FR3021070A1 - REFRIGERANT FLUID CIRCUIT FOR RECOVERING ENERGY FROM THERMAL LOSSES OF AN INTERNAL COMBUSTION ENGINE - Google Patents

REFRIGERANT FLUID CIRCUIT FOR RECOVERING ENERGY FROM THERMAL LOSSES OF AN INTERNAL COMBUSTION ENGINE Download PDF

Info

Publication number
FR3021070A1
FR3021070A1 FR1454387A FR1454387A FR3021070A1 FR 3021070 A1 FR3021070 A1 FR 3021070A1 FR 1454387 A FR1454387 A FR 1454387A FR 1454387 A FR1454387 A FR 1454387A FR 3021070 A1 FR3021070 A1 FR 3021070A1
Authority
FR
France
Prior art keywords
heat exchanger
refrigerant
zone
expansion means
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1454387A
Other languages
French (fr)
Other versions
FR3021070B1 (en
Inventor
Laurent Labaste-Mauhe
Yulia Glavatskaya
Bertrand Nicolas
Samy Hammi
Mohamed Yahia
Abdelmajid Taklanti
Regine Haller
Jin-Ming Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Priority to FR1454387A priority Critical patent/FR3021070B1/en
Priority to PCT/EP2015/059847 priority patent/WO2015173075A1/en
Publication of FR3021070A1 publication Critical patent/FR3021070A1/en
Application granted granted Critical
Publication of FR3021070B1 publication Critical patent/FR3021070B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/005Steam engine plants not otherwise provided for using mixtures of liquid and steam or evaporation of a liquid by expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

L'invention concerne un circuit de fluide frigorigène, en particulier pour la récupération et la transformation des rejets thermiques d'un véhicule automobile, qui comporte un premier échangeur de chaleur (1) formant un bouilleur, un moyen de détente (5) apte à produire un couple mécanique à partir du travail de détente, et des moyens aptes à faire circuler le fluide frigorigène selon au moins une boucle traversant successivement le premier échangeur de chaleur (1) et le moyen de détente (5). Le circuit comporte des moyens d'apport (9) de fluide frigorigène liquide dans le bouilleur (1) ou entre le premier échangeur de chaleur (1) et le moyen de détente (5).The invention relates to a refrigerant circuit, in particular for recovering and transforming the thermal discharges of a motor vehicle, which comprises a first heat exchanger (1) forming a boiler, a means of expansion (5) adapted to producing a mechanical torque from the relaxation work, and means adapted to circulate the refrigerant according to at least one loop successively passing through the first heat exchanger (1) and the expansion means (5). The circuit comprises liquid refrigerant supply means (9) in the boiler (1) or between the first heat exchanger (1) and the expansion means (5).

Description

Circuit de fluide frigorigène pour la récupération d'énergie sur les pertes thermiques d'un moteur à combustion interne La présente invention concerne un circuit de fluide frigorigène pour la récupération et la transformation de l'énergie thermique produite par un véhicule automobile. Comme cela est illustré à la figure 1, un tel circuit comporte classiquement un premier échangeur de chaleur 1 formant un bouilleur, un deuxième échangeur de chaleur 2 formant un condenseur, un troisième 10 échangeur de chaleur 3 formant un sous-refroidisseur, une pompe 4, un moyen de détente 5 apte à transformer le travail de détente en un couple mécanique, un réservoir de fluide frigorigène 6 et des moyens aptes à faire circuler le fluide frigorigène selon au moins une boucle traversant successivement la pompe 4, le bouilleur 1, le moyen de détente 5, le condenseur 2, le réservoir 6 et le sous-refroidisseur 3. Le moyen de détente 5 permet par exemple d'actionner un générateur électrique et produire ainsi de l'énergie électrique. Un tel mode de fonctionnement correspond à un cycle de Rankine. Le bouilleur 1 est par exemple apte à prélever des calories sur les gaz d'échappement du véhicule. Enfin, le condenseur 2 est destiné à refroidir et condenser le fluide frigorigène par l'air arrivant en face avant du véhicule. La figure 2 est un diagramme de Mollier illustrant schématiquement le fonctionnement du circuit de la figure 1. Sur ce diagramme, l'abscisse est formée par l'enthalpie 25 massique h et l'ordonnée est formée par la pression P du fluide frigorigène. Des points référencés il à i5 ont été reportés à la fois sur le diagramme de Mollier et sur le circuit de fluide frigorigène illustré à la figure 1 afin de faciliter la compréhension. Les phases du fluide frigorigène (liquide L; diphasique Di, c'est-à-dire liquide et vapeur ; vapeur V) sont 30 également indiquées sur le diagramme, ainsi que les différentes étapes du cycle (évaporation E, condensation CD, compression CP, détente D).BACKGROUND OF THE INVENTION The present invention relates to a refrigerant circuit for recovering and transforming the thermal energy produced by a motor vehicle. As illustrated in FIG. 1, such a circuit conventionally comprises a first heat exchanger 1 forming a boiler, a second heat exchanger 2 forming a condenser, a third heat exchanger 3 forming a subcooler, a pump 4 , a relaxation means 5 adapted to transform the relaxation work into a mechanical torque, a refrigerant reservoir 6 and means adapted to circulate the refrigerant according to at least one loop through successively the pump 4, the boiler 1, the 5, the condenser 2, the tank 6 and the subcooler 3. The expansion means 5 allows for example to operate an electric generator and thus produce electrical energy. Such a mode of operation corresponds to a Rankine cycle. The boiler 1 is for example able to take calories from the vehicle exhaust. Finally, the condenser 2 is intended to cool and condense the refrigerant by the air arriving at the front of the vehicle. FIG. 2 is a Mollier diagram schematically illustrating the operation of the circuit of FIG. 1. In this diagram, the abscissa is formed by the mass enthalpy h and the ordinate is formed by the pressure P of the refrigerant. Points referenced 11 to 15 have been reported both on the Mollier diagram and on the refrigerant circuit illustrated in Figure 1 to facilitate understanding. The phases of the refrigerant (liquid L, diphasic Di, that is to say liquid and vapor, vapor V) are also indicated on the diagram, as well as the different stages of the cycle (evaporation E, condensation CD, compression CP , relaxation D).

