FR3038349A1 - DEVICE FOR STORING ELECTRIC ENERGY USING COMPRESSED AIR - Google Patents

DEVICE FOR STORING ELECTRIC ENERGY USING COMPRESSED AIR Download PDF

Info

Publication number
FR3038349A1
FR3038349A1 FR1501382A FR1501382A FR3038349A1 FR 3038349 A1 FR3038349 A1 FR 3038349A1 FR 1501382 A FR1501382 A FR 1501382A FR 1501382 A FR1501382 A FR 1501382A FR 3038349 A1 FR3038349 A1 FR 3038349A1
Authority
FR
France
Prior art keywords
compressed air
electrical energy
air
seat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1501382A
Other languages
French (fr)
Other versions
FR3038349B1 (en
Inventor
Jean Edmond Chaix
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C3TECH
Original Assignee
C3TECH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C3TECH filed Critical C3TECH
Priority to FR1501382A priority Critical patent/FR3038349B1/en
Publication of FR3038349A1 publication Critical patent/FR3038349A1/en
Application granted granted Critical
Publication of FR3038349B1 publication Critical patent/FR3038349B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/38Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/04Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid being in different phases, e.g. foamed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un dispositif de stockage d'énergie électrique utilisant de l'air comprimé dans lequel la chaleur produite par la compression est stockée dans le milieu naturel et utilisée en complément de l'énergie mécanique stockée sous forme d'air comprimé pour produire de l'énergie électrique dans un module de conversion utilisant une détente diphasique eau / air quasi isotherme et turbine à action couplée à un alternateur.The invention relates to an electrical energy storage device using compressed air in which the heat produced by the compression is stored in the natural environment and used in addition to the mechanical energy stored as compressed air to produce electrical energy in a conversion module using a quasi-isothermal water / air two-phase expansion and an alternator-coupled turbine.

Description

DISPOSITIF DE SOCKAGE D’ENERGIE ELECTRIQUE UTILISANT DE L’AIR COMPRIMEDEVICE FOR STORING ELECTRIC ENERGY USING COMPRESSED AIR

1. DOMAINE TECHNIQUE ET ART ANTERIEUR L’air comprimé est utilisée pour le stockage d’électricité, notamment en Allemagne pour le lissage de la production des énergies alternatives. Dans ce cas, l’air est stocké sous pression dans des cavernes. Le rendement du cycle de stockage/destockage, de ces systèmes dits CAES, est obéré par les pertes thermiques dues à la compression très importantes et non re-transformables directement en énergie électrique. Des tentatives de récupérer cette chaleur perdue sont en cours : on parle alors de technologie Advanced Adiabatique-CAES. Des projets tels que ADELE (Allemagne) et des projets portés par des starts-up, tels que LightSail Energy et Enairys et son module HyPES, visent des rendements supérieur à 70%. Il n’y a actuellement pas d’offre commercialisée sur ces technologies.1. TECHNICAL FIELD AND PRIOR ART Compressed air is used for the storage of electricity, particularly in Germany for smoothing the production of alternative energies. In this case, the air is stored under pressure in caverns. The efficiency of the storage / destocking cycle, of these so-called CAES systems, is burdened by the very large thermal losses due to compression and not directly re-convertible into electrical energy. Attempts to recover this lost heat are in progress: this is known as Advanced Adiabatic-CAES technology. Projects such as ADELE (Germany) and start-up projects, such as LightSail Energy and Enairys and its HyPES module, aim for returns of over 70%. There is currently no commercialized offer on these technologies.

Par ailleurs, d’autres approches de certains constructeurs de compresseur tel Atlas Copco consistent à valoriser la chaleur de compression à basse température via un circuit d’eau,. Le stockage d’énergie mécanique sous forme d’air comprimé est également utilisé dans les véhicules produits par la compagnie Tata en Inde ou sur tous les systèmes de freinage ferroviaires avec des rendements énergétiques relativement faibles.In addition, other approaches of some compressor manufacturers such as Atlas Copco are to valorise the heat of compression at low temperature via a circuit of water. The storage of mechanical energy in the form of compressed air is also used in vehicles produced by the company Tata in India or on all rail braking systems with relatively low energy yields.

