FR3020808A1 - DIELECTRIC CERAMIC MATERIAL COMPRISING CCTO - Google Patents
DIELECTRIC CERAMIC MATERIAL COMPRISING CCTO Download PDFInfo
- Publication number
- FR3020808A1 FR3020808A1 FR1454170A FR1454170A FR3020808A1 FR 3020808 A1 FR3020808 A1 FR 3020808A1 FR 1454170 A FR1454170 A FR 1454170A FR 1454170 A FR1454170 A FR 1454170A FR 3020808 A1 FR3020808 A1 FR 3020808A1
- Authority
- FR
- France
- Prior art keywords
- ccto
- material according
- permittivity
- doped
- resistivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229910010293 ceramic material Inorganic materials 0.000 title description 3
- 239000000463 material Substances 0.000 claims abstract description 33
- 239000002019 doping agent Substances 0.000 claims abstract description 18
- 230000007704 transition Effects 0.000 claims abstract description 13
- 239000003990 capacitor Substances 0.000 claims description 17
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 9
- 229910002651 NO3 Inorganic materials 0.000 claims description 8
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 8
- 230000005684 electric field Effects 0.000 claims description 8
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 4
- MSYNCHLYGJCFFY-UHFFFAOYSA-B 2-hydroxypropane-1,2,3-tricarboxylate;titanium(4+) Chemical compound [Ti+4].[Ti+4].[Ti+4].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O MSYNCHLYGJCFFY-UHFFFAOYSA-B 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052706 scandium Inorganic materials 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 229910052712 strontium Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 239000012671 ceramic insulating material Substances 0.000 claims description 2
- 239000003989 dielectric material Substances 0.000 abstract description 9
- 239000000919 ceramic Substances 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- 229910002966 CaCu3Ti4O12 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000012682 cationic precursor Substances 0.000 description 1
- 239000012612 commercial material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B3/00—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
- H01B3/02—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
- H01B3/12—Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3241—Chromium oxides, chromates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3281—Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3284—Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3293—Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/441—Alkoxides, e.g. methoxide, tert-butoxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/443—Nitrates or nitrites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/449—Organic acids, e.g. EDTA, citrate, acetate, oxalate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Power Engineering (AREA)
- Dispersion Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
La présente invention concerne un matériau diélectrique en céramique à base de CaCu3Ti4012 (CCTO), caractérisé en ce qu'il est constitué de CCTO dopé avec deux éléments de transition dopants. Ce matériau présente l'avantage d'obtenir une très importante permittivité, proche du CCTO tout en présentant, au contraire du CCTO, une très forte résistivité.The present invention relates to a ceramic dielectric material based on CaCu3Ti4012 (CCTO), characterized in that it consists of CCTO doped with two dopant transition elements. This material has the advantage of obtaining a very high permittivity, close to the CCTO while having, unlike the CCTO, a very high resistivity.
Description
MATERIAU DIELECTRIQUE EN CERAMIQUE COMPORTANT DU Ca CU3T 14012 L'invention concerne un matériau diélectrique en céramique, plus particulièrement à base de CCTO. Les matériaux diélectriques sont utilisés de manière connue dans les composants électroniques tels que les condensateurs.The invention relates to a ceramic dielectric material, more particularly based on CCTO. Dielectric materials are used in known manner in electronic components such as capacitors.
Le CCTO de composition CaCu3Ti4O12, découvert il y a quelques années, présente l'avantage de posséder une permittivité E (dénommée encore constante diélectrique) « colossale », qui est supérieure à 100 000. La permittivité d'un matériau dépend de la fréquence d'oscillation du champ électrique qui lui est appliqué. Aussi, est-il souhaitable pour un isolant de garder une forte permittivité sur une large gamme de fréquences, ce que fournit justement le CCTO, selon la gamme de 100 à 106 Hz.The CCTO composition CaCu3Ti4O12, discovered a few years ago, has the advantage of having a permittivity E (also called dielectric constant) "colossal", which is greater than 100 000. The permittivity of a material depends on the frequency of oscillation of the electric field applied to it. Also, it is desirable for an insulator to keep a high permittivity over a wide range of frequencies, which the CCTO provides, according to the range of 100 to 106 Hz.
De plus, la valeur de la permittivité du CCTO reste très élevée sur une large gamme de températures ( -70`C / +250t). Une telle permittivité engendre très avantageusement une très forte valeur de capacité, ce que l'on recherche pour les condensateurs.In addition, the value of the permittivity of the CCTO remains very high over a wide range of temperatures (-70 ° C / + 250t). Such a permittivity very advantageously generates a very high capacitance value, which is sought for capacitors.