On constate que le fluide frigorigène issu du bouilleur 1 (point i2) est de la vapeur surchauffée. Or, certains moyens de détente nécessitent d'être traversés par du fluide frigorigène sous forme diphasique afin d'assurer leur bon fonctionnement, notamment pour des raisons de lubrification dudit moyen de détente. Le liquide est dit saturant, lorsqu'il se trouve à gauche sur la courbe référencée 7 à la figure 2 et la vapeur est dite saturante lorsqu'elle se trouve à droite sur la courbe référencée 8. Ces deux courbes délimitent un domaine dans lequel le fluide est diphasique, c'est-à-dire comporte à la fois une phase liquide et une phase vapeur. Dans le domaine diphasique, le titre massique en vapeur x d'un fluide est défini par la relation suivante x=mg/(ml+mg) où : - mg est la masse de vapeur saturante ; - ml est la masse de liquide saturant.It is found that the refrigerant from the boiler 1 (point i2) is superheated steam. However, certain expansion means need to be traversed by refrigerant in two-phase form to ensure their proper operation, especially for reasons of lubrication of said expansion means. The liquid is said to be saturating, when it is on the left on the curve referenced 7 in FIG. 2 and the steam is said to be saturating when it is on the right on the curve referenced 8. These two curves delimit a domain in which the fluid is two-phase, that is to say comprises both a liquid phase and a vapor phase. In the two-phase domain, the mass vapor mass x of a fluid is defined by the following relationship x = mg / (ml + mg) where: - mg is the mass of saturating vapor; - ml is the mass of saturating liquid.

Le titre x peut également être désigné par la relation x = (hm - hl) / (hg- hl), où : - hm est l'enthalpie massique du fluide diphasique ; - hl est l'enthalpie massique du liquide saturant ; - hg est l'enthalpie de vapeur saturante.The title x can also be designated by the relation x = (hm-hl) / (hg-hl), where: - hm is the mass enthalpy of the two-phase fluid; - hl is the mass enthalpy of the saturating liquid; hg is the enthalpy of saturating vapor.

Le titre massique définit ainsi la quantité de gaz du fluide diphasique. Un titre égal à 1 indique que le fluide ne comporte que de la vapeur (sur la courbe 8), alors qu'un titre égal à 0 indique que le fluide ne comporte que du liquide. Afin d'assurer que le fluide traversant le moyen de détente 5 est à l'état diphasique, il est donc nécessaire de contrôler l'enthalpie du fluide frigorigène destiné à traverser le moyen de détente 5. On cherche par exemple à avoir un titre compris entre 0,8 et 0,95, en fonction des besoins. L'invention a notamment pour but d'apporter une solution simple, efficace et économique à ce problème.The mass titre thus defines the quantity of gas of the two-phase fluid. A title equal to 1 indicates that the fluid has only vapor (on the curve 8), while a title equal to 0 indicates that the fluid comprises only liquid. In order to ensure that the fluid passing through the expansion means 5 is in the two-phase state, it is therefore necessary to control the enthalpy of the refrigerant intended to pass through the expansion means 5. For example, it is desired to have a title understood between 0.8 and 0.95, as needed. The invention aims in particular to provide a simple, effective and economical solution to this problem.

A cet effet, elle propose un circuit de fluide frigorigène, en particulier pour la récupération et la transformation des rejets thermiques d'un véhicule automobile, qui comporte un premier échangeur de chaleur formant un bouilleur, un moyen de détente apte à produire un couple mécanique à partir du travail de détente, et des moyens aptes à faire circuler le fluide frigorigène selon au moins une boucle traversant successivement le premier échangeur de chaleur et le moyen de détente, caractérisé en ce qu'il comporte des moyens d'apport de fluide frigorigène liquide dans le premier échangeur de chaleur ou entre le premier échangeur de chaleur et le moyen de détente. Le fluide frigorigène liquide a une enthalpie faible ce qui permet, lorsqu'il est mélangé à du fluide frigorigène en phase vapeur, d'abaisser l'enthalpie du mélange. En fonction du débit de fluide en phase vapeur issu du bouilleur et en fonction du débit de fluide en phase liquide qui est injecté, il est possible d'obtenir un fluide frigorigène diphasique, ayant un titre proche du titre visé pour le fonctionnement du moyen de détente, par exemple un titre compris entre 0,8 et 0,95. Selon une caractéristique de l'invention, le circuit comporte une zone de séparation apte à séparer la phase liquide de la phase gazeuse du fluide frigorigène, une zone de surchauffe apte à être traversée par la phase gazeuse de fluide frigorigène issue de la zone de séparation, et une zone de mélange apte à recevoir le fluide frigorigène sous forme gazeuse issu de la zone de surchauffe et apte à recevoir au moins une partie de la phase liquide du fluide frigorigène issue de la zone de séparation. Selon une caractéristique de l'invention, ladite zone de séparation, ladite zone de surchauffe et/ou ladite zone de mélange sont situées dans le premier échangeur de chaleur et/ou entre le premier échangeur de chaleur et le moyen de détente. Préférentiellement, dans ce cas, le circuit comporte des moyens de mesure de la pression et de la température, aptes à mesurer la pression et la température de la phase gazeuse du fluide frigorigène issu de la zone de surchauffe.For this purpose, it proposes a refrigerant circuit, in particular for recovering and transforming the thermal discharges of a motor vehicle, which comprises a first heat exchanger forming a boiler, a means of relaxation capable of producing a mechanical torque. from the relaxation work, and means adapted to circulate the refrigerant according to at least one loop successively passing through the first heat exchanger and the expansion means, characterized in that it comprises means for supplying refrigerant liquid in the first heat exchanger or between the first heat exchanger and the expansion means. The liquid refrigerant has a low enthalpy which makes it possible, when mixed with vapor phase refrigerant, to lower the enthalpy of the mixture. Depending on the fluid flow rate in the vapor phase from the boiler and depending on the liquid phase fluid flow that is injected, it is possible to obtain a two-phase refrigerant, having a title close to the target title for the operation of the means of relaxation, for example a title between 0.8 and 0.95. According to one characteristic of the invention, the circuit comprises a separation zone capable of separating the liquid phase from the gaseous phase of the refrigerant, an overheating zone able to be traversed by the gaseous phase of the refrigerant coming from the separation zone. , and a mixing zone adapted to receive the gaseous refrigerant from the overheating zone and adapted to receive at least a portion of the liquid phase of the refrigerant from the separation zone. According to one characteristic of the invention, said separation zone, said overheating zone and / or said mixing zone are located in the first heat exchanger and / or between the first heat exchanger and the expansion means. Preferably, in this case, the circuit comprises means for measuring pressure and temperature, able to measure the pressure and temperature of the gas phase of the refrigerant from the overheating zone.

