quelques techniques que ce soient le film EVA du verre et le recyclage du verre comportant l’EVA rend les matĂ©riaux constituant le verre trop polluĂ©s et donc rendent le recyclage du module non fonctionnel l’encapsulation de 60 cellules solaires sur silicium monocristallin de wafer de format pseudo carrĂ© de 156mm de cĂŽtĂ© obtenu par la mĂ©thode de croissance Czochralski, « CZ » cellule Ă  homojonction et Ă©metteur homogĂšne de 18,6% de rendement entraĂźne les pertes suivantes : Ă  partir d’un ruban interconnectant en sĂ©rie les cellules de 2mm de largeur par 0,2mm d’épaisseur et interconnectant les rangĂ©es de cellules thermo-soudĂ©es par un ruban de 5 par 0,3mm, les pertes Ă©lectriques sont de 2,5% les pertes optiques sont de 1% pour un verre avec une couche de silice poreuse d’indice de rĂ©fraction variant entre 1,23 et 1,33 pour un verre de transmittance sur le spectre solaire de 93% le module cristallin de ces 60 cellules solaires de 18,6% aura un rendement de 15,85% soit 2,75% et son comportement en tempĂ©rature sera trĂšs affectĂ© par l’encapsulationThis technique is used unilaterally but has drawbacks: the encapsulating material EVA has a viscosity of great variability as a function of the temperature which induces a mechanical pressure on the entire device of the interconnected solar cells the encapsulating material EVA containing 1% of water releases acetic acid and hydrogen peroxide permanently trapped in the photovoltaic module causing corrosions, chemical reactions with the surfaces of solar cells, chemical reactions with the inner surface of the glass and creates the corrosion of the glass by the formation of halides which are traps of electrons but also with the polymer used in electrical protection of the module the EVA material having a refractive index real part varying between 1.49 and 1.47 on the strip of solar radiation, which corresponds to a spectral response close to the white glass used, To know that the glass has a particular treatment the EVA material being crosslinked on the surface of the glass, it is very difficult to separate by some techniques that it is the EVA film of the glass and the recycling of the glass comprising the EVA makes the materials constituting the too polluted glass and therefore make the recycling of non-functional module the encapsulation of 60 solar cells on monocrystalline wafer silicon of square-shaped format of 156mm side obtained by Czochralski growth method, "CZ" homojunction cell and homogeneous transmitter of 18.6% yield results in the following losses: from a ribbon interconnecting in series cells 2mm wide by 0.2mm thick and interconnecting the rows of heat-sealed cells with a ribbon of 5 by 0, 3mm, the electrical losses are 2.5% the optical losses are 1% for a glass with a porous silica layer of refractive index varying between 1.23 and 1.33 for a glass of transmittance on the solar spectrum of 93% the crystalline modulus of these 60 solar cells of 18.6% will have a yield of 15,85% or 2,75% and its behavior in temperature will be very affected by encapsulation

la cellule solaire de 18,6% sur silicium CZ d’orientation « 1-0-0 » Ă  Ă©metteur homogĂšne aura un coefficient de variation de sa puissance par rapport Ă  la tempĂ©rature d’un facteur nĂ©gatif de 0,45%/°Kelvin et le module cristallin utilisant LEVA entre autre aura un coefficient de variation de sa puissance d’un facteur nĂ©gatif de 0,51%/°K la combinaison des matĂ©riaux verres Ă  93% de transmittance avec l’EVA et des cellules Ă  Ă©metteur homogĂšne est compatible mais l’évolution technologique des cellules Ă  homojonction vers des Ă©metteurs sĂ©lectifs et des passivations arriĂšres, la rĂ©ponse spectrale des cellules Ă©voluent grandement rendant la combinaison des matĂ©riaux d’un module impropre et non efficiente le module cristallin silicium se caractĂ©rise Ă©galement par le comportement optique du silicium Ă  savoir un fort coefficient d’absorption dans les ultra-violets « UV » et une quasi transparence aux infrarouges « IR » et le comportement en fonction de la tempĂ©rature d’un module cristallin est intimement liĂ© Ă  la capacitĂ© de capter la bande solaire spectrale dont les longueurs d’onde de 250 Ă  1300nm reprĂ©sentant 80% du spectre L’effet bifacial inefficace : en effet un module photovoltaĂŻque composĂ©e de cellules cristallines bifaciales et qui est transparent par l’utilisation d’un dioptre sortant transparent comme un verre, un polyacrylate ou un film de polyĂ©thylĂšne, la production de ce module bifacial restera sur l’absorption d’une bande spectrale du rayonnement solaire convertissable selon le type de silicium cristallin et de jonction PN avec la seule face avant sous irradiation directe et la face arriĂšre en irradiation indirecte ne sera pas sollicitĂ©e. Pourtant cette face arriĂšre produit pour une technologie de PERT (Passivated Emitted Rear Technology ) ou de cellules HJT (hĂ©tĂ©ro-jonction) ou Ă  effet tunnel 80 Ă  90% de la face avant : c’est donc une source rĂ©elle de gĂ©nĂ©ration de coĂ»tant photovoltaĂŻque dont la tension est identique Ă  la face avant mais dont le courant est moins Ă©levĂ© mais qui va s’ajouter au courant de la face avant, d’oĂč une mise en Ɠuvre qui doit ĂȘtre scrupuleusement Ă©valuĂ©e.the 18.6% solar cell on homogeneous emitter "1-0-0" CZ silicon will have a coefficient of variation of its power relative to the temperature of a negative factor of 0.45% / ° Kelvin and the crystalline module using LEVA among others will have a coefficient of variation of its power of a negative factor of 0.51% / ° K the combination of glass materials with 93% transmittance with EVA and cells with homogeneous emitter compatible but the technological evolution of homojunction cells to selective emitters and back passivations, the spectral response of cells evolve greatly making the combination of materials of a module unsuitable and inefficient the crystalline silicon module is also characterized by the optical behavior of silicon, namely a high absorption coefficient in ultraviolet "UV" and near-infrared transparency "IR" and the behavior as a function of the temperature of a crystal module is intimately linked to the ability to capture the spectral solar band whose wavelengths from 250 to 1300nm representing 80% of the spectrum The inefficient bifacial effect: indeed a photovoltaic module composed of bifacial crystalline cells and which is transparent by the use of a transparent outgoing diopter such as a glass, a polyacrylate or a polyethylene film, the production of this bifacial module will remain on the absorption of a spectral band of solar radiation convertible according to the type of crystalline silicon and PN junction with the single front face under direct irradiation and the back side in indirect irradiation will not be solicited. However, this backside produces for a technology of PERT (Passivated Emitted Rear Technology) or cells HJT (heterojunction) or tunnel effect 80 to 90% of the front panel: it is therefore a real source of photovoltaic cost generation whose voltage is identical to the front but whose current is lower but which will be added to the current of the front panel, hence an implementation that must be scrupulously evaluated.