En combinaison, ce matériau à permittivité colossale a permis de miniaturiser les composants électroniques. Cependant, le CCTO présente quelques inconvénients tels que sa faible tenue à une tension électrique et sa résistivité p insuffisante pour certaines applications, cette dernière grandeur électrique variant en outre fortement en température. Ce matériau n'est en fait pas utilisable à l'état pur en tant que condensateur. On rappelle que la résistivité p traduit l'isolation en courant continu d'un condensateur et est proportionnelle à la capacité du condensateur. Plus la résistivité est élevée en fonction de la tension appliquée, meilleur est l'isolant. Or, si les matériaux usuels du commerce pour les condensateurs présentent une résistivité p de l'ordre de 1012 ou 1013 s2.cm, le CCTO possède une résistance à l'isolement de l'ordre de 106 s2.cm. L'invention a donc pour but de proposer un matériau diélectrique dont la permittivité E puisse atteindre de très fortes valeurs telles que de l'ordre de celles du CCTO pour fournir d'importantes valeurs de capacités, tout en ne présentant pas les désavantages du CCTO, le matériau de l'invention présentant notamment une résistivité p élevée, et cela sur une large gamme de fréquences Le matériau de l'invention vise également à minimiser le facteur de perte tans. Selon l'invention, le matériau isolant en céramique à base de CCTO est caractérisé en ce qu'il comprend du CCTO dopé avec deux éléments de transition dopants A et M, et est de composition Ca1,AxCu3Ti4_yMy012 avec A choisi parmi Sr, La, Sn, Cr, Mg, Zn et 0 < x < 0,5, et M choisi parmi Cr, Hf, Zr, Sn, Al, Nb, Sc et 0 < y < 1.In combination, this material with colossal permittivity made it possible to miniaturize the electronic components. However, the CCTO has some disadvantages such as its low resistance to an electrical voltage and its resistivity p insufficient for certain applications, the latter electrical variable also varies greatly in temperature. This material is in fact not usable in pure form as a capacitor. It is recalled that the resistivity p reflects the DC insulation of a capacitor and is proportional to the capacity of the capacitor. The higher the resistivity depending on the applied voltage, the better the insulation. However, if the usual commercial materials for capacitors have a resistivity p of the order of 1012 or 1013 s2.cm, the CCTO has an insulation resistance of the order of 106 s2.cm. The invention therefore aims to provide a dielectric material whose permittivity E can achieve very high values such as those of the CCTO to provide significant capacity values, while not having the disadvantages of the CCTO , the material of the invention having in particular a high p resistivity over a wide range of frequencies The material of the invention also aims to minimize the loss factor tans. According to the invention, the ceramic insulating material based on CCTO is characterized in that it comprises doped CCTO with two dopant transition elements A and M, and is of composition Ca1, AxCu3Ti4_yMy012 with A chosen from Sr, La, Sn, Cr, Mg, Zn and 0 <x <0.5, and M selected from Cr, Hf, Zr, Sn, Al, Nb, Sc and 0 <y <1.
Les inventeurs ont mis en évidence de manière inattendue que le CCTO dopé, et plus particulièrement dopé avec deux éléments dopants de transition, confère des propriétés très attractives : - une permittivité diélectrique s qui, bien qu'inférieure à celle du CCTO, reste très élevée par rapport à celle des céramiques usuelles, à savoir de l'ordre entre 10 à 20 fois supérieure à celle des céramiques usuelles, notamment de l'ordre de 40 000 à 60 000 à 1 kHz ; - une résistivité p bien plus élevée que pour le CCTO pur non dopé, notamment 100 à 1 000 fois plus élevée que celle du CCTO pur ; la résistivité du matériau de l'invention est en particulier de l'ordre de 109 à 1010acm ; - une meilleure tenue en tension que celle du CCTO pur ; la tenue en tension étant de l'ordre de 0,15 à 0,50 V/pm, soit deux à cinq fois plus que pour le CCTO pur ; bien entendu, l'épaisseur du matériau de l'invention sera adaptée en fonction de l'application visée pour répondre à la tenue en tension souhaitée ; - un facteur de perte tans comparable à celui du CCTO pur, à savoir proche ou ne dépassant pas 0,1 pour les fréquences inférieures ou égales à 25 000 Hz, voire même meilleur pour les fréquences inférieures à 1 kHz, et en particulier de l'ordre de 0,06 à 1 kHz; - ces propriétés étant conservées sur une large gamme de fréquences, de 100 à 3.105 Hz, et sur une gamme de températures tout à fait convenable pour la plupart des applications, en particulier entre -60°C et +130°C. Selon une autre caractéristique, la résistivité p du matériau est supérieure à 109 f2.cm pour un champ électrique d'au plus 300 V/cm, en particulier de 1010 Sicm pour un champ électrique de 1 V/cm.The inventors have unexpectedly demonstrated that the doped CCTO, and more particularly doped with two transition doping elements, confers very attractive properties: a dielectric permittivity which, although lower than that of the CCTO, remains very high compared to that of conventional ceramics, namely of the order between 10 to 20 times greater than that of conventional ceramics, in particular of the order of 40 000 to 60 000 at 1 kHz; a much higher p resistivity than for pure undoped CCTO, in particular 100 to 1000 times higher than that of pure CCTO; the resistivity of the material of the invention is in particular of the order of 109 to 1010acm; a better resistance in tension than that of the pure CCTO; the voltage withstand being of the order of 0.15 to 0.50 V / pm, ie two to five times more than for pure CCTO; of course, the thickness of the material of the invention will be adapted according to the intended application to meet the desired voltage strength; - a loss factor similar to that of pure CCTO, namely close to or not more than 0.1 for frequencies less than or equal to 25 000 Hz, or even better for frequencies below 1 kHz, and particularly from 0.06 to 1 kHz; these properties being maintained over a wide frequency range, from 100 to 3.105 Hz, and over a temperature range quite suitable for most applications, in particular between -60 ° C and + 130 ° C. According to another characteristic, the resistivity p of the material is greater than 109 f2.cm for an electric field of at most 300 V / cm, in particular 1010 Sicm for an electric field of 1 V / cm.
