- 1 - [1] L'invention concerne les câbles multi-torons utilisables notamment pour le renforcement de pneumatiques, particulièrement de pneumatiques pour véhicules industriels lourds. [2] Un pneumatique à armature de carcasse radiale comprend une bande de roulement, deux bourrelets inextensibles, deux flancs reliant les bourrelets à la bande de roulement et une ceinture, ou armature de sommet, disposée circonférentiellement entre l'armature de carcasse et la bande de roulement. [3] Cette armature de sommet comprend plusieurs nappes de caoutchouc, éventuellement renforcées par des éléments de renfort tels que des câbles ou des monofilaments, de type métallique ou textile. [4] L'armature de sommet comprend généralement au moins deux nappes de sommet superposées, dites parfois nappes de travail ou nappes croisées, dont les éléments de renfort, en général métalliques, sont disposés pratiquement parallèles les uns aux autres à l'intérieur d'une nappe, mais croisés d'une nappe à l'autre, c'est-à- dire inclinés, symétriquement ou non, par rapport au plan circonférentiel médian, d'un angle qui est généralement compris entre 10° et 45°. Les nappes de travail comprennent généralement des éléments de renfort présentant un très faible allongement de façon à assurer leur fonction de guidage du pneumatique. [5] L'armature de sommet peut également comprendre diverses autres nappes ou couches de caoutchouc auxiliaires, de largeurs variables selon les cas, comportant ou non des éléments de renfort. On citera à titre d'exemple des nappes dites de protection chargées de protéger le reste de la ceinture des agressions externes, des perforations, ou encore des nappes dites de frettage comportant des éléments de renfort orientés sensiblement selon la direction circonférentielle, qu'elles soient radialement externes ou internes par rapport aux nappes de travail. Les nappes de protection comprennent généralement des éléments de renfort présentant un allongement élevé de façon à se déformer sous l'effet d'une contrainte exercée par un indenteur, par exemple un rocher. [6] L'armature de carcasse comprend, quant à elle, au moins une nappe de caoutchouc, dite de travail, renforcée par des éléments de renfort tels que des câbles métalliques. On connait de l'état de la technique un élément de renfort de nappe de travail comprenant un câble métallique multi-torons à deux couches de structure 189.23. Ce câble comprend une couche interne du câble constituée d'un toron interne et une couche externe du câble constituée de six torons externes enroulés en hélice autour de la couche interne du câble. [7] Chaque toron interne et externe comprend une couche interne du toron constituée de trois fils internes, une couche intermédiaire constituée de neuf fils et une 2015PAT00205 FR - 2 - couche externe du toron constituée de quinze fils externes. Chaque fil présente un diamètre égal à 0,23 mm. [008] Un pneumatique de véhicule industriel lourd, notamment de génie civil, est soumis à de nombreuses agressions. En effet, le roulage de ce type de pneumatique se fait habituellement sur un revêtement accidenté conduisant parfois à des perforations de la bande de roulement. Ces perforations permettent l'entrée d'agents corrosifs, par exemple l'air et l'eau, qui oxydent les éléments de renfort métalliques de l'armature de sommet et parfois de l'armature de carcasse ce qui réduit considérablement la durée de vie du pneumatique. [009] Concernant l'armature de carcasse, les inventeurs à l'origine de l'invention ont identifié que l'effet le plus néfaste des agents corrosifs n'était pas tant l'altération des propriétés mécaniques du câble, notamment sa force à rupture, que la perte d'adhésion entre les fils situés à la périphérie du câble (les fils externes des torons externes) et la gomme adjacente consécutive à la corrosion de l'interface d'adhésion par ces agents corrosifs. Lorsqu'elle se produit, cette perte d'adhésion conduit à une désolidarisation du câble de sa gomme adjacente. Une fois désolidarisé, le câble coulisse alors dans une gaine formée par la gomme adjacente et ne reprend plus les efforts s'exerçant sur le pneumatique. [10] Une solution pour augmenter la durée de vie du pneumatique est de lutter contre l'action des agents corrosifs au sein de chaque toron. On peut ainsi prévoir de recouvrir de gomme chaque couche interne et intermédiaire de chaque toron lors du procédé de fabrication du câble. Lors de ce procédé, la gomme déposée pénètre dans les capillaires présents