La production de la face arriÚre dépend de :The production of the back side depends on:

Albédoalbedo

PiĂ©geage du spectre incident L’AlbĂ©do est la capacitĂ© d’un matĂ©riau Ă  rĂ©flĂ©chir un rayon lumineux dont peu de matĂ©riaux Ă  fort AlbĂ©do de 0,9 Ă  0,99 peuvent ĂȘtre intĂ©grĂ©s Ă  un module photovoltaĂŻque bifacialTrapping the incident spectrum Albedo is the ability of a material to reflect a light ray of which few materials with high Albedo from 0.9 to 0.99 can be integrated into a bifacial photovoltaic module

Le piĂ©geage du spectre incident doit ĂȘtre conçu afin d’éviter les effets d’ombrage dĂ©portĂ© des structures supportant les modules photovoltaĂŻque mais doit ĂȘtre positionnĂ© de telle façon que le point focal coĂŻncide avec le plan de face arriĂšre des cellules solaires.The trapping of the incident spectrum must be designed to avoid the effects of remote shading of the structures supporting the photovoltaic modules but must be positioned in such a way that the focal point coincides with the rear plane of the solar cells.

Un module photovoltaĂŻque bifacial posĂ© sur une toiture de peinture blanche d’un albĂ©do de 0,75 et dont la matrice de cellules solaires aura un espace de 3mm entre les strings (rangĂ©es de cellules solaires) ne permettra de gĂ©nĂ©rer au mieux 10% de production et va gĂ©nĂ©rer un Ă©chauffement des cellules d’une part par une forte rĂ©flexion des IR (Infra-Rouge) et d’autre part une hausse brutale du courant.A bifacial photovoltaic module placed on a roof of white paint of an albedo of 0.75 and whose matrix of solar cells will have a gap of 3mm between the strings (rows of solar cells) will not generate at best 10% of production and will generate a heating of the cells on the one hand by a strong reflection of IR (Infra-Red) and on the other hand a sharp rise in the current.

La prĂ©sente invention dĂ©crit un dispositif optique permettant de filtrer le spectre lumineux par trois composants pour apporter Ă  la jonction de cellule solaire les photons aux longueurs d’onde absorbĂ©es et transmettre les longueurs d’onde utiles Ă  des applications sous le panneau photovoltaĂŻque et rĂ©flĂ©chir les longueurs d’onde qui ne sont pas utiles Ă  la production photovoltaĂŻque. Ce dispositif est indĂ©pendant du module photovoltaĂŻque et s’applique pour les modules photovoltaĂŻques transparent et les modules photovoltaĂŻques bifacials.The present invention discloses an optical device for filtering the light spectrum by three components to provide the solar cell junction with photons at absorbed wavelengths and to transmit useful wavelengths for applications under the photovoltaic panel and to reflect the wavelengths that are not useful for photovoltaic production. This device is independent of the photovoltaic module and is applicable for transparent photovoltaic modules and bifacial photovoltaic modules.