Les éléments dopants de transition sont par exemple La avec de préférence 0 < x < 0,5, et Cr avec de préférence 0 < y < 0,5, en particulier 0 < y < 0,1.The transition doping elements are for example La with preferably 0 <x <0.5, and Cr with preferably 0 <y <0.5, in particular 0 <y <0.1.
Un exemple de composition du matériau est la suivante : Ca0,951-a0,033CU3Ti3,96Cr0,04012 Selon une caractéristique, la permittivité E du matériau de l'invention est supérieure à 40 000 pour des fréquences inférieures à 1 kHz.An example of composition of the material is as follows: According to one characteristic, the permittivity E of the material of the invention is greater than 40,000 for frequencies below 1 kHz.
Selon une autre caractéristique, sa résistivité p est supérieure à 108 s2.cm. Selon encore une autre caractéristique, son facteur de perte tans est inférieur à 0,1 pour les fréquences inférieures à 25 000 Hz, en particulier de l'ordre de 0,06 à 1 kHz. Le matériau de l'invention peut être fabriqué de manière connue pour un matériau céramique isolant, par voie sol-gel ou par voie solide.According to another characteristic, its resistivity p is greater than 108 s2.cm. According to yet another characteristic, its tan loss factor is less than 0.1 for frequencies below 25 000 Hz, in particular of the order of 0.06 to 1 kHz. The material of the invention can be manufactured in a known manner for an insulating ceramic material, sol-gel or solid.
Par la voie sol-gel, le matériau est fabriqué à partir d'une part des solutions de nitrate Ca(NO3)2, A(NO3)3, M(NO3)3 et Cu(NO3)2, et d'autre part d'une solution de citrate de titane à partir d'isopropoxyde de titane. Avantageusement, le matériau est utilisé en tant que matériau diélectrique pour composants électroniques, notamment condensateurs plans ou multicouches ou varistances ou filtres. La présente invention est maintenant décrite à l'aide d'un exemple de matériau uniquement illustratif et nullement limitatif de la portée de l'invention, et à partir des illustrations ci-jointes, dans lesquelles : - La figure 1 représente les courbes de la permittivité en fonction de la fréquence pour l'exemple de l'invention et des exemples comparatifs ; - La figure 2 montre les courbes de la résistivité en fonction du champ électrique pour les exemples de la figure 1 ; - La figure 3 illustre les courbes du facteur de perte en fonction de la fréquence pour les exemples de la figure 1 ; - La figure 4 illustre la variation de capacité en fonction de la température entre l'exemple de l'invention et l'exemple comparatif de CCTO non dopé. Le matériau céramique de l'invention est en particulier destiné à être utilisé dans des condensateurs plans ou multicouches ou encore des varistances multicouches.By the sol-gel route, the material is produced from the nitrate solutions Ca (NO3) 2, A (NO3) 3, M (NO3) 3 and Cu (NO3) 2 and secondly of a solution of titanium citrate from titanium isopropoxide. Advantageously, the material is used as a dielectric material for electronic components, especially flat or multilayer capacitors or varistors or filters. The present invention is now described with the aid of an exemplary material which is only illustrative and in no way restrictive of the scope of the invention, and from the attached illustrations, in which: FIG. 1 represents the curves of FIG. permittivity as a function of frequency for the example of the invention and comparative examples; FIG. 2 shows the curves of the resistivity as a function of the electric field for the examples of FIG. 1; FIG. 3 illustrates the curves of the loss factor as a function of the frequency for the examples of FIG. 1; FIG. 4 illustrates the capacity variation as a function of temperature between the example of the invention and the comparative example of undoped CCTO. The ceramic material of the invention is particularly intended for use in flat or multilayer capacitors or multilayer varistors.