entre chaque couche de chaque toron et empêche ainsi la propagation des agents corrosifs. De tels câbles, généralement appelés câbles gommés in situ, sont bien connus de l'état de la technique. Toutefois, le procédé de fabrication de ces câbles gommé in situ requiert une maitrise de nombreuses contraintes industrielles pour éviter notamment le débordement de la gomme à la périphérie de chaque toron. [11] Une autre solution pour augmenter la durée de vie du pneumatique est d'augmenter la force à rupture des câbles de l'état de la technique. Généralement, on augmente la force à rupture en augmentant le diamètre des fils constituant le câble et/ou le nombre de fils et/ou la résistance unitaire de chaque fil. Toutefois, augmenter davantage le diamètre des fils, par exemple au-delà de 0,50 mm, entraine nécessairement une baisse de la flexibilité du câble ce qui n'est pas souhaitable pour un câble utilisé dans l'armature de carcasse. Augmenter le nombre de fils entraine la plupart du temps une baisse de la pénétrabilité des torons par le caoutchouc. Augmenter la résistance unitaire de chaque fil nécessite des investissements 2015PAT00205 FR - 3 - importants dans les installations de fabrication des fils. Toutefois, augmenter la force à rupture ne permet pas non plus de compenser la perte d'adhésion entre chaque élément de renfort métallique et le mélange adjacent. [12] L'invention a pour but un câble présentant une force à rupture et une adhésion améliorées par rapport aux câbles de l'état de la technique tout en évitant les désavantages précités. [13] A cet effet, l'invention a pour objet un câble multi-torons à deux couches de torons, comprenant : - une couche interne du câble constituée d'un unique toron interne, - une couche externe du câble compacte et constituée de L>1 torons externes, chaque toron interne et externe comprenant : - une couche interne de toron interne et externe respectivement constituée de M et M' fil(s) interne(s), - une couche externe du toron interne et externe respectivement constituée de P et P' fils externes enroulée en hélice autour de chaque couche interne respectivement du toron interne et externe, dans lequel la distance interfils D3' des fils de la couche externe de chaque toron externe est supérieure ou égale à 25 pm. [14] Le câble selon l'invention présente une force à rupture et une adhésion améliorée par rapport aux câbles de l'état de la technique 189.23 tout en évitant les désavantages décrits précédemment. [15] Préalablement, il est nécessaire de rappeler que, dans le câble 189.23 de l'état de la technique, les torons externes sont jointifs et forment ainsi une voûte autour du toron interne conférant au câble une force à rupture relativement élevée. Rompre cette voûte, par exemple en augmentant le diamètre du toron interne par rapport à ceux des torons externes, entrainerait, sauf modification supplémentaire, une baisse de la force à rupture. En effet, en supprimant la voute autour du toron interne, les fils externes de chaque toron externe viendraient, lors de la traction du câble, exercer une force radiale dirigée vers l'intérieur du câble sur les fils externes du toron interne alors que la voûte permettait une répartition de cette force à la fois selon une composante longitudinale entre les torons externes et selon une composante radiale entre les torons externes et le toron interne. [16] Dans le câble selon l'invention, comme la couche externe du câble est compacte, les inventeurs à l'origine de l'invention ont maintenu la voûte, conférant ainsi au câble une force à rupture relativement élevée, voire supérieure aux câbles de l'état de la technique. [17] Par définition, une couche compacte est telle qu'il n'existe théoriquement pas 2015PAT00205 FR - 4 - d'espaces de passage de la gomme entre les torons de la couche. [18] En outre, contrairement aux câbles de l'état de la technique, les inventeurs à l'origine de l'invention ont découvert que les problèmes d'adhésion pouvaient être résolus en utilisant des torons externes hautement pénétrables par la gomme, chaque toron externe comprenant une couche externe présentant une distance interfils D3' relativement élevée. En effet, la gomme pénétrant relativement bien les torons externes entre les fils de la couche externe, cette dernière empêche l'action des agents corrosifs entre le mélange adjacent et cette couche externe. Ainsi, le câble selon l'invention coopère donc avec la gomme afin de reprendre les efforts s'exerçant sur le pneumatique