2. EXPOSE DE L’INVENTION L’invention concerne un dispositif de stockage d’énergie à base d’air comprimé qui permet d’obtenir un bon rendement de stockage/destockage d’énergie électrique à l’échéance d’une dizaine de jours à quelques mois. L’énergie électrique primaire peut être produite par une source instationnaire comme des éoliennes ou des panneaux photovoltaïques en jour /nuit.2. DESCRIPTION OF THE INVENTION The invention relates to a compressed air-based energy storage device which makes it possible to obtain a good efficiency of storage / destocking of electrical energy at the expiry of ten days to a few months. Primary electrical energy can be produced by an unsteady source such as wind turbines or photovoltaic panels in day / night.

Elle est convertie en air comprimé par un compresseur industiel refroidi par l’air ambiant sans récupération de chaleur.It is converted into compressed air by an industrial compressor cooled by ambient air without heat recovery.

Le destockage sous forme de production d’énergie électrique et de froid se fait par le biais d’un module de conversion d’énergie de pression en énergie cinétique utilisant un écoulement di phasique isotherme eau /air à grande vitesse et une turbine à action de type Pelton couplée à un alternateur.( tel que décrit dans le Brevet français FR 29/70038 A1).The destocking in the form of electric power generation and cooling is done by means of a module of conversion of energy from pressure to kinetic energy using a high-speed isothermal water / air phase flow and an impulse turbine. Pelton type coupled to an alternator (as described in French patent FR 29/70038 A1).

Dans ce procédé de stockage d’énergie le milieu naturel est utilisé comme stockeur d’énergie thermique et comme source chaude du cycle thermodynamique de l’air (cycle de JOULE) dans le système de conversion . L’énergie thermique nécessaire à cette quasi isothermicité est véhiculée par un débit d’eau à une température de 5 à 6°C qui se réchauffe de quelques degrés dans des appareils de production de froid ( lequels sont des absorbeurs de chaleur) : aéro réfrigérant, chambre froide , convecteur de climatisation lesquels absorbent des calories dans l’air ambiant en intérieur ou en extérieur.In this energy storage process the natural environment is used as a thermal energy store and as a hot source of the thermodynamic cycle of the air (Joule cycle) in the conversion system. The thermal energy required for this quasi isothermicity is conveyed by a flow of water at a temperature of 5 to 6 ° C which heats up a few degrees in cold-producing equipment (which are heat absorbers): aero-refrigerant , cold room, air conditioning convector which absorb calories in the indoor air indoors or outdoors.

3. PRESENTATION DES FIGURES3. PRESENTATION OF FIGURES

La figure 1/2 donne un schéma de procédé du dispositif de stockage d’énergie électrique utilisant de l’air comprimé.Figure 1/2 shows a process diagram of the electrical energy storage device using compressed air.

La figure 2/2 donne une coupe du détendeur isotherme.Figure 2/2 shows a section of the isothermal expansion valve.

4. DESCRIPTION DETAILLEE D’UN MODE DE REALISATION PREFERENTIEL DU SYSTEME4. DETAILED DESCRIPTION OF A PREFERENTIAL EMBODIMENT OF THE SYSTEM

Dans un mode préféré de réalisation, le dispositif de stockage d’énergie électrique utilisant de l’air comprimé, représenté par la figure 1/2, est constitué d’une source d’énergie électrique intermittente 1 laquelle fait tourner le moteur 2 d’un compresseur d’ air 3 alimenté par de l’air atmosphérique et refroidi par de l’air ambiant sans récupération de chaleur. Celui-ci gonffle le réservoir sous pression 4 quand la source est disponible.In a preferred embodiment, the electric energy storage device using compressed air, represented by FIG. 1/2, consists of an intermittent electrical power source 1 which rotates the motor 2 of an air compressor 3 supplied with atmospheric air and cooled by ambient air without heat recovery. This inflates the pressure tank 4 when the source is available.