Selon une caractéristique de l'invention, le circuit comporte une source de fluide frigorigène. Le fluide frigorigène issu du premier échangeur de chaleur et le fluide frigorigène liquide issu de la source sont mélangés au niveau de la 5 zone de mélange. Préférentiellement, la source est un point du circuit haute pression au niveau duquel le fluide frigorigène se trouve à l'état liquide, de préférence à une enthalpie connue ou déterminable. Selon un aspect de l'invention, le circuit comporte un canal de 10 dérivation du fluide frigorigène reliant la zone de séparation à la zone de mélange. Selon un aspect de l'invention, le circuit comporte une pompe constituant les moyens aptes à faire circuler le fluide frigorigène, la boucle traversant successivement la pompe, le premier échangeur de chaleur et le 15 moyen de détente. Selon un aspect de l'invention, le circuit comporte un deuxième échangeur de chaleur formant un condenseur, la boucle traversant successivement la pompe, le premier échangeur de chaleur, le moyen de détente et le deuxième échangeur de chaleur. 20 Selon un aspect de l'invention, le circuit comporte un troisième échangeur de chaleur formant un sous-refroidisseur, la boucle traversant successivement la pompe, le premier échangeur de chaleur, le moyen de détente, le deuxième échangeur de chaleur et le troisième échangeur de chaleur. 25 Selon un aspect de l'invention, le circuit comporte un réservoir destiné à contenir du fluide réfrigérant liquide, ledit réservoir étant situé entre le deuxième échangeur de chaleur et le troisième échangeur de chaleur. Selon un aspect de l'invention, le circuit comporte des moyens 30 permettant de réguler la part du débit de fluide frigorigène liquide issu de la source et entrant dans la zone de mélange.According to one characteristic of the invention, the circuit comprises a source of refrigerant. The refrigerant from the first heat exchanger and the liquid refrigerant from the source are mixed at the mixing zone. Preferably, the source is a point of the high pressure circuit at which the refrigerant is in the liquid state, preferably at a known or determinable enthalpy. According to one aspect of the invention, the circuit comprises a bypass channel of the refrigerant connecting the separation zone to the mixing zone. According to one aspect of the invention, the circuit comprises a pump constituting the means able to circulate the refrigerant, the loop successively passing through the pump, the first heat exchanger and the expansion means. According to one aspect of the invention, the circuit comprises a second heat exchanger forming a condenser, the loop successively passing through the pump, the first heat exchanger, the expansion means and the second heat exchanger. According to one aspect of the invention, the circuit comprises a third heat exchanger forming a subcooler, the loop successively passing through the pump, the first heat exchanger, the expansion means, the second heat exchanger and the third heat exchanger. heat. According to one aspect of the invention, the circuit comprises a reservoir for containing liquid refrigerant fluid, said reservoir being located between the second heat exchanger and the third heat exchanger. According to one aspect of the invention, the circuit comprises means 30 for regulating the portion of the flow of liquid refrigerant from the source and entering the mixing zone.

Selon un aspect de l'invention, ces moyens de régulation peuvent consister en une vanne à trois voies, disposée préférentiellement à la sortie de la pompe et qui répartit le débit total en deux débits secondaires.According to one aspect of the invention, these control means may consist of a three-way valve, preferably disposed at the outlet of the pump and which distributes the total flow into two secondary flow rates.