Pour les condensateurs ou varistances multicouches, les électrodes internes sont de préférence en argent, palladium, platine. Le matériau de l'invention est à base de CCTO et de deux éléments de transition dopants A et M. Sa composition est Ca1,AxCu3Ti4_yMy012 avec, A choisi parmi Sr, La, Sn, Cr, Mg, Zn et 0 < x < 0,5, et M choisi parmi Cr, Hf, Zr, Sn, Al, Nb, Sc et 0 < y < 1.For multilayer capacitors or varistors, the internal electrodes are preferably silver, palladium, platinum. The material of the invention is based on CCTO and two dopant transition elements A and M. Its composition is Ca1, AxCu3Ti4_yMyO12 with A selected from Sr, La, Sn, Cr, Mg, Zn and 0 <x <0 , 5, and M selected from Cr, Hf, Zr, Sn, Al, Nb, Sc and 0 <y <1.
Les inventeurs ont mis en évidence de manière inattendue que le CCTO dopé, et en particulier avec deux éléments dopants, conférait des propriétés remarquables de permittivité tout en fournissant une résistivité élevée. Ces grandeurs électriques seront données un peu plus loin selon un exemple de l'invention.The inventors have unexpectedly demonstrated that the doped CCTO, and in particular with two doping elements, confers remarkable properties of permittivity while providing a high resistivity. These electrical quantities will be given a little further according to an example of the invention.
Le procédé de fabrication du matériau de l'invention utilise de manière connue la voie sol-gel ou bien la voie solide pour la fabrication de matériau isolant du type condensateur.The manufacturing process of the material of the invention uses, in a known way, the sol-gel route or the solid route for the manufacture of capacitor-type insulating material.
Dans un exemple de l'invention nullement limitatif, les éléments dopants sont La et Cr. Selon la technologie sol-gel de fabrication, les étapes sont les suivantes : 1) On réalise d'une part des solutions de nitrate à partir de précurseurs cationiques selon Ca(NO3)2, La(NO3)3, Cr(NO3)3 et Cu(NO3)2, et d'autre part une solution de citrate de titane à partir d'isopropoxyde de titane. 2) Les solutions ci-dessus obtenues sont mélangées dans les proportions stoechiométriques et mises en présence de citrate d'ammonium pour l'obtention d'une solution de CCTO dopé La et Cr. 3) On procède ensuite à la formation du gel à partir de la solution de l'étape 2 de CCTO dopé La et Cr en ajoutant des monomères, de préférence l'acrylamide (6% de la solution) et le N,N'- méthylènediacrylamide (3% de la solution). De préférence, un catalyseur, par exemple de l'AIBN selon quelques grammes, est ajouté pour amorcer la formation du gel. Le mélange est ensuite chauffé à une température minimale de 80°C pour activer le catalyseur. Le gel est formé au bout d'une dizaine de minutes. 4) Le gel ainsi obtenu est ensuite de manière connue calciné, en particulier sur une plage de température entre 400°C et 700°C et pour une durée comprise entre 10h et 24h. Après calcination est obtenue une poudre. 5) La poudre est de manière connue éventuellement recuite à une température comprise entre 800°C et 1000°C pendant 10 à 24 heures pour terminer la formation de la phase cristalline. 6) La poudre est enfin désagglomérée et homogénéisée à l'aide d'un mélangeur, par exemple pendant 2 heures. La poudre obtenue présente une granulométrie moyenne de 1 pm.In one example of the invention which is in no way limitative, the doping elements are La and Cr. According to the sol-gel manufacturing technology, the steps are as follows: 1) Firstly, solutions of nitrate are produced from cationic precursors according to Ca (NO 3) 2, La (NO 3) 3, Cr (NO 3) 3 and Cu (NO3) 2, and on the other hand a solution of titanium citrate from titanium isopropoxide. 2) The solutions obtained above are mixed in stoichiometric proportions and placed in the presence of ammonium citrate to obtain a solution of La and Cr doped CCTO. 3) The gel is then formed from the solution of step 2 of La and Cr-doped CCTO by adding monomers, preferably acrylamide (6% of the solution) and N, N'- methylenediacrylamide (3% of the solution). Preferably, a catalyst, for example AIBN in a few grams, is added to initiate gel formation. The mixture is then heated to a minimum temperature of 80 ° C to activate the catalyst. The gel is formed after about ten minutes. 4) The gel thus obtained is then calcined in a known manner, in particular over a temperature range between 400 ° C. and 700 ° C. and for a duration of between 10 h and 24 h. After calcination, a powder is obtained. 5) The powder is in known manner optionally annealed at a temperature between 800 ° C and 1000 ° C for 10 to 24 hours to complete the formation of the crystalline phase. 6) The powder is finally deagglomerated and homogenized using a mixer, for example for 2 hours. The powder obtained has an average particle size of 1 μm.