La prĂ©sente invention concerne la conception et l’élaboration d’un dispositif rapportĂ© au dos d’un module photovoltaĂŻque bifacial cadrĂ© prĂ©dĂ©fini par les caractĂ©ristiques de la matrice de cellules solaires afin que le dispositif optique rapportĂ© puisse piĂ©ger la lumiĂšre indĂ©pendamment de l’AlbĂ©do du matĂ©riau de support au module qui est une toiture ou un sol selon son application et que l’AlbĂ©do de ce dispositif optique rapportĂ© sera au minimum de 0,93 par une rĂ©flexion sĂ©lective des longueurs d’onde du spectre solaire incident afin de ne pas gĂ©nĂ©rer d’IR au-delĂ  de 1200nm pour Ă©chauffer les cellules d’une part et que la structure de piĂ©geage sera efficace pour des angles d’incidence faible afin de mieux rĂ©partir durant une pĂ©riode d’irradiation solaire la hausse de courant gĂ©nĂ©rĂ© par la face artiĂšte. L’objectif de la prĂ©sente invention est de lisser la hausse de courant de la face amĂšre d’un module photovoltaĂŻque bifacial et de fixer les paramĂštres du module photovoltaĂŻque bifacial pour gĂ©nĂ©rer une production complĂ©mentaire de 35% indĂ©pendamment de toute rĂ©fĂ©rence d’AlbĂ©do des matĂ©riaux environnants le module photovoltaĂŻque.The present invention relates to the design and development of a device attached to the back of a structured bifacial photovoltaic module predefined by the characteristics of the solar cell array so that the reported optical device can trap light independently of the Albedo of the support material to the module which is a roof or a ground according to its application and that the Albedo of this reported optical device will be at least 0.93 by a selective reflection of the wavelengths of the incident solar spectrum so as not to generate IR above 1200nm to heat the cells on the one hand and the trapping structure will be effective for low incidence angles to better distribute during a period of solar irradiation the rise in current generated by the face artiĂšte. The objective of the present invention is to smooth the current rise of the bitter face of a bifacial photovoltaic module and to set the parameters of the bifacial photovoltaic module to generate an additional production of 35% independently of any Albedo material reference. surrounding the photovoltaic module.

Description du Dispositif optique rapporté sur module pbotovoMque à miroir convexe centré et concert ^métriqueDescription of the Optical device attached to a convex convex mirror centered and metric concerto module

Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe centrĂ© et concave symĂ©trique caractĂ©risĂ© selon la figure 1 ce qu’il comporte :An optical device attached to a photovoltaic module with convex mirror centered and concave symmetrical, characterized according to FIG. 1 which comprises:

Des rangĂ©es de cellules solaires bifaciales cristallines (1) ayant une surface frontale (lf) et une surface arriĂšre (lr) de ratio de conversion photovoltaĂŻque minimum de 80% et interconnectĂ©es pour former une matrice (2) d’une surface (2s) et de face (lf) encapsulĂ©e entre un dioptre entrant (4) par un matĂ©riau encapsulant (5) et la face (lr) encapsulĂ©e avec un dioptre sortant (7) par un matĂ©riau encapsulant (6) et dont la distance (e) sĂ©parant deux rangĂ©es est Ă©gale ou infĂ©rieure au segment d’une cellule solaire (1)Rows of crystalline bifacial solar cells (1) having a front surface (lf) and a rear surface (1r) of a minimum photovoltaic conversion ratio of 80% and interconnected to form a matrix (2) of a surface (2s) and face (lf) encapsulated between an incoming diopter (4) by an encapsulating material (5) and the face (lr) encapsulated with an outgoing diopter (7) by an encapsulating material (6) and whose distance (e) separating two rows is equal to or less than the segment of a solar cell (1)

La surface prise dans le plan de la matrice (2) forme une aire (2s)The surface taken in the plane of the matrix (2) forms an area (2s)

Une aire de transmission lumineuse (6S) constituĂ©e de l’intervalle (e) par une rangĂ©e de cellules solaires (1)A light transmission area (6S) consisting of the interval (e) by a row of solar cells (1)

Le laminĂ© d’une Ă©paisseur (8e) formĂ© par l’encapsulation de la matrice de cellules (2) entre les dioptres (4) et (7) est encadrĂ© par un cadre (8) d’aluminium anodisĂ© dont la paroi (8p) est la profondeur du cadre mĂ©tallique de fixation et un pas de retour (8r) servant de support de fixation Un dispositif optique (9) rapportĂ© et fixĂ© sur le pas de retour (8r) du cadre d’un module photovoltaĂŻque bifacial et parallĂšle en tout point du dioptre sortant (7) en Ă©tant Ă©loignĂ© d’une distance H pour rĂ©flĂ©chir les rayons lumineux vers la face arriĂšre (1 r) des cellules solaires par divergence des rayons diffractĂ©s du miroir convexe et par convergence des rayons diffractĂ©s du miroir concave Les formes convexe et concave du dispositif optique sont symĂ©triques et l’axe mĂ©dian de la forme convexe est positionnĂ© exactement en superposition de l’axe mĂ©dian en deux rangĂ©es de cellules solairesThe laminate of a thickness (8e) formed by the encapsulation of the matrix of cells (2) between the diopters (4) and (7) is framed by a frame (8) of anodized aluminum whose wall (8p) is the depth of the metal fixing frame and a return pitch (8r) serving as a fixing support An optical device (9) attached and fixed on the return pitch (8r) of the frame of a bifacial and parallel photovoltaic module in all point of the outgoing diopter (7) being away from a distance H to reflect the light rays towards the rear face (1 r) of the solar cells by divergence of the diffracted radii of the convex mirror and by convergence of the diffracted rays of the concave mirror. convex and concave optical device are symmetrical and the median axis of the convex shape is positioned exactly in superposition of the median axis in two rows of solar cells

La surface du dispositif optique (9) dans le plan parallĂšle au dioptre (7) est Ă©gale Ă  la surface de la matrice de cellules solaires bifadales (2s)The surface of the optical device (9) in the plane parallel to the diopter (7) is equal to the surface of the matrix of bifadal solar cells (2s)

Le Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe et concave symĂ©trique selon la figure n°l caractĂ©risĂ© en ce que l’espace libre de passage de lumiĂšre entrant et sortant Ă  travers soit d’une largeur (e) entre deux rangĂ©es de cellules solaires (1) et de la longueur de la rangĂ©e de cellules solaires (1) pour former l’aire (6S).The optical device mounted on a photovoltaic module with convex and concave symmetrical mirror according to FIG. 1, characterized in that the free space for the passage of light entering and exiting through is of a width (e) between two rows of solar cells. (1) and the length of the row of solar cells (1) to form the area (6S).