L'invention concerne également un procédé de fonctionnement d'un circuit du type précité, dans lequel le fluide frigorigène circule selon une boucle traversant le premier échangeur de chaleur et le moyen de détente, du fluide frigorigène liquide étant injecté au niveau d'une zone de mélange située dans le premier échangeur de chaleur ou entre le premier échangeur de chaleur et le moyen de détente, de façon à ce que le fluide frigorigène issu de la zone de mélange et traversant le moyen de détente soit diphasique. Préférentiellement, le fluide frigorigène circule selon une boucle traversant la pompe, le premier échangeur de chaleur, le moyen de détente, le deuxième échangeur de chaleur, le réservoir et le troisième échangeur de chaleur. L'invention sera mieux comprise et d'autres détails, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante faite à titre d'exemple non limitatif en référence aux 20 dessins annexés dans lesquels : - la figure 1 est une vue schématique d'un circuit de fluide frigorigène de l'art antérieur, - la figure 2 est un diagramme de Mollier illustrant le fonctionnement du circuit de la figure 1, 25 - les figures 3 et 4 sont des vues correspondant respectivement aux figures 1 et 2 et illustrant une première forme de réalisation de l'invention, - les figures 5 et 6 sont des vues correspondant respectivement aux figures 1 et 2 et illustrant une seconde forme de réalisation de 30 l'invention.The invention also relates to a method of operating a circuit of the aforementioned type, wherein the refrigerant circulates in a loop through the first heat exchanger and the expansion means, liquid refrigerant being injected at a zone mixture located in the first heat exchanger or between the first heat exchanger and the expansion means, so that the refrigerant from the mixing zone and passing through the expansion means is two-phase. Preferably, the refrigerant circulates in a loop through the pump, the first heat exchanger, the expansion means, the second heat exchanger, the reservoir and the third heat exchanger. The invention will be better understood and other details, characteristics and advantages of the invention will become apparent on reading the following description given by way of nonlimiting example with reference to the appended drawings, in which: FIG. schematic view of a refrigerant circuit of the prior art, - Figure 2 is a Mollier diagram illustrating the operation of the circuit of Figure 1, - Figures 3 and 4 are views respectively corresponding to Figures 1 and 2 and illustrating a first embodiment of the invention, - Figures 5 and 6 are views respectively corresponding to Figures 1 and 2 and illustrating a second embodiment of the invention.

La figure 3 représente un circuit de fluide frigorigène selon une première forme de réalisation de l'invention. Celui-ci comporte un premier échangeur de chaleur 1 formant un bouilleur, un deuxième échangeur de chaleur 2 formant un condenseur, un troisième échangeur de chaleur 3 formant un sous-refroidisseur, une pompe volumétrique 4, un moyen de détente 5 apte à récupérer un couple mécanique à partir du travail de détente et couplé à un générateur électrique par exemple, ainsi qu'un réservoir 6. Le fluide frigorigène circule selon une boucle traversant successivement la pompe 4, le bouilleur 1, le moyen de détente 5, le condenseur 2, le réservoir 6 et le sous-refroidisseur 3. Le circuit comporte en outre une zone de mélange 9 au niveau de laquelle sont mélangés le fluide frigorigène issu du bouilleur 1 et du fluide frigorigène liquide issu d'une source 10. Le fluide frigorigène issu de la zone de mélange 9 traverse ensuite le moyen de détente 5. La source 10 peut par exemple être un point du circuit haute pression au niveau duquel le fluide frigorigène se trouve à l'état liquide, de préférence à une enthalpie connue ou déterminable, comme en sortie de la pompe 4 par exemple.FIG. 3 represents a refrigerant circuit according to a first embodiment of the invention. This comprises a first heat exchanger 1 forming a boiler, a second heat exchanger 2 forming a condenser, a third heat exchanger 3 forming a subcooler, a volumetric pump 4, a trigger means 5 adapted to recover a mechanical torque from the relaxation work and coupled to an electric generator for example, and a reservoir 6. The refrigerant circulates in a loop through successively the pump 4, the boiler 1, the expansion means 5, the condenser 2 , the tank 6 and the subcooler 3. The circuit further comprises a mixing zone 9 at which the refrigerant is mixed from the boiler 1 and the liquid refrigerant from a source 10. The refrigerant from of the mixing zone 9 then passes through the expansion means 5. The source 10 may for example be a point of the high pressure circuit at which the refrigerant is located. in the liquid state, preferably at a known or determinable enthalpy, as at the outlet of the pump 4 for example.

Le débit du fluide frigorigène à l'entrée du moyen de détente 5 peut être ajusté en faisant varier par exemple la cylindrée et/ou la vitesse de rotation de la pompe 4. Des moyens 11 permettant de réguler la part du débit de fluide frigorigène liquide issu de la source 10 et entrant dans la zone de mélange 9 peuvent également être prévus.The flow rate of the refrigerant at the inlet of the expansion means 5 can be adjusted by varying, for example, the displacement and / or the rotational speed of the pump 4. Means 11 making it possible to regulate the portion of the flow of liquid refrigerant from the source 10 and entering the mixing zone 9 may also be provided.

La figure 4 est un diagramme de Mollier illustrant schématiquement le fonctionnement du circuit de la figure 3. Des points référencés il à i7 ont été reportés à la fois sur le diagramme de Mollier et sur le circuit de fluide frigorigène illustré à la figure 3 afin de faciliter la compréhension. Les phases du fluide frigorigène (liquide L; diphasique Di, c'est-à-dire liquide et vapeur ; vapeur V) sont également indiquées sur le diagramme.FIG. 4 is a Mollier diagram schematically illustrating the operation of the circuit of FIG. 3. Points referenced 11 to 17 have been reported both on the Mollier diagram and on the refrigerant circuit illustrated in FIG. facilitate understanding. The phases of the refrigerant (liquid L, diphasic Di, that is to say liquid and vapor, vapor V) are also indicated in the diagram.