Quand celle-ci ne l’est plus, un module de conversion 10 permet, à partir de l’air comprimé disponible dans le réservoir 4 ,de produire de l’électricité et de l’eau glacée.When this is no longer, a conversion module 10 makes it possible, from the compressed air available in the tank 4, to produce electricity and iced water.

La conversion d’énergie de pression en énergie mécanique puis électrique se fait par la génération d’un écoulement quasi isotherme double phase air/ eau à grande vitesse à travers un détendeur isotherme 6 puis d’une tuyère accélératrice 33, entraînant une turbine à action 5 couplée à un alternateur 7.The conversion of energy from pressure to mechanical and electrical energy is done by generating a quasi-isothermal double-phase high-speed air / water flow through an isothermal expansion valve 6 and then an accelerating nozzle 33, driving an impulse turbine. 5 coupled to an alternator 7.

Le détendeur isotherme 6 mélange de l’eau en provenance d’un circuit de réchauffage comportant un aéro réfrigérant 13 monté en parallèle avec par exemple une chambre froide 14 et des climatiseurs 15.The isothermal expansion valve 6 mixes water from a heating circuit comprising an air cooler 13 connected in parallel with, for example, a cold room 14 and air conditioners 15.

En sortie du réservoir 4, l’air est injecté , via la vanne de régulation 12, dans la tuyère accélératrice 33 dans lequel il se détend de façon quasi isotherme en pompant les calories du débit d’eau en provenance de l’aéro réfrigérant 13 ou d’une chambre froide 14 et de convecteur de climatisation 15.At the outlet of the tank 4, the air is injected, via the regulating valve 12, into the accelerating nozzle 33 in which it expands almost isothermally by pumping the calories from the flow of water from the refrigerant 13 or a cold room 14 and air conditioning convector 15.

Le mélange di phasique est séparé en sortie de turbine par effet gravitaire dans le caisson de la turbine 8 : l’air est rejeté à l’atmosphère par l’évent 16, l’eau est renvoyée à l’aspiration de la pompe 9 pour être recyclée via l’aéro réfrigérant 13 , la chambre froide Re 14 et les climatiseurs 15.The di-phase mixture is separated at the turbine outlet by a gravitational effect in the casing of the turbine 8: the air is discharged into the atmosphere through the vent 16, the water is returned to the suction of the pump 9 to be recycled via the refrigerant 13, the Re 14 cold room and the air conditioners 15.

Le détendeur 13 est composé d’une aiguille mobile 36 accouplée à un servo-moteur 37 qui coopère avantageusement avec un siège poreux au caloporteur 35 . Ce siège peut être réalisé soit en matériaux poreux fritté soit à partir d’une pièce massive perforée d’une pluralité de trous de faible diamètre. Un espace annulaire 34 permet d’alimenter le siège en caloporteur de façon homogène à partir d’un collecteur 32. L’eau en provenance de la vanne 11 est injecté de façon répartie sur tout le trajet de l’air qui se détend dans le détendeur 13 de façon à le réchauffer en continu.The expander 13 is composed of a movable needle 36 coupled to a servomotor 37 which advantageously cooperates with a porous seat with the coolant 35. This seat can be made either of sintered porous materials or from a solid part perforated with a plurality of small diameter holes. An annular space 34 makes it possible to feed the heat-transfer seat homogeneously from a manifold 32. The water coming from the valve 11 is injected in a distributed manner over the entire path of the air which expands in the expander 13 so as to heat it continuously.

Le réglage du jeu entre l’aiguille 36 et le siège 35, effectué par le servomoteur 37, permet de contrôler la détente entre la pression régnant dans le collecteur 31 et l’entrée dans la tuyère accélératrice 33, laquelle est maintenue constante pendant tout le temps de la vidange du réservoir 4 dont la pression décroît pendant sa décharge.The adjustment of the clearance between the needle 36 and the seat 35, performed by the servomotor 37, makes it possible to control the expansion between the pressure in the manifold 31 and the inlet in the accelerator nozzle 33, which is kept constant during the entire period of time. time of the emptying of the tank 4 whose pressure decreases during discharge.