Ce Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe et concave symĂ©trique selon la figure 1 caractĂ©risĂ© en ce que la face supĂ©rieure de la matrice (2) de cellules solaires soit encapsulĂ©e avec la surface (4’) du dioptre entrant (4) par un matĂ©riau encapsulant (5) choisi parmi les silicones, les acryliques, les thermoplastiques et que la surface (4") soit d’un indice de rĂ©fraction infĂ©rieur de 10% Ă  l’indice de rĂ©fraction du dioptre entrant (4).This optical device mounted on a photovoltaic module with a convex and concave symmetrical mirror according to FIG. 1 characterized in that the upper face of the matrix (2) of solar cells is encapsulated with the surface (4 ') of the incoming diopter (4) by a encapsulating material (5) selected from silicones, acrylics, thermoplastics and that the surface (4 ") has a refractive index 10% lower than the refractive index of the incoming diopter (4).

Ce dispositif est caractĂ©risĂ© en ce que l’aire (6S) se dĂ©finit par les dimensions de l’intervalle (e) et de la longueur des rangĂ©es de cellules.This device is characterized in that the area (6S) is defined by the dimensions of the interval (e) and the length of the rows of cells.

Le Dispositif optique rapporté sur module photovoltaïque à miroir convexe et concave symétrique selon la figure n°3 caractérisé en ce que le dispositif optique (9) comporte :The optical device attached to a symmetrical convex and concave mirror photovoltaic module according to FIG. 3, characterized in that the optical device (9) comprises:

Un matériaux (11) choisi parmi les matériaux acryliques, polyéthylÚne, les polycarbonatesA material (11) selected from acrylic materials, polyethylene, polycarbonates

La face supĂ©rieure a une interface (lli) ayant une texturation par des formes prismatiques ayant une base de losange avec des angles d’inclinaison de 60° ou une base de carrĂ© avec des angles de 45°The upper face has an interface (11i) having texturing by prismatic shapes having a diamond base with tilt angles of 60 ° or a square base with 45 ° angles

Le miroir de Bragg est une combinaison de couches (10a) et (10b) formant un nano-laminĂ© dont chaque (10a) et (10b) varie en Ă©paisseur comprise entre lOOAngstrĂŽm et lOOOAngstrĂŽm chacune la couche (10a) est la combinaison d’oxydes mĂ©talliques choisi parmi le dioxyde d’hafnium, le dioxyde de zirconium, le dioxyde de titane, le penta-oxyde de tantale, l’oxyde d’aluminium, les alliages d’oxyde d’hafnium zirconium, les alliages d’oxyde d’hafnium aluminium, d’oxyde de lanthanides, d’oxyde d’aluminium et silicate, le penta-oxyde de nobium la couche (10b) est la premiĂšre et la derniĂšre couche du nano-laminĂ© d’un matĂ©riau choisi parmi l’aluminium, le nickel, l’argent, le chrome, la couche (10a) est la premiĂšre et la derniĂšre couche de ce nano-laminĂ©The Bragg mirror is a combination of layers (10a) and (10b) forming a nano-laminate each of which (10a) and (10b) varies in thickness between 100 Angstrom and 1000 Angstrom each layer (10a) is the combination of oxides metal selected from hafnium dioxide, zirconium dioxide, titanium dioxide, tantalum penta-oxide, aluminum oxide, hafnium zirconium oxide alloys, aluminum oxide alloys, aluminum hafnium, lanthanide oxide, aluminum oxide and silicate, nobium penta-oxide the layer (10b) is the first and last layer of the nano-laminate of a material selected from aluminum, nickel, silver, chromium, the layer (10a) is the first and last layer of this nano-laminate

Le Dispositif optique (9) rapportĂ© sur module photovoltaĂŻque a une forme convexe et concave symĂ©trique et dont le diamĂštre (Γ) de la forme convexe soit au plus Ă©gale Ă  « 3*e » soit trois fois l’intervalle entre rangĂ©es de cellules solaires et dont la profondeur (h’) doit ĂȘtre supĂ©rieure ou Ă©gale Ă  (e) pour former un miroir paraboloĂŻde hyperbolique convexe.The optical device (9) attached to a photovoltaic module has a convex and concave symmetrical shape and whose diameter (Γ) of the convex shape is at most equal to "3 * e", ie three times the interval between rows of solar cells and whose depth (h ') must be greater than or equal to (e) to form a convex hyperbolic paraboloidal mirror.