Comme cela est représenté à la figure 4, le fluide frigorigène liquide issu de la source 10 (point i3) a une enthalpie référencée h3 et un débit que l'on notera Q3. Par ailleurs, le fluide frigorigène issu du bouilleur 1 est de la vapeur surchauffée (point i2) qui a une enthalpie référencée h2 et un débit que l'on notera Q2. Comme indiqué précédemment, il est nécessaire que le fluide frigorigène entrant dans le moyen de détente 5 (point i4) soit diphasique, avec un titre x déterminé, par exemple compris entre 0,8 et 0,95. On rappelle que le titre x vérifie la relation x = (hm-h1)/(hg-h1), où : - hm est l'enthalpie du fluide diphasique ; - hl est l'enthalpie de liquide saturant ; - hg est l'enthalpie de vapeur saturante. Dans ce cas, hm = h4, les points hl et hg sont définis par le diagramme de Mollier et dépendent de la pression P1 des points i2, i3 et i4. En particulier, dans cet exemple, hl = h3 car le fluide frigorigène issu de la source est du liquide saturant ou sous refroidi s'il est issu de la pompe 4, dans ce cas h4=h1. La valeur de h2 peut être connue aisément, en mesurant la température et la pression du fluide frigorigène au point i2. La valeur visée de x étant connue, les valeurs hl et hg étant également connues, il est possible d'en déduire la valeur de h4 à obtenir. Si l'on définit par Q4 le débit de fluide frigorigène traversant le point 4, alors Q4.h4 = Q2.h2 + Q3.h3.As shown in Figure 4, the liquid refrigerant from the source 10 (point i3) has an enthalpy referenced h3 and a rate that will be noted Q3. Furthermore, the refrigerant from the boiler 1 is superheated steam (point i2) which has an enthalpy referenced h2 and a rate that will be noted Q2. As indicated above, it is necessary for the refrigerant entering the expansion means 5 (point 14) to be two-phase, with a given titre x, for example between 0.8 and 0.95. Remember that the title x satisfies the relation x = (hm-h1) / (hg-h1), where: - hm is the enthalpy of the two-phase fluid; - hl is the enthalpy of saturating liquid; hg is the enthalpy of saturating vapor. In this case, hm = h4, the points h1 and hg are defined by the Mollier diagram and depend on the pressure P1 of the points i2, i3 and i4. In particular, in this example, hl = h3 because the refrigerant from the source is saturating liquid or undercooled if it comes from the pump 4, in this case h4 = h1. The value of h2 can be easily known by measuring the temperature and pressure of the refrigerant at point i2. The target value of x being known, the values h1 and hg are also known, it is possible to deduce the value of h4 to obtain. If Q4 is defined as the flow of refrigerant through point 4, then Q4.h4 = Q2.h2 + Q3.h3.