Cette méthode de fabrication par voie sol-gel pourra être préférée dans certaines applications pour lesquelles une résistivité de l'ordre de 1010n.cm est requise lorsqu'un champ électrique de 1 V/cm est appliqué.This sol-gel manufacturing method may be preferred in some applications for which a resistivity of the order of 1010n.cm is required when an electric field of 1 V / cm is applied.
Selon l'invention, un exemple de composition du matériau diélectrique est le suivant : Ca0,95La0,033CU3Ti3,96Cr0,04012. Des tests comparatifs ont été réalisés avec l'exemple de l'invention.According to the invention, an example of composition of the dielectric material is as follows: Ca0.95La0.033CU3Ti3.96Cr0.04012. Comparative tests were carried out with the example of the invention.
Les figures 1 à 4 illustrent des courbes comparatives au regard de différentes grandeurs électriques de matériau, le CCTO pur sans élément dopant, le CCTO dopé avec un seul élément de transition dopant, le CCTO dopé selon l'exemple de l'invention avec deux éléments de transition dopants. Les mesures ont été faites sur trois condensateurs plans de diamètre 10 mm et selon une épaisseur de 1,5 mm de matériau diélectrique respectivement en CCTO pur (CaCu3Ti4012), CCTO dopé La (de composition Ca0,95Lao,o33Cu3Ti4012) et CCTO dopé La et Cr selon l'exemple de l'invention (Ca0,95Lao,o33Cu3Ti3,96Cro,04012), chaque matériau diélectrique sous forme de poudre ayant été fritté à 1050°C sous air pendant 24 h.FIGS. 1 to 4 illustrate comparative curves with respect to different electrical quantities of material, pure CCTO without doping element, doped CCTO with a single doping transition element, doped CCTO according to the example of the invention with two elements transition dopants. The measurements were made on three planar capacitors with a diameter of 10 mm and with a thickness of 1.5 mm of dielectric material respectively in pure CCTO (CaCu3Ti4012), La-doped CCTO (of composition Ca0.95Lao, O33Cu3Ti4012) and L-doped CCTO and Cr according to the example of the invention (Ca0.95Lao, o33Cu3Ti3.96Cro, 04012), each dielectric material in powder form having been sintered at 1050 ° C in air for 24 h.
Le tableau ci-dessous indique des valeurs caractéristiques pour l'exemple de l'invention et les exemples comparatifs de CCTO non dopé et dopé avec un seul élément de transition le La. Matériau Permittivité E Résistivité p (Mn.cm) pour 1 V/cm à 100 Hz CaCu3Ti4O12 70 000 10 Ca0,95La0,033Cu3Ti4012 150 000 20 Ca0,95La0,033Cu3Ti3,96Cr0,04012 40 000 900 A 100 Hz, la permittivité du CCTO est de 70 000, celle du CCTO dopé uniquement La est de 150 000, tandis que le CCTO de l'invention aux deux dopants reste encore très élevée, de 40 000. De plus, un comparatif a été fait également au regard du BaTiO3 qui un matériau utilisé couramment en tant que matériau diélectrique pour les condensateurs. Il ressort qu'un condensateur de même dimension que celui de l'invention fait de BaTiO3, présente une permittivité de 3 000 à 100 Hz alors que le matériau de l'invention possède une valeur de 40 000. Le matériau de l'invention est donc très performant.The table below shows characteristic values for the example of the invention and the comparative examples of undoped and doped CCTO with a single element of transition the La. Material Permittivity E Resistivity p (Mn.cm) for 1 V / cm at 100 Hz CaCu3Ti4O12 70,000 10 Ca0,95La0,033Cu3Ti4012 150,000 20 Ca0,95La0,033Cu3Ti3,96Cr0,04012 40,000 900 At 100 Hz, the permittivity of the CCTO is 70,000, that of the CCTO doped only La is 150 000, while the CCTO of the invention to both dopants is still very high, 40 000. In addition, a comparison was also made with respect to BaTiO3 which a material commonly used as a dielectric material for capacitors. It appears that a capacitor of the same size as that of the invention makes BaTiO3, has a permittivity of 3,000 to 100 Hz while the material of the invention has a value of 40,000. The material of the invention is so very powerful.
La figure 1, qui illustre la permittivité E en fonction de la fréquence, montre que les courbes à base de CCTO et du CCTO dopé de l'invention sont d'allure identique. Même si la permittivité E du CCTO avec deux dopants de transition est inférieure à celle du CCTO pur (CCTO non dopé), alors que la permittivité du CCTO avec un élément dopant de transition est au-dessus de celle du CCTO pur, les valeurs de permittivité de CCTO aux deux dopants de l'invention restent élevées. Par conséquent, le matériau de l'invention présente une permittivité qui reste énorme afin de fournir très avantageusement des capacités élevées et permettre de miniaturiser les condensateurs.FIG. 1, which illustrates the permittivity E as a function of frequency, shows that the curves based on CCTO and the doped CCTO of the invention are of identical appearance. Even though the permittivity E of the CCTO with two transition dopants is lower than that of the pure CCTO (undoped CCTO), whereas the permittivity of the CCTO with a transition dopant element is higher than that of the pure CCTO, the values of permittivity of CCTO to the two dopants of the invention remain high. Consequently, the material of the invention has a permittivity which remains enormous in order to very advantageously provide high capacitances and enable the capacitors to be miniaturized.