Le dispositif optique (9) caractĂ©risĂ© en ce que la forme concave dont le diamĂštre (T) de la forme concave et de profondeur (h^ pour former un miroir paraboloĂŻde hyperbolique concave. L’axe mĂ©dian de la forme convexe du dispositif optique (9) doit ĂȘtre Ă  positionnĂ©e exactement et confondue avec l’axe mĂ©dian entre deux rangĂ©es de cellules solaires (1).The optical device (9) characterized in that the concave shape of which the diameter (T) of the concave shape and depth (h ^ to form a concave hyperbolic paraboloid mirror.The median axis of the convex shape of the optical device (9 ) must be positioned exactly and coincident with the center line between two rows of solar cells (1).

Le dispositif optique (9) a une surface texturĂ©e selon la figure n°2 caractĂ©risĂ©e en ce que la base de la texturation soit de forme pyramidale de section (10’) et (10”) et de hauteur (10’”) et que la base pyramidale peut ĂȘtre de section Ă©gale ou non Ă©gale pour former un losange en sa base.The optical device (9) has a textured surface according to FIG. 2 characterized in that the base of the texturing is of pyramidal section (10 ') and (10 ") and height (10'") and that the pyramidal base may be of equal or non-equal section to form a rhombus at its base.

Les prismes formés par les pyramides ont des axes de plan de rotation de 15 degré de telle sorte que la réflexion des interférences du dichroïsme résultant sera réfléchi équitablement sur un tiers de la surface (lr) de cellule solaire.The prisms formed by the pyramids have rotational plane axes of 15 degrees so that the reflection of the resulting dichroism interferences will be reflected equitably over a third of the solar cell surface (1r).

La distance de positionnement du dispositif optique (9) se dĂ©finit par : H = (8p) — (8e) — (h’)The positioning distance of the optical device (9) is defined by: H = (8p) - (8e) - (h ')

Un exemple de construction d’un tel dispositif photovoltaĂŻque se compose de : - une matrice de cellules solaires bifadales Ă  passivation arriĂšre de l’emetteur formĂ©e sur silicium monocristallin dopĂ© au Phosphore dont les dimensions du substrat pseudo-carrĂ©s sont 156,75x156,75mm pour un layon de lingot de 205mm : la cellule solaire a une efficacitĂ© de conversion de 20,8% minimum pour une puissance maximale de 5,06Watt, interconnectĂ©e par un ruban enrobĂ© colle conductrice d’une rĂ©sine de silicone et de cuivre et nano-fils de cuivre sans plomb : la matrice (2) est constituĂ©e de 6 rangĂ©es de 10 cellules solaires la matrice est organisĂ©e pour avoir 18mm d’espace (e) entre les rangĂ©es de cellules connectĂ©es en sĂ©rie - dioptre entrant (4) est un verre solaire imprimĂ© trempĂ© thermiquement de silicate Ă  transmission de 96% sur le spetre solaire 1.5AM d’épaisseur de 2mm avec un anti-reflet en interface supĂ©rieure et en interface infĂ©rieure - la matrice (2) formĂ©e est encapsulĂ©e par sa face avant soumis en radiation solaire directe par un encapsulant (5) de silicone liquide transparent aux UV laminĂ© par une lamination liquide - un cadre aluminium anodisĂ© d’épaisseur (8p) de 40mm et de pas de retour de 30mm - le dispositif optique (9) est en polycarbonate dont l’onde de formation de la forme convexe a un hauteur (h”) de 18mm et de largeur (h*) 54mm et la forme concave a une hauteur (h’) de 18mm et une largeur (1”) de 54mm - le dioptre sortant (7) est un verre solaire imprimĂ© d’épaisseur de 2mm de silicate Ă  trempe de durcissement. - le miroir de Bragg variable composĂ© d’aluminium (10b) en combinaison avec un alliage combinĂ© d’oxyde d’aluminium A1203 et d’oxyde hafnium silicate.An example of a construction of such a photovoltaic device consists of: a matrix of bifadal solar cells with passive passivation of the emitter formed on Phosphorus-doped monocrystalline silicon whose dimensions of the pseudo-square substrate are 156.75 × 156.75 mm for a 205mm ingon strip: the solar cell has a conversion efficiency of 20.8% minimum for a maximum power of 5.06Watt, interconnected by a coated tape conductive glue of a silicone resin and copper and nano-wires lead-free copper: the matrix (2) consists of 6 rows of 10 solar cells the matrix is organized to have 18mm of space (e) between rows of cells connected in series - incoming diopter (4) is a solar glass 96% Heat-Treated Silicone Printed Film on 1.5mm Thickness 1.5AM solar spherre with superior interface and lower interface anti-glare - formed die (2) is encapsulated by its front side subjected to direct solar radiation by an encapsulant (5) of UV-transparent liquid silicone laminated by a liquid lamination - an anodized aluminum frame of thickness (8p) of 40mm and no return of 30mm - the optical device (9) is made of polycarbonate whose forming wave of the convex shape has a height (h ") of 18mm and width (h *) 54mm and the concave shape has a height (h ') of 18mm and a width (1 ") of 54mm - the outgoing diopter (7) is a printed 2mm thick solar glass of hardening quenching silicate. - The variable Bragg mirror composed of aluminum (10b) in combination with a combined alloy of aluminum oxide A1203 and hafnium silicate oxide.