Le débit Q4 peut être déterminé aisément car il est égal au débit de la pompe 4 et est donc fonction de la cylindrée et de la vitesse de rotation de la pompe 4, dans le cas d'une pompe volumétrique par exemple. Par ailleurs, le débit Q4 vérifie la relation Q4=Q2+Q3. Comme vu précédemment, la valeur de h4 peut être calculée à partir du titre x à obtenir, les valeurs de h2, Q2 et h3 étant déterminables. Il est donc possible d'en déduire le débit Q3 de fluide frigorigène liquide à injecter dans la zone de mélange 9 afin d'obtenir le titre x visé. Ce débit Q3 peut être régulé à l'aide des moyens correspondants 11, quelles que soient les conditions de fonctionnement. Le moyen 11 peut être une vanne à trois voies, disposée à la sortie de la pompe 4 et qui répartit le débit total Q4 en deux débits secondaires Q2 et Q3. Cette fonction à trois voies linéaire peut aussi être réalisée de manière électronique avec des vannes d'arrêt. Quand la voie reliée au bouilleur 1 est fermée, tout le fluide frigorigène provient du point i3. A l'inverse, quand la voie reliée au point i3 est fermée, tout le fluide frigorigène provient du point i2. En jouant sur les temps d'ouverture et de fermeture des différentes voies, on peut ajuster la répartition des deux débits. Les figures 5 et 6 illustrent une seconde forme de réalisation dans laquelle le circuit ne nécessite pas l'emploi de moyens de régulation. Ce circuit comporte, comme précédemment, un premier échangeur de chaleur 1 formant un bouilleur, un deuxième échangeur de chaleur 2 formant un condenseur, un troisième échangeur de chaleur 3 formant un sous-refroidisseur, une pompe volumétrique 4, un moyen de détente 5 apte à récupérer un couple mécanique à partir du travail de détente et éventuellement couplé à un générateur électrique par exemple, ainsi qu'un réservoir 6. Le circuit comporte en outre une zone de séparation 12 apte à séparer la phase liquide de la phase gazeuse du fluide frigorigène, une zone de surchauffe 13 apte à être traversée par la phase gazeuse de fluide frigorigène issue de la zone de séparation 12, et une zone de mélange 14 apte à recevoir le fluide frigorigène sous forme gazeuse issue de la zone de surchauffe 13 et apte à recevoir au moins une partie de la phase liquide du fluide frigorigène issu de la zone de séparation 12 et circulant dans un canal de dérivation 15. Le fluide frigorigène circule selon une boucle traversant successivement la pompe 4, le bouilleur 1, la zone de séparation 12, une première partie du fluide frigorigène (la phase vapeur) traversant ensuite la zone de surchauffe 13 avant d'entrer dans la zone de mélange 14, tandis qu'une autre partie du fluide frigorigène (la phase liquide) est dirigée directement de la zone de séparation 12 vers la zone de mélange 14, l'ensemble du fluide frigorigène issu de la zone de mélange 14 traversant ensuite le moyen de détente 5, le condenseur 2, le réservoir 6 et le sous- refroidisseur 3. La figure 6 est un diagramme de Mollier illustrant schématiquement le fonctionnement du circuit de la figure 5. Comme précédemment, des points référencés il à i9 ont été reportés à la fois sur le diagramme de Mollier et sur le circuit de fluide frigorigène illustré à la figure 5 afin de faciliter la compréhension. Les phases du fluide frigorigène (liquide L; diphasique Di, c'est-à-dire liquide et vapeur ; vapeur V) sont également indiquées sur le diagramme. En particulier, du fluide frigorigène (vapeur surchauffée) à une enthalpie h5 (point i5) et du fluide frigorigène (liquide saturant) à une enthalpie h3 (point i3) sont mélangés dans la zone de mélange 14, de façon à produire du fluide frigorigène diphasique à une enthalpie h6 (point i6), destiné à traverser le moyen de détente 5. Dans cette forme de réalisation, les différents éléments du circuit sont dimensionnés de façon à garantir que le point i6 soit situé dans la zone diphasique du diagramme de Mollier, quelles que soient les conditions de fonctionnement. Le circuit ne comporte alors pas de moyens de régulation permettant d'ajuster, de façon active et en temps réel, le débit de fluide liquide traversant la conduite 15, par exemple. Au contraire, le caractère diphasique du fluide frigorigène au point i6 est assuré de façon passive. Le coût d'un tel circuit est donc réduit, par comparaison avec le circuit de la figure 3. Cependant, dans cette forme de réalisation, il n'est pas possible de garantir un titre x constant et optimal du fluide diphasique traversant le moyen de détente 5, pour toutes les conditions de fonctionnement.The flow Q4 can be determined easily because it is equal to the flow rate of the pump 4 and is therefore a function of the displacement and the rotational speed of the pump 4, in the case of a positive displacement pump, for example. On the other hand, the flow Q4 checks the relation Q4 = Q2 + Q3. As seen above, the value of h4 can be calculated from the title x to obtain, the values of h2, Q2 and h3 being determinable. It is therefore possible to deduce the flow rate Q3 of liquid refrigerant to be injected into the mixing zone 9 to obtain the title x target. This flow Q3 can be regulated using the corresponding means 11, whatever the operating conditions. The means 11 may be a three-way valve disposed at the outlet of the pump 4 and which distributes the total flow Q4 in two secondary flow rates Q2 and Q3. This three-way linear function can also be performed electronically with shut-off valves. When the path connected to the boiler 1 is closed, all the refrigerant comes from point i3. Conversely, when the path connected to point i3 is closed, all the refrigerant comes from point i2. By varying the opening and closing times of the different channels, the distribution of the two flows can be adjusted. Figures 5 and 6 illustrate a second embodiment in which the circuit does not require the use of control means. This circuit comprises, as before, a first heat exchanger 1 forming a boiler, a second heat exchanger 2 forming a condenser, a third heat exchanger 3 forming a subcooler, a positive displacement pump 4, a means of relaxation 5 fit recovering a mechanical torque from the relaxation work and possibly coupled to an electric generator for example, and a tank 6. The circuit further comprises a separation zone 12 adapted to separate the liquid phase from the gaseous phase of the fluid refrigerant, an overheating zone 13 adapted to be traversed by the gaseous phase of refrigerant from the separation zone 12, and a mixing zone 14 adapted to receive the refrigerant in gaseous form from the overheating zone 13 and suitable to receive at least a portion of the liquid phase of the refrigerant from the separation zone 12 and flowing in a bypass channel 15. The refrigerant circulates in a loop through successively the pump 4, the boiler 1, the separation zone 12, a first portion of the refrigerant (the vapor phase) then passing through the superheating zone 13 before entering the mixing zone 14 , while another part of the refrigerant (the liquid phase) is directed directly from the separation zone 12 to the mixing zone 14, all the refrigerant coming from the mixing zone 14 then passing through the expansion means 5, the condenser 2, the reservoir 6 and the subcooler 3. FIG. 6 is a Mollier diagram schematically illustrating the operation of the circuit of FIG. 5. As previously, points referenced il to i9 have been reported both on the Mollier diagram and on the refrigerant circuit shown in Figure 5 to facilitate understanding. The phases of the refrigerant (liquid L, diphasic Di, that is to say liquid and vapor, vapor V) are also indicated in the diagram. In particular, refrigerant (superheated steam) at an enthalpy h5 (point i5) and refrigerant (saturating liquid) at an enthalpy h3 (point i3) are mixed in the mixing zone 14, so as to produce refrigerant biphasic with an enthalpy h6 (point i6), intended to pass through the expansion means 5. In this embodiment, the various elements of the circuit are dimensioned so as to ensure that the point i6 is located in the two-phase zone of the Mollier diagram. , whatever the operating conditions. The circuit then has no regulating means for adjusting, in an active manner and in real time, the flow of liquid fluid passing through the pipe 15, for example. On the contrary, the two-phase character of the refrigerant at point i6 is provided passively. The cost of such a circuit is therefore reduced, compared with the circuit of FIG. 3. However, in this embodiment, it is not possible to guarantee a constant and optimal titre x of the two-phase fluid passing through the means of FIG. trigger 5, for all operating conditions.

Claims (11)