La figure 2 illustre la résistivité p en fonction du champ électrique appliqué aux bornes du condensateur. On constate d'après la figure 2 et le tableau ci-dessus que la résistivité du CCTO dopé de l'invention est bien supérieure à celle du CCTO, en particulier à 1 V/cm, la résistivité du CCTO dopé est 90 fois supérieure à celle du CCTO pur, et 45 fois supérieure à celle du CCTO à un seul dopant.FIG. 2 illustrates the resistivity p as a function of the electric field applied across the capacitor. It can be seen from FIG. 2 and the table above that the resistivity of the doped CCTO of the invention is much greater than that of the CCTO, in particular at 1 V / cm, the resistivity of the doped CCTO is 90 times greater than that of pure CCTO, and 45 times that of single-dopant CCTO.
Jusqu'à 10 V/cm, la résistivité n'est que de 107 n.cm pour le CCTO et de 2. 10' n.cm pour le CCTO à un seul dopant, tandis qu'elle atteint 10 9 n.cm pour le matériau de l'invention. Le CCTO de l'invention aux deux éléments dopants est donc bien plus performant que du CCTO pur ou même du CCTO avec un seul dopant de transition. Cet avantage est primordial pour un matériau isolant. Un tel résultat n'était pas prévisible. En particulier, il n'était pas évident de s'attendre à une telle performance du CCTO à deux dopants au regard du CCTO à un seul dopant, d'autant plus que pour la permittivité du CCTO à deux dopants, celle-ci était bien moins importante que pour le CCTO à un dopant et le CCTO pur. De plus, les performances de résistivité restent conséquentes pour des plus forts champs électriques, ce qui n'est pas le cas pour le CCTO à un seul dopant pour lequel la courbe de la figure 2 chute brutalement à partir de 100 V/cm. La figure 3 illustre le facteur de perte tans en fonction de la fréquence.Up to 10 V / cm, the resistivity is only 107 n.cm for the CCTO and 2. 10 'n.cm for the single dopant CCTO, while it reaches 10 9 n.cm for the material of the invention. The CCTO of the invention to the two doping elements is therefore much more efficient than pure CCTO or even CCTO with a single transition dopant. This advantage is essential for an insulating material. Such a result was not predictable. In particular, it was not obvious to expect such a performance of the two-dopant CCTO with respect to the single-dopant CCTO, especially since for the two-dopant CCTO permittivity, it was well less than for the CCTO to a dopant and the pure CCTO. In addition, the resistivity performances remain substantial for stronger electric fields, which is not the case for the single-doped CCTO for which the curve of FIG. 2 drops sharply from 100 V / cm. Figure 3 illustrates the loss factor tans as a function of frequency.
La valeur du facteur de perte à 100 Hz est un peu meilleur pour le CCTO à un seul dopant (tanS=0,07) que le CCTO de l'invention aux deux dopants (tanS=0,12) mais reste avantageusement inférieur au CCTO pur (tanS=0,3). On constate que le facteur de perte reste meilleur pour le CCTO dopé de l'invention pour les fréquences inférieures à 600 Hz, c'est-à-dire que son facteur de perte est inférieur à celui du CCTO pur. Par conséquent, le matériau de l'invention conduit à un facteur de perte minimisé tel que l'on recherche pour les condensateurs, à savoir que les charges perdues dans le condensateur soient minimisées. Enfin, la figure 4, illustre la variation de capacité entre le CCTO dopé de l'invention et l'exemple comparatif du CCTO non dopé en fonction de la température. Les courbes du CCTO non dopé et CCTO dopé de l'invention sont très proches, la variation n'excédant pas les 10 % sur la gamme de températures -55°C à +125°C. Le CCTO dopé possède donc des performances tout à fait convenables pour les applications usuelles.The value of the loss factor at 100 Hz is a little better for the single-dopant CCTO (tanS = 0.07) than the CCTO of the invention at the two dopants (tanS = 0.12) but remains advantageously lower than the CCTO pure (tanS = 0.3). It is found that the loss factor remains better for the doped CCTO of the invention for frequencies below 600 Hz, that is to say that its loss factor is less than that of the pure CCTO. Therefore, the material of the invention leads to a minimized loss factor as sought for the capacitors, namely that the charges lost in the capacitor are minimized. Finally, FIG. 4 illustrates the capacitance variation between the doped CCTO of the invention and the comparative example of the undoped CCTO as a function of temperature. The curves of the undoped CCTO and doped CCTO of the invention are very close, the variation not exceeding 10% over the temperature range -55 ° C. to + 125 ° C. The doped CCTO thus has performance quite suitable for the usual applications.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1454170A FR3020808A1 (en) | 2014-05-09 | 2014-05-09 | DIELECTRIC CERAMIC MATERIAL COMPRISING CCTO |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1454170A FR3020808A1 (en) | 2014-05-09 | 2014-05-09 | DIELECTRIC CERAMIC MATERIAL COMPRISING CCTO |