Claims (4)

REVENDICATIONS 1 — Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe centrĂ© et concave symĂ©trique caractĂ©risĂ© ce qu’il comporte : Les rangĂ©es de cellules solaires bifadales cristallines (1) ayant une surface frontale (lf) et une surface arriĂšre (lr) de ratio de conversion photovoltaĂŻque minimum de 80% et interconnectĂ©es pour former une matrice (2) d’une surface (2s) et de face (lf) encapsulĂ©e entre un dioptre entrant (4) par un matĂ©riau encapsulant (5) et la face (lr) encapsulĂ©e avec un dioptre sortant (7) par un matĂ©riau encapsulant (6) et dont la distance (e) sĂ©parant deux rangĂ©es est Ă©gale ou infĂ©rieure au segment d’une cellule solaire (1) La surface prise dans le plan de la matrice (2) forme une aire (2s) Une aire de transmission lumineuse (6S) constituĂ©e de l’intervalle (e) par une rangĂ©e de cellules solaires (1) Le laminĂ© d’une Ă©paisseur (8e) formĂ© par l’encapsulation de la matrice de cellules (2) entre les dioptres (4) et (7) est encadrĂ© par un cadre (8) d’aluminium anodisĂ© dont la paroi (8p) est la profondeur du cadre mĂ©tallique de fixation et un pas de retour (8r) servant de support de fixation Un dispositif optique (9) rapportĂ© et fixĂ© sur le pas de retour (8r) du cadre d’un module photovoltaĂŻque bifacial et parallĂšle en tout point du dioptre sortant (7) en Ă©tant Ă©loignĂ© d’une distance H pour rĂ©flĂ©chit les rayons lumineux vers la face arriĂšre (lr) des cellules solaires par divergence des rayons diffractĂ©s du miroir convexe et par convergence des rayons diffractĂ©s du miroir concave Les formes convexe et concave du dispositif optique sont symĂ©triques et l’axe mĂ©dian de la forme convexe est positionnĂ© exactement en superposition de l’axe mĂ©dian en deux rangĂ©es de cellules solaires La surface du dispositif optique (9) dans le plan parallĂšle au dioptre (7) est Ă©gale Ă  la surface de la matrice de cellules solaires bifadales (2s)CLAIMS 1 - Optical device attached to photovoltaic module with convex mirror centered and concave symmetrical characterized what it comprises: The rows of crystalline bifadal solar cells (1) having a front surface (lf) and a rear surface (lr) of ratio of photovoltaic conversion of 80% minimum and interconnected to form a matrix (2) of a surface (2s) and face (lf) encapsulated between an incoming diopter (4) by encapsulating material (5) and the encapsulated face (1r) with an outgoing diopter (7) by an encapsulating material (6) and whose distance (e) separating two rows is equal to or smaller than the segment of a solar cell (1) The surface taken in the plane of the matrix (2) forms an area (2s) A light transmission area (6S) consisting of the interval (e) by a row of solar cells (1) The laminate of a thickness (8e) formed by the encapsulation of the cell matrix (2) between the diopters (4) e t (7) is framed by a frame (8) of anodized aluminum whose wall (8p) is the depth of the metal fixing frame and a return pitch (8r) serving as a mounting bracket An optical device (9) reported and fixed on the return pitch (8r) of the frame of a bifacial and parallel photovoltaic module at any point of the outgoing diopter (7) while being distant a distance H for reflecting the light rays towards the rear face (lr) of the solar cells by divergence of the diffracted radii of the convex mirror and by convergence of the diffracted radii of the concave mirror The convex and concave shapes of the optical device are symmetrical and the median axis of the convex shape is positioned exactly in superposition of the median axis in two rows of solar cells The surface of the optical device (9) in the plane parallel to the diopter (7) is equal to the surface of the matrix of bifadal solar cells (2s) 2 - Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe centrĂ© et concave symĂ©trique selon la revendication prĂ©cĂ©dente caractĂ©risĂ© en ce que l’espace libre de passage de lumiĂšre entrant et sortant Ă  travers soit d’une largeur (e) entre deux rangĂ©es de cellules solaires (1) et de la longueur de la rangĂ©e de cellules solaires (1) pour former l’aire (6S).2 - An optical device attached to a photovoltaic module with convex mirror centered and concave symmetrical according to the preceding claim characterized in that the free passage of light entering and exiting through is of a width (e) between two rows of solar cells (1) and the length of the row of solar cells (1) to form the area (6S). 3 - Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe centrĂ© et concave symĂ©trique selon la revendication n°l caractĂ©risĂ© en ce que le dispositif optique (9) comporte : Un matĂ©riaux (11) choisi parmi les matĂ©riaux acryliques, polyĂ©thylĂšne, les polycarbonates La face supĂ©rieure a une interface (lli) ayant une texturation par des formes prismatiques ayant une base de losange avec des angles d’inclinaison de 60° ou une base de carrĂ© avec des angles de 45° Le miroir de Bragg est une combinaison de couches (10a) et (10b) formant un nano-laminĂ© dont chaque (10a) et (10b) varie en Ă©paisseur comprise entre lOOAngstrĂŽm et lOOOAngstrĂŽm chacune la couche (10a) est la combinaison d’oxydes mĂ©talliques choisi parmi le dioxyde d’hafnium, le dioxyde de zirconium, le dioxyde de titane, le penta-oxyde de tantale, l’oxyde d’aluminium, les alliages d’oxyde d’hafnium zirconium, les alliages d’oxyde d’hafnium aluminium, d’oxyde de lanthanides, d’oxyde d’aluminium et silicate, le penta-oxyde de nobium, la couche (10b) est la premiĂšre et la derniĂšre couche du nano-laminĂ© d’un matĂ©riau choisi parmi Faluminium, le nickel, l’argent, le chrome, la couche (10a) est la premiĂšre et la derniĂšre couche de ce nano-laminĂ© 4 — Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe centrĂ© et concave symĂ©trique selon les revendications n°l et 3 caractĂ©risĂ© en ce que la forme convexe a un diamĂštre (F) soit au plus Ă©gale Ă  « 3*e » soit trois fois l’intervalle entre rangĂ©es de cellules solaires et dont la profondeur (h”) doit ĂȘtre supĂ©rieure ou Ă©gale Ă  (e) pour former un miroir paraboloĂŻde hyperbolique convexe.3 - An optical device attached to a photovoltaic module with convex mirror centered and concave symmetrical according to claim 1, characterized in that the optical device (9) comprises: A material (11) chosen from acrylic materials, polyethylene, polycarbonates The face superior to an interface (11i) having texturing by prismatic shapes having a diamond base with tilt angles of 60 ° or a square base with angles of 45 ° The Bragg mirror is a combination of layers (10a ) and (10b) forming a nano-laminate each of which (10a) and (10b) varies in thickness between 100 Angstrom and 1000 Angstrom each layer (10a) is the combination of metal oxides selected from hafnium dioxide, dioxide of zirconium, titanium dioxide, tantalum penta-oxide, aluminum oxide, hafnium zirconium oxide alloys, aluminum hafnium oxide, lanthanide oxide, aluminum oxide and silicate, nobium penta-oxide, the layer (10b) is the first and last layer of the nano-laminate of a material selected from aluminum, nickel, silver, chromium, layer (10a) is the first and the last layer of this nano-laminate 4 - Optical device attached to symmetrical centered and concave convex mirror photovoltaic module according to claims 1 and 3 characterized in that the convex shape has a diameter (F ) not more than "3 * e" or three times the interval between rows of solar cells and whose depth (h ") must be greater than or equal to (e) to form a convex hyperbolic paraboloidal mirror. 5 - Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe centrĂ© et concave symĂ©trique selon les revendications n°l et 3 caractĂ©risĂ© en ce que la forme concave dont le diamĂštre (F) concave soit au plus Ă©gale Ă  « 3*e » soit trois fois l’intervalle entre rangĂ©es de cellules solaires et dont la profondeur (h*) doit ĂȘtre supĂ©rieure ou Ă©gale Ă  (e) pour former un miroir paraboloĂŻde hyperbolique concave. 6 — Dispositif optique rapportĂ© sur module photovoltaĂŻque Ă  miroir convexe centrĂ© et concave symĂ©trique selon la revendication n3 caractĂ©risĂ© en ce que la base de la texturation (lOi) soit de forme pyramidale de section (10’) et (10”) et de hauteur (10’”) et que la base pyramidale peut ĂȘtre de section Ă©gale ou non Ă©gale pour former un losange en sa base.5 - An optical device attached to photovoltaic module convex mirror centered and concave symmetrical according to claims 1 and 3 characterized in that the concave shape whose concave diameter (F) is at most equal to "3 * e" three times the interval between rows of solar cells and whose depth (h *) must be greater than or equal to (e) to form a concave hyperbolic paraboloidal mirror. 6 - An optical device attached to a photovoltaic module with convex mirror centered and concave symmetrical according to claim n3 characterized in that the base of the texturing (10i) is of pyramidal section (10 ') and (10 ") and height ( 10 '") and that the pyramidal base may be of equal or unequal cross-section to form a rhombus at its base.
FR1502143A 2015-10-12 2015-10-12 OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE Expired - Fee Related FR3042353B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1502143A FR3042353B1 (en) 2015-10-12 2015-10-12 OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1502143A FR3042353B1 (en) 2015-10-12 2015-10-12 OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE
FR1502143 2015-10-12