La disposition en ligne du couple aiguille/siège 35 et 34 et de la tuyère 33 permet de convertir l’énergie de pression en énergie cinétique avec des pertes limitées par turbulence. Ce mélange à grande vitesse est envoyé sur les augets de la roue à action 30 à laquelle il cède son énergie cinétique en la transformant en énergie de rotation.The in-line arrangement of the needle / seat pair 35 and 34 and the nozzle 33 makes it possible to convert the pressure energy into kinetic energy with limited losses due to turbulence. This high speed mixture is sent to the buckets of the action wheel 30 to which it gives up its kinetic energy by transforming it into rotational energy.

7. AVANTAGES COMPLEMENTAIRES DE L’INVENTION7. COMPLEMENTARY BENEFITS OF THE INVENTION

Le dispositif faisant l’objet de l’invention allie la simplicité d’un stockage à l’air comprimé au bon rendement du convertisseur à turbine à action double phase il permet la production simultanée d’eau glacée permettant de faire fonctionner des convecteurs de climatisation ou des chambre froides. L’énergie thermique étant récupérée dans le milieu naturel le système fonctionne comme un stockage adiabatique.The device which is the subject of the invention combines the simplicity of compressed air storage with the good efficiency of the double-phase turbine converter. It allows the simultaneous production of chilled water making it possible to operate air-conditioning convectors. or cold rooms. As thermal energy is recovered in the natural environment, the system functions as an adiabatic storage.

8. APPLICATIONS INDUSTRIELLES8. INDUSTRIAL APPLICATIONS

Ce dispositif est applicable à toute les source d’énergie électrique intermittente : éoliennes et panneaux photo voltaïques spécialement dans les zones chaudes de la planète en site isolés pour produire simultanément du froid et de l’électricité.This device is applicable to all sources of intermittent electrical power: wind turbines and photo voltaic panels especially in the hot areas of the planet in isolated locations to simultaneously produce cold and electricity.

Claims (8)