Publications (1)
Publication Number | Publication Date |
---|---|
FR3020808A1 true FR3020808A1 (en) | 2015-11-13 |
Family
ID=51862373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1454170A Withdrawn FR3020808A1 (en) | 2014-05-09 | 2014-05-09 | DIELECTRIC CERAMIC MATERIAL COMPRISING CCTO |
Country Status (1)
Country | Link |
---|---|
FR (1) | FR3020808A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107794516A (en) * | 2017-10-27 | 2018-03-13 | 周燕红 | A kind of preparation method of high dielectric constant film |
CN107827452A (en) * | 2017-12-04 | 2018-03-23 | 太原理工大学 | A kind of method that calcium copper titanate ceramics loss is reduced using air hardening |
CN108298978A (en) * | 2018-03-29 | 2018-07-20 | 太原理工大学 | A kind of method that sol-gel method prepares CaCu 3 Ti 4 O/nickel ferrite based magnetic loaded compound magnetoelectric ceramic material |
CN113121221A (en) * | 2021-04-22 | 2021-07-16 | 郑州轻工业大学 | Preparation method of high-dielectric-property calcium copper titanate epitaxial film |
CN115159976A (en) * | 2022-07-07 | 2022-10-11 | 太原理工大学 | Method for improving energy storage density of copper strontium calcium titanate dielectric ceramic material |
CN115321976A (en) * | 2022-03-25 | 2022-11-11 | 西安工程大学 | CCTO ceramic material with giant dielectric constant and low dielectric loss and preparation method thereof |
CN115341201A (en) * | 2022-08-19 | 2022-11-15 | 郑州轻工业大学 | Chromium and cadmium doped calcium copper titanate film with high energy storage density and preparation method thereof |
CN116063067A (en) * | 2023-01-16 | 2023-05-05 | 南昌航空大学 | Multi-main-element giant dielectric ceramic material and preparation method and application thereof |
CN116063070A (en) * | 2023-02-24 | 2023-05-05 | 郑州轻工业大学 | High-dielectric-constant low-dielectric-loss copper sodium calcium cadmium titanate ceramic and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1975943A (en) * | 2006-12-20 | 2007-06-06 | 天津大学 | Doped copper titanium oxide capacitor ceramic dielectric and producing method thereof |
EP2392553A1 (en) * | 2010-05-12 | 2011-12-07 | General Electric Company | Dielectric materials for power transfer system |
-
2014
- 2014-05-09 FR FR1454170A patent/FR3020808A1/en not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1975943A (en) * | 2006-12-20 | 2007-06-06 | 天津大学 | Doped copper titanium oxide capacitor ceramic dielectric and producing method thereof |
EP2392553A1 (en) * | 2010-05-12 | 2011-12-07 | General Electric Company | Dielectric materials for power transfer system |
Non-Patent Citations (3)
Title |
---|
HAMED AHMADI ARDAKANI ET AL: "Dielectric properties of CaCuTiOimproved by chromium/lanthanum co-doping", CERAMICS INTERNATIONAL, ELSEVIER, AMSTERDAM, NL, vol. 38, no. 5, 1 February 2012 (2012-02-01), pages 4217 - 4220, XP028409767, ISSN: 0272-8842, [retrieved on 20120209], DOI: 10.1016/J.CERAMINT.2012.02.005 * |
LAXMAN SINGH ET AL: "Dielectric behavior of CaCu3Ti4O12 electro-ceramic doped with La, Mn and Ni synthesized by modified citrate-gel route", JOURNAL OF ADVANCED CERAMICS, vol. 2, no. 2, 1 June 2013 (2013-06-01), pages 119 - 127, XP055158975, ISSN: 2226-4108, DOI: 10.1007/s40145-013-0049-x * |
RAI A K ET AL: "Dielectric properties of lanthanum-doped CaCu3Ti4O12 synthesized by semi-wet route", JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, PERGAMON PRESS, LONDON, GB, vol. 70, no. 5, 1 May 2009 (2009-05-01), pages 834 - 839, XP026157912, ISSN: 0022-3697, [retrieved on 20090409], DOI: 10.1016/J.JPCS.2009.04.001 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107794516A (en) * | 2017-10-27 | 2018-03-13 | 周燕红 | A kind of preparation method of high dielectric constant film |