Publications (2)

Publication Number Publication Date
FR3042353A1 true FR3042353A1 (en) 2017-04-14
FR3042353B1 FR3042353B1 (en) 2018-06-08

Family

ID=55072724

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1502143A Expired - Fee Related FR3042353B1 (en) 2015-10-12 2015-10-12 OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE

Country Status (1)

Country Link
FR (1) FR3042353B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600568A (en) * 2018-05-25 2019-12-20 ć›æł°ćˆ›æ–°ïŒˆćŒ—äșŹïŒ‰ç§‘æŠ€æœ‰é™ć…Źćž Double-sided power generation photovoltaic module
EP3599650A1 (en) * 2018-07-27 2020-01-29 DWP Energy Solutions, LLC High-efficiency translucent solar module assembly
EP4084088A1 (en) * 2021-04-27 2022-11-02 HS Holding GmbH Reflector unit for a bifacial solar module and solar module system comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127331A (en) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd Solar battery module
WO2007124462A2 (en) * 2006-04-21 2007-11-01 Sunpower Corporation, Systems Solar collector arrangement with reflecting surface
FR2954000A1 (en) * 2009-12-14 2011-06-17 Commissariat Energie Atomique REFLECTIVE DEVICE FOR PHOTOVOLTAIC MODULE WITH BIFACIAL CELLS
EP2346092A1 (en) * 2008-10-13 2011-07-20 Chin-Huai Young Photoelectric module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127331A (en) * 1999-10-29 2001-05-11 Sanyo Electric Co Ltd Solar battery module
WO2007124462A2 (en) * 2006-04-21 2007-11-01 Sunpower Corporation, Systems Solar collector arrangement with reflecting surface
EP2346092A1 (en) * 2008-10-13 2011-07-20 Chin-Huai Young Photoelectric module
FR2954000A1 (en) * 2009-12-14 2011-06-17 Commissariat Energie Atomique REFLECTIVE DEVICE FOR PHOTOVOLTAIC MODULE WITH BIFACIAL CELLS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600568A (en) * 2018-05-25 2019-12-20 ć›æł°ćˆ›æ–°ïŒˆćŒ—äșŹïŒ‰ç§‘æŠ€æœ‰é™ć…Źćž Double-sided power generation photovoltaic module
EP3599650A1 (en) * 2018-07-27 2020-01-29 DWP Energy Solutions, LLC High-efficiency translucent solar module assembly
US11631778B2 (en) 2018-07-27 2023-04-18 Dwp Energy Solutions Llc High-efficiency translucent solar module assembly
EP4084088A1 (en) * 2021-04-27 2022-11-02 HS Holding GmbH Reflector unit for a bifacial solar module and solar module system comprising the same