11. REVENDICATIONS11. Claims 1. Dispositif de stockage d’énergie électrique utilisant de l’air comprimé caractérisé par le fait qu’il utilise un module de conversion d’énergie de pression en énergie cinétique générant un écoulement di phasique isotherme eau /air à grande vitesse et une turbine à action de type Pelton couplée à un alternateur.1. Device for storing electrical energy using compressed air, characterized in that it uses a pressure energy conversion module in kinetic energy generating a high-speed isothermal water / air phase flow and a turbine with Pelton type action coupled to an alternator. 2. Dispositif de stockage d’énergie électrique utilisant de l’air comprimé suivant la revendication 1 caractérisé par le fait qu’il utilise un compresseur industriel refroidi par l’air ambiant sans récupération de chaleur.2. An electrical energy storage device using compressed air according to claim 1 characterized in that it uses an industrial compressor cooled by ambient air without heat recovery. 3. Dispositif de stockage d’énergie électrique suivant les revendications 1 et 2 caractérisé par le fait que c’est le milieu naturel qui fournit l’énergie thermique nécessaire à une détente de l’air quasi isotherme .3. An electrical energy storage device according to claims 1 and 2 characterized in that it is the natural environment that provides the thermal energy necessary for an almost isothermal air expansion. 4. Dispositif de stockage d’énergie électrique utilisant de l’air comprimé suivant l’une quelconque des revendications 1 à 3 caractérisé par le fait que l’énergie thermique fournit par le milieu naturel .nécessaire à la quasi isothermicité de la détente de l’air, est véhiculée par un débit d’eau qui se réchauffe dans des appareils de production de froid (lequels sont des absorbeurs de chaleur) : aéro réfrigérant , chambre froide , convecteur de climatisation qui absorbent des calories dans l’air ambiant intérieur ou extérieur.4. An electrical energy storage device using compressed air according to any one of claims 1 to 3 characterized in that the thermal energy provided by the natural medium .necessary to the near isothermicity of the expansion of the air, is conveyed by a flow of water that heats up in cold-producing devices (which are heat absorbers): aero-refrigerant, cold room, air conditioning convector that absorb calories in the indoor air or outside. 5. Dispositif de stockage d’énergie électrique utilisant de l’air comprimé selon l’une des revendications 3 ou 4 , caractérisé par le fait qu’un détendeur 6 est composé d’une aiguille mobile 36 accouplée à un servo-moteur 37 qui coopère avantageusement avec un siège poreux au caloporteur 35 .5. Device for storing electrical energy using compressed air according to one of claims 3 or 4, characterized in that a pressure reducer 6 is composed of a movable needle 36 coupled to a servo motor 37 which advantageously cooperates with a porous seat with coolant 35. 6. Dispositif de stockage d’énergie électrique utilisant de l’air comprimé suivant la revendication 5 , caractérisé par le fait que le caloporteur en provenance d’une vanne 11 est injectée de façon répartie sur tout le trajet de l’air qui se détend dans le détendeur 6 de façon à le réchauffer en continu, le réglage du jeu entre l’aiguille 36 et le siège 35, effectué par le servomoteur 37, permettant de contrôler la détente entre la pression régnant dans un collecteur 31 et l’entrée dans une tuyère accélératrice 33, laquelle est maintenue constante pendant tout le temps de la vidange du réservoir 4 dont la pression décroît pendant sa décharge.6. Device for storing electrical energy using compressed air according to claim 5, characterized in that the coolant from a valve 11 is injected distributedly over the entire path of the air that relaxes. in the regulator 6 so as to heat it continuously, the clearance adjustment between the needle 36 and the seat 35, made by the servomotor 37, for controlling the expansion between the pressure in a manifold 31 and the inlet in an accelerating nozzle 33, which is kept constant during the entire time of the emptying of the tank 4, the pressure of which decreases during its discharge. 7. Dispositif de stockage d’énergie électrique utilisant de l’air comprimé selon la revendications 6 , caractérisé par le fait que le couple aiguille/siège 36 et 35 et la tuyère 33 sont disposés en ligne permettant ainsi de convertir l’énergie de pression en énergie cinétique avec des pertes par turbulence limitées.7. A device for storing electrical energy using compressed air according to claim 6, characterized in that the needle / seat pair 36 and 35 and the nozzle 33 are arranged in line thus enabling the pressure energy to be converted. in kinetic energy with limited turbulence losses. 8. Dispositif de stockage d’énergie électrique utilisant de l’air comprimé selon l’une des revendications 5 à 7 , caractérisé par le fait que le siège 35 du détendeur peut être réalisé: soit en matériaux poreux fritté .soit à partir d’une pièce massive perforée d’une pluralité de trous de faible diamètre, un espace annulaire 34 permettant d’alimenter le siège en caloporteur de façon homogène à partir d’un collecteur 32.8. An electrical energy storage device using compressed air according to one of claims 5 to 7, characterized in that the seat 35 of the expander can be made of: either sintered porous material or from a solid piece perforated with a plurality of small diameter holes, an annular space 34 for supplying the heat-transfer seat homogeneously from a manifold 32.
FR1501382A 2015-06-30 2015-06-30 ELECTRIC ENERGY STORAGE DEVICE USING COMPRESSED AIR Expired - Fee Related FR3038349B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1501382A FR3038349B1 (en) 2015-06-30 2015-06-30 ELECTRIC ENERGY STORAGE DEVICE USING COMPRESSED AIR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1501382A FR3038349B1 (en) 2015-06-30 2015-06-30 ELECTRIC ENERGY STORAGE DEVICE USING COMPRESSED AIR
FR1501382 2015-06-30

Publications (2)

Publication Number Publication Date
FR3038349A1 true FR3038349A1 (en) 2017-01-06
FR3038349B1 FR3038349B1 (en) 2020-05-08