et est donc plus résistant à la compression. [19] En outre, même si la couche externe du câble est compacte, la gomme parvient à pénétrer, au travers des torons externes, au contact du toron interne en raison de la distance interfils D3' relativement élevée. Ainsi, on limite la propagation des agents corrosifs le long du câble tout en maintenant la voûte créée par les torons externes et donc la force à rupture élevée du câble. [20] La distance interfils d'une couche est définie, sur une section du câble perpendiculaire à l'axe principal du câble, comme la plus petite distance séparant, en moyenne sur ladite couche, deux fils adjacents de ladite couche. Ainsi, des canaux permettent le passage de la gomme au travers de la couche externe afin de faire efficacement pénétrer la gomme dans chaque toron externe mais également au travers des torons externes pour atteindre le toron interne. [21] Préférentiellement, chaque fil du câble est métallique. L'invention est préférentiellement mise en oeuvre avec des fils en acier, plus préférentiellement en acier perlitique (ou ferrito-perlitique) au carbone désigné ci-après par "acier au carbone", ou encore en acier inoxydable (par définition, acier comportant au moins 11% de chrome et au moins 50% de fer). Mais il est bien entendu possible d'utiliser d'autres aciers ou d'autres alliages. [22] Lorsqu'un acier au carbone est utilisé, sa teneur en carbone (% en poids d'acier) est de préférence comprise entre 0,4% et 1,2%, notamment entre 0,5% et 1,1% ; ces teneurs représentent un bon compromis entre les propriétés mécaniques requises pour le pneumatique et la faisabilité des fils. Il est à noter qu'une teneur en carbone comprise entre 0,5% et 0,6% rend de tels aciers finalement moins coûteux car plus faciles à tréfiler. Un autre mode avantageux de réalisation de l'invention peut consister aussi, selon les applications visées, à utiliser des aciers à faible teneur en carbone, comprise par exemple entre 0,2% et 0,5%, en raison notamment d'un coût plus bas et d'une plus grande facilité de tréfilage. [23] Le métal ou l'acier utilisé, qu'il s'agisse en particulier d'un acier au carbone ou 2015PAT00205 FR - 5 - d'un acier inoxydable, peut être lui-même revêtu d'une couche métallique améliorant par exemple les propriétés de mise en oeuvre du câble métallique et/ou de ses éléments constitutifs, ou les propriétés d'usage du câble et/ou du pneumatique eux-mêmes, telles que les propriétés d'adhésion, de résistance à la corrosion ou encore de résistance au vieillissement. [24] Selon un mode de réalisation préférentiel, l'acier utilisé est recouvert d'une couche de laiton (alliage Zn-Cu) ou de zinc. On rappelle que lors du procédé de fabrication des fils, le revêtement de laiton ou de zinc facilite le tréfilage du fil, ainsi que le collage du fil avec la gomme. Mais les fils pourraient être recouverts d'une fine couche métallique autre que du laiton ou du zinc, ayant par exemple pour fonction d'améliorer la résistance à la corrosion de ces fils et/ou leur adhésion à la gomme, par exemple une fine couche de Co, Ni, Al, d'un alliage de deux ou plus des composés Cu, Zn, Al, Ni, Co, Sn. [25] L'homme du métier sait comment fabriquer des fils d'acier présentant de telles caractéristiques, en ajustant notamment la composition de l'acier et les taux d'écrouissage final de ces fils, en fonction de ses besoins propres particuliers, en utilisant par exemple des aciers au carbone micro-alliés contenant des éléments d'addition spécifiques tels que Cr, Ni, Co, V, ou divers autres éléments connus (voir par exemple Research Disclosure 34984 - "Micro-alloyed steel cord constructions for tyres" - mai 1993 ; Research Disclosure 34054 - "High tensile strength steel cord constructions for tyres " - août 1992). [26] De préférence, chaque toron est du type à couches tubulaires ou cylindriques. Par toron à couches tubulaires ou cylindriques, on entend ainsi des torons constitués d'une âme comprenant une couche interne, et éventuellement un noyau ou un coeur, et d'une ou plusieurs couches concentriques, ici les couches intermédiaire et externe, chacune de forme cylindrique ou tubulaire, disposées autour de cette âme, de telle manière que, au moins dans le toron au repos, l'épaisseur de chaque couche intermédiaire et externe est sensiblement égale au diamètre des fils qui la constituent; il en résulte que la section transversale du toron a un contour ou enveloppe sensiblement circulaire. [27] Ainsi, les torons à couches cylindriques