REVENDICATIONS1. Circuit de fluide frigorigène, en particulier pour la récupération et la transformation des rejets thermiques d'un véhicule automobile, qui comporte un premier échangeur de chaleur (1) formant un bouilleur, un moyen de détente (5) apte à produire un couple mécanique à partir du travail de détente, et des moyens aptes à faire circuler le fluide frigorigène selon au moins une boucle traversant successivement le premier échangeur de chaleur (1) et le moyen de détente (5), caractérisé en ce qu'il comporte des moyens d'apport (9, 14) de fluide frigorigène liquide dans le premier échangeur de chaleur (1) ou entre le premier échangeur de chaleur (1) et le moyen de détente (5).REVENDICATIONS1. Refrigerant circuit, in particular for recovering and transforming the thermal discharges of a motor vehicle, which comprises a first heat exchanger (1) forming a boiler, an expansion means (5) capable of producing a mechanical torque at from the relaxation work, and means adapted to circulate the refrigerant according to at least one loop successively passing through the first heat exchanger (1) and the expansion means (5), characterized in that it comprises means for supply (9, 14) of liquid refrigerant in the first heat exchanger (1) or between the first heat exchanger (1) and the expansion means (5). 2. Circuit selon la revendication 1, caractérisé en ce qu'il comporte une zone de séparation (12) apte à séparer la phase liquide de la phase gazeuse du fluide frigorigène, une zone de surchauffe (13) apte à être traversée par la phase gazeuse de fluide frigorigène issue de la zone de séparation (12), et une zone de mélange (14) apte à recevoir le fluide frigorigène sous forme gazeuse issu de la zone de surchauffe (13) et apte à recevoir au moins une partie de la phase liquide du fluide frigorigène issue de la zone de séparation (12).2. Circuit according to claim 1, characterized in that it comprises a separation zone (12) adapted to separate the liquid phase from the gas phase of the refrigerant, an overheating zone (13) adapted to be traversed by the phase refrigerant gas from the separation zone (12), and a mixing zone (14) adapted to receive the gaseous refrigerant from the overheating zone (13) and adapted to receive at least a portion of the liquid phase of the refrigerant from the separation zone (12). 3. Circuit selon la revendication 2, caractérisé en ce que ladite zone de séparation (12), ladite zone de surchauffe (13) et/ou ladite zone de mélange (14) sont situées dans le premier échangeur de chaleur (1) et/ou entre le premier échangeur de chaleur (1) et le moyen de détente (5).3. Circuit according to claim 2, characterized in that said separation zone (12), said overheating zone (13) and / or said mixing zone (14) are located in the first heat exchanger (1) and / or between the first heat exchanger (1) and the expansion means (5). 4. Circuit selon l'une des revendications 2 et 3, caractérisé en ce qu'il comporte des moyens de mesure de la pression et de la température, aptes à mesurer la pression et la température de la phase gazeuse du fluide frigorigène issu de la zone de surchauffe (13).4. Circuit according to one of claims 2 and 3, characterized in that it comprises means for measuring the pressure and temperature, able to measure the pressure and temperature of the gas phase of the refrigerant from the overheating zone (13). 5. Circuit selon l'une des revendications 2 à 4, comprenant un canal de dérivation (15) du fluide frigorigène reliant la zone de séparation (12) à la zone de mélange (14).5. Circuit according to one of claims 2 to 4, comprising a bypass channel (15) of the refrigerant connecting the separation zone (12) to the mixing zone (14). 6. Circuit selon l'une des revendications 1 à 5, caractérisé en ce qu'il comporte une pompe (4) constituant les moyens aptes à faire circuler le fluide frigorigène, la boucle traversant successivement la pompe (4), le premier échangeur de chaleur (1) et le moyen de détente (5).6. Circuit according to one of claims 1 to 5, characterized in that it comprises a pump (4) constituting the means adapted to circulate the refrigerant, the loop through successively the pump (4), the first heat exchanger heat (1) and the relaxing means (5). 7. Circuit selon la revendication 6, caractérisé en ce qu'il comporte un deuxième échangeur de chaleur (2) formant un condenseur, la boucle traversant successivement la pompe (4), le premier échangeur de chaleur (1), le moyen de détente (5) et le deuxième échangeur de chaleur (2).7. Circuit according to claim 6, characterized in that it comprises a second heat exchanger (2) forming a condenser, the loop successively passing through the pump (4), the first heat exchanger (1), the expansion means (5) and the second heat exchanger (2). 8. Circuit selon la revendication 7, caractérisé en ce qu'il comporte un troisième échangeur de chaleur (3) formant un sous-refroidisseur, la boucle traversant successivement la pompe (4), le premier échangeur de chaleur (1), le moyen de détente (5), le deuxième échangeur de chaleur (2) et le troisième échangeur de chaleur (3).8. Circuit according to claim 7, characterized in that it comprises a third heat exchanger (3) forming a subcooler, the loop successively passing through the pump (4), the first heat exchanger (1), the means trigger (5), the second heat exchanger (2) and the third heat exchanger (3). 9. Circuit selon la revendication 8, caractérisé en ce qu'il comporte un réservoir (6) destiné à contenir du fluide réfrigérant liquide, ledit réservoir (6) étant situé entre le deuxième échangeur de chaleur (2) et le troisième échangeur de chaleur (3).9. Circuit according to claim 8, characterized in that it comprises a reservoir (6) for containing liquid refrigerant fluid, said reservoir (6) being located between the second heat exchanger (2) and the third heat exchanger (3). 10. Procédé de fonctionnement d'un circuit selon l'une des revendications 1 à 9, dans lequel le fluide frigorigène circule selon une boucle traversant le premier échangeur de chaleur (1) et le moyen de détente (5), du fluide frigorigène liquide étant injecté au niveau d'une zone de mélange (9, 14) située dans le premier échangeur de chaleur (1) ou entre le premier échangeur de chaleur (1) et le moyen de détente (5), de façon à ce que le fluide frigorigène issu de la zone de mélange (9, 14) et traversant le moyen de détente (5) soit diphasique.10. A method of operating a circuit according to one of claims 1 to 9, wherein the refrigerant circulates in a loop through the first heat exchanger (1) and the expansion means (5), liquid refrigerant being injected at a mixing zone (9, 14) located in the first heat exchanger (1) or between the first heat exchanger (1) and the expansion means (5), so that the refrigerant from the mixing zone (9, 14) and passing through the expansion means (5) is two-phase. 11. Procédé de fonctionnement d'un circuit selon la revendication 10, dans lequel le fluide frigorigène circule selon une boucle traversant la pompe (4), le premier échangeur de chaleur (1), le moyen de détente (5), le deuxième échangeur de chaleur (2), le réservoir (6) et le troisième échangeur de chaleur (3).11. A method of operating a circuit according to claim 10, wherein the refrigerant circulates in a loop through the pump (4), the first heat exchanger (1), the expansion means (5), the second heat exchanger heat exchanger (2), the reservoir (6) and the third heat exchanger (3).
FR1454387A 2014-05-16 2014-05-16 REFRIGERANT FLUID CIRCUIT FOR RECOVERING ENERGY FROM THERMAL LOSSES OF AN INTERNAL COMBUSTION ENGINE Active FR3021070B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR1454387A FR3021070B1 (en) 2014-05-16 2014-05-16 REFRIGERANT FLUID CIRCUIT FOR RECOVERING ENERGY FROM THERMAL LOSSES OF AN INTERNAL COMBUSTION ENGINE
PCT/EP2015/059847 WO2015173075A1 (en) 2014-05-16 2015-05-05 Refrigerant circuit for the recovery of energy from the thermal losses of an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1454387A FR3021070B1 (en) 2014-05-16 2014-05-16 REFRIGERANT FLUID CIRCUIT FOR RECOVERING ENERGY FROM THERMAL LOSSES OF AN INTERNAL COMBUSTION ENGINE