Family

ID=54707819

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1501382A Expired - Fee Related FR3038349B1 (en) 2015-06-30 2015-06-30 ELECTRIC ENERGY STORAGE DEVICE USING COMPRESSED AIR

Country Status (1)

Country Link
FR (1) FR3038349B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4277072A1 (en) 2022-05-10 2023-11-15 Lunettutsikten Sven Lennart Augustsson AB Energy storage system, computer-implemented method therefor, computer program and non-volatile data carrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871180A (en) * 1973-11-29 1975-03-18 Raymond Lee Organization Inc Water desalinization system
US4106294A (en) * 1977-02-02 1978-08-15 Julius Czaja Thermodynamic process and latent heat engine
DE102010042558A1 (en) * 2010-10-18 2012-04-19 Robert Bosch Gmbh Device for waste heat utilization
FR2970038A1 (en) * 2010-12-30 2012-07-06 C3Tech Conversion device for use in conversion installation positioned in e.g. desert to convert heat energy into mechanical energy, has mixing device mixing fluid that is in form of steam, with heat-transfer fluid to obtain dual-phase mixture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871180A (en) * 1973-11-29 1975-03-18 Raymond Lee Organization Inc Water desalinization system
US4106294A (en) * 1977-02-02 1978-08-15 Julius Czaja Thermodynamic process and latent heat engine
DE102010042558A1 (en) * 2010-10-18 2012-04-19 Robert Bosch Gmbh Device for waste heat utilization
FR2970038A1 (en) * 2010-12-30 2012-07-06 C3Tech Conversion device for use in conversion installation positioned in e.g. desert to convert heat energy into mechanical energy, has mixing device mixing fluid that is in form of steam, with heat-transfer fluid to obtain dual-phase mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4277072A1 (en) 2022-05-10 2023-11-15 Lunettutsikten Sven Lennart Augustsson AB Energy storage system, computer-implemented method therefor, computer program and non-volatile data carrier

Also Published As

Publication number Publication date
FR3038349B1 (en) 2020-05-08

Similar Documents

Publication Publication Date Title
Bellos et al. The use of gas working fluids in parabolic trough collectors–An energetic and exergetic analysis
US20090266075A1 (en) Process and device for using of low temperature heat for the production of electrical energy
Saitoh et al. Solar Rankine cycle system using scroll expander
US9121417B2 (en) Energy storage system and method for energy storage
US9316404B2 (en) Heat pump with integral solar collector
CN106224040A (en) A kind of electric heating energy-storage polygenerations systeme
EP2379848B1 (en) Electricity generation device with several heat pumps in series
WO2011017450A2 (en) Heat pump with integral solar collector
CN1804502A (en) Electricity generating, air conditioning and heating apparatus utilizing natural medium and solar energy or waste heat
JP6913044B2 (en) Compressed air storage power generator
CN101871439B (en) Device for generating, refrigerating and heat supplying by solar energy and biomass energy
AU2010278676A1 (en) Thermal power plants
Meng et al. Performance evaluation of a solar transcritical carbon dioxide Rankine cycle integrated with compressed air energy storage
US20060037319A1 (en) Building energy capture and reserve system
JP4555784B2 (en) Steam generating apparatus using low-temperature waste heat, thermoelectric supply apparatus using the apparatus, and steam generating method
US20110049908A1 (en) Systems and Methods for Providing Multi-Purpose Renewable Energy Storage and Release
FR3038349A1 (en) DEVICE FOR STORING ELECTRIC ENERGY USING COMPRESSED AIR
WO2015077235A1 (en) Concentrated solar power systems and methods utilizing cold thermal energy storage
US20100300096A1 (en) Systems and Method for Producing Mechanical Energy
CN102191958A (en) Low-temperature air source generating device
US20160215695A1 (en) Hybrid plant with a combined solar-gas cycle and operating method
RU2354838C2 (en) Gas turbine power plant
KR20180067094A (en) Hybrid heat pump system
RU101104U1 (en) COMBINED ENERGY SYSTEM
CN102191952A (en) Air source generating device

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20170106

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 8

ST Notification of lapse

Effective date: 20240205