Also Published As

Publication number Publication date
FR3042353B1 (en) 2018-06-08

Similar Documents

Publication Publication Date Title
JPWO2007040065A1 (en) Solar cell and solar cell module
FR3042353A1 (en) OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND SYMMETRIC CONCAVE
FR3042350A1 (en) PHOTONIC NON-ENCAPSULATED PHOTOVOLTAIC YIELD INCREASING DEVICE
FR3042346A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH BIFACIAL PLASMON FILTRATION AND VARIABLE MULTIREFRIGENCE WITH LOCAL CONCAVE DICHROIC MIRROR
FR3042342A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMONIC FILTRATION AND VARIABLE REVERSE MULTIPLEFRINGENCE SIMPLE CONVEX AND DOUBLE CONCAVE LOCALLY
FR3042354A1 (en) OPTICAL DEVICE REPORTED ON A PHOTOVOLTAIC MODULE WITH A CONVEX CENTER DICHROIC MIRROR AND A DISSYMMETRIC CONCAVE
FR3042352A1 (en) OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX MIRROR CENTER AND DISSYMMETRIC CONCAVE
WO2018078659A1 (en) Refined light trapping technique using 3-dimensional globule structured solar cell
FR3042351A1 (en) OPTICAL DEVICE REPORTED ON A CONVERTED DICHROIC MIRROR DIGROCAMIC MODULE AND SYMMETRIC CONVEX
FR3042336A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH VARIABLE DICHROIC FILTRATION WITH SINGLE CONCAVE DICHROIC MIRROR AND DOUBLE CONVEX LOCALLY
FR3042337A1 (en) VARIALBLE DICHROIC FILTRATION PHOTOVOLTAIC OPTICAL DEVICE WITH LOCAL CONVEX DICHROIC MIRROR
FR3042338A1 (en) VARIABLE DICHROIC FILTRATION PHOTOVOLTAIC OPTICAL DEVICE WITH LOCAL CONCAVE DICHROIC MIRROR
FR3042355A1 (en) OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MODULE WITH CONVEX CENTER DICHROIC MIRROR AND SYMMETRIC CONCAVE
FR3042345A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH BIFACIAL PLASMON FILTRATION AND VARIABLE MULTIREFRINGENCE WITH LOCAL CONVEX DICHROIC MIRROR
FR3058599A1 (en) OPTICAL DEVICE REPORTED ON PHOTOVOLTAIC MOSULE WITH DICHROIC MIRROR CONCAVE CENTER AND DISSYMMETRIC CONVEX
FR3042333A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH DOUBLE FILTRATION PLASMONIC REAR SIDE AND SIMPLE PLASMONIC FILTRATION FRONT PANEL
JP2016086154A (en) Solar battery module
US20190353882A1 (en) Solar concentrator apparatus and solar collector array
FR3042341A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMONIC FILTRATION AND VARIABLE REVERSE MULTIPLEFRINGENCE SIMPLE CONVAVE AND DOUBLE CONVEX LOCALLY
FR3042335A1 (en) PHOVALTAIC OPTICAL DEVICE WITH VARIABLE DICHROIC FILTRATION WITH SIMPLE CONVEX DICHROIC MIRROR AND DOUBLE CONCAVE LOCALLY
FR3042344A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMON FILTRATION AND REVERSE VARIABLE MULTIREFRINGENCE AND LOCAL CONCAVE
FR3042339A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH PLASMONIC FILTRATION BIFACIAL AND VARIABLE REVERSE MULTIPLEFRINGENCE SIMPLE CONCAVE AND DOUBLE CONVEX LOCALLY
FR3042343A1 (en) OPTICAL PHOTOVOLTAIC OPTICAL DEVICE WITH FRONT PLASMON FILTRATION AND REVERSE VARIABLE MULTIREFRINGENCE AND LOCAL CONVEX
FR3042340A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH BIFACIAL PLASMONIC FILTRATION AND MULTIREFRINGENCE VARIABLE REAR SINGLE CONVEX AND DUAL CONCAVE LOCALLY
FR3042347A1 (en) PHOTOVOLTAIC OPTICAL DEVICE WITH PLASMON FILTRATION

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20170414

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

ST Notification of lapse

Effective date: 20230606