Publications (2)

Publication Number Publication Date
FR3021070A1 true FR3021070A1 (en) 2015-11-20
FR3021070B1 FR3021070B1 (en) 2017-08-18

Family

ID=51298798

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1454387A Active FR3021070B1 (en) 2014-05-16 2014-05-16 REFRIGERANT FLUID CIRCUIT FOR RECOVERING ENERGY FROM THERMAL LOSSES OF AN INTERNAL COMBUSTION ENGINE

Country Status (2)

Country Link
FR (1) FR3021070B1 (en)
WO (1) WO2015173075A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690303A (en) * 1969-12-24 1972-09-12 Sulzer Ag Forced circulating steam generator and method of generating steam
US20060201154A1 (en) * 2005-03-11 2006-09-14 Honda Motor Co., Ltd. Rankine cycle system
DE102010040624A1 (en) * 2010-09-13 2012-03-15 Siemens Aktiengesellschaft heat recovery steam generator
WO2012084120A1 (en) * 2010-12-24 2012-06-28 Daimler Ag Waste heat recovery device and associated method of operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3690303A (en) * 1969-12-24 1972-09-12 Sulzer Ag Forced circulating steam generator and method of generating steam
US20060201154A1 (en) * 2005-03-11 2006-09-14 Honda Motor Co., Ltd. Rankine cycle system
DE102010040624A1 (en) * 2010-09-13 2012-03-15 Siemens Aktiengesellschaft heat recovery steam generator
WO2012084120A1 (en) * 2010-12-24 2012-06-28 Daimler Ag Waste heat recovery device and associated method of operation

Also Published As

Publication number Publication date
FR3021070B1 (en) 2017-08-18
WO2015173075A1 (en) 2015-11-19

Similar Documents

Publication Publication Date Title
EP2365192B1 (en) Device and method for control of a working fluid in a closed Rankine cycle
CA2980798C (en) Cooling of a turbine engine oil circuit
FR2852678A1 (en) Cooling system for motor vehicle equipment e.g. fuel heater, has heat exchange surface divided between two heat exchange sections traversed by respective flow of coolant, where one flow of coolant is higher than another
FR3004487A1 (en) METHOD FOR CONTROLLING THE OPERATION OF A CLOSED CIRCUIT OPERATING ACCORDING TO A RANKINE CYCLE AND CIRCUIT USING SUCH A METHOD.
FR3005687A1 (en) TURBOPOMPE WITH ANTI-VIBRATION SYSTEM
FR3021070A1 (en) REFRIGERANT FLUID CIRCUIT FOR RECOVERING ENERGY FROM THERMAL LOSSES OF AN INTERNAL COMBUSTION ENGINE
FR2557921A1 (en) LOST HEAT RECOVERY DEVICE USING AN OIL INJECTION SCREW DETENDER.
FR3024769A1 (en) THERMODYNAMIC CIRCUIT, IN PARTICULAR FOR A MOTOR VEHICLE
FR2984950A1 (en) DEVICE FOR CONTROLLING A RANKINE CYCLE CLOSED CIRCUIT RELIEF MACHINE AND METHOD USING SUCH A DEVICE
CA2974154A1 (en) Thermodynamic system
FR3033616B1 (en) MOTOR FLOW ADAPTER VALVE
FR2523221A1 (en) Low grade differential heat engine - uses fluid volume alteration caused by alternate heating and cooling of suitable liquid
WO2022194878A9 (en) Heat engine
WO2013050516A1 (en) Cooling and heating facility for air conditioning systems
FR3032520A1 (en) THERMODYNAMIC SYSTEM
WO2017060621A1 (en) Vehicle heat exchanger, and energy recovery installation and method
FR3028929B1 (en) ABSORPTION MACHINE WITH OPTIMIZED PERFORMANCE COEFFICIENT
FR2691504A1 (en) Cooling device for a heat engine comprising a condenser.
WO2018178015A1 (en) Thermodynamic system, in particular implementing a rankine thermodynamic cycle
WO2019115122A1 (en) Electrically powered turbopump assembly for a closed circuit, particularly of the rankine cycle type, comprising integrated cooling
EP3722703A1 (en) Thermodynamic machine such as a thermorefrigerating pump and operating method
FR3036736A1 (en) AIRCRAFT TURBOMACHINE
FR3044351A1 (en) THERMODYNAMIC SYSTEM
FR3057298A1 (en) MOTORIZATION ASSEMBLY WITH RANKINE LOOP
FR2934318A1 (en) Engine i.e. internal combustion engine, cooling device for vehicle, has actuator for piloting opening and closing of first and second outlets, and closing assembly including check valves for closing second outlet and piloted by actuator

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 2

PLSC Publication of the preliminary search report

Effective date: 20151120

PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11