CN107827452A (en) * | 2017-12-04 | 2018-03-23 | 太原理工大学 | A kind of method that calcium copper titanate ceramics loss is reduced using air hardening |
CN107827452B (en) * | 2017-12-04 | 2020-12-11 | 太原理工大学 | Method for reducing loss of calcium copper titanate ceramic by air quenching |
CN108298978A (en) * | 2018-03-29 | 2018-07-20 | 太原理工大学 | A kind of method that sol-gel method prepares CaCu 3 Ti 4 O/nickel ferrite based magnetic loaded compound magnetoelectric ceramic material |
CN113121221A (en) * | 2021-04-22 | 2021-07-16 | 郑州轻工业大学 | Preparation method of high-dielectric-property calcium copper titanate epitaxial film |
CN115321976A (en) * | 2022-03-25 | 2022-11-11 | 西安工程大学 | CCTO ceramic material with giant dielectric constant and low dielectric loss and preparation method thereof |
CN115321976B (en) * | 2022-03-25 | 2023-09-01 | 西安工程大学 | CCTO ceramic material with giant dielectric constant and low dielectric loss and preparation method thereof |
CN115159976A (en) * | 2022-07-07 | 2022-10-11 | 太原理工大学 | Method for improving energy storage density of copper strontium calcium titanate dielectric ceramic material |
CN115341201A (en) * | 2022-08-19 | 2022-11-15 | 郑州轻工业大学 | Chromium and cadmium doped calcium copper titanate film with high energy storage density and preparation method thereof |
CN116063067A (en) * | 2023-01-16 | 2023-05-05 | 南昌航空大学 | Multi-main-element giant dielectric ceramic material and preparation method and application thereof |
CN116063067B (en) * | 2023-01-16 | 2023-10-27 | 南昌航空大学 | Multi-main-element giant dielectric ceramic material and preparation method and application thereof |
CN116063070A (en) * | 2023-02-24 | 2023-05-05 | 郑州轻工业大学 | High-dielectric-constant low-dielectric-loss copper sodium calcium cadmium titanate ceramic and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3020808A1 (en) | DIELECTRIC CERAMIC MATERIAL COMPRISING CCTO | |
JP3308560B2 (en) | Manufacturing method of single layer capacitor | |
EP1883937B1 (en) | Film of carbonaceous active material, electrode for energy storage systems, production method thereof and energy storage system comprising said electrode | |
EP2013155B1 (en) | Ceramics based on lanthanum-doped barium titanate, method of preparation and uses | |
CN103247437B (en) | Ceramic electronic components | |
TW200908043A (en) | Multi-layered ceramic electronic component | |
CN104282438A (en) | Ceramic electronic component and method for manufacturing the same | |
KR102449359B1 (en) | Dielectric powder and multilayered ceramic electronic components using the same | |
WO1999035488A1 (en) | Capacitive sensors for measuring humidity and method for making same | |
EP2800957A1 (en) | Capacitive temperature sensor comprising two capacitors as a voltage divider bridge | |
US10593475B2 (en) | Multi-layer ceramic capacitor | |
EP0266245A1 (en) | Polymer film type capacitor with a high-temperature stability | |
JP2008159965A (en) | Electronic component and manufacturing method thereof | |
CN114429863A (en) | Multilayer ceramic electronic component | |
EP0061389B1 (en) | Dielectric ceramic compositions, capacitors using the same and method of producing the compositions | |
WO1997005634A1 (en) | Capacitor having a polypropylene dielectric, and metallised film for making same | |
EP0067092B1 (en) | Dielectric ceramic composition based on barium titanate, lithium oxide and copper fluoride, capacitor using the composition and process for its manufacture | |
JPH10144561A (en) | Terminal electrode paste and multilayered ceramic capacitor | |
EP0067736B1 (en) | Dielectric ceramic composition based on barium titanate, lithium oxide and cadmium fluoride, capacitor using the composition and process for its manufacture | |
FR2697244A1 (en) | Non-reducible dielectric ceramic composition based on metal oxides. | |
EP3588595A1 (en) | Mim structure and its manufacturing process | |
JP2010199168A (en) | Method of manufacturing ceramic capacitor | |
RU2523000C1 (en) | Method of manufacturing ferroelectric capacitors | |
JP3610891B2 (en) | Multilayer ceramic electronic component and manufacturing method thereof | |
FR2801425A1 (en) | INTEGRATED CAPACITY WITH HYBRID DIELECTRIC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 2 |
|
PLSC | Publication of the preliminary search report |
Effective date: 20151113 |
|
PLFP | Fee payment |
Year of fee payment: 3 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
ST | Notification of lapse |
Effective date: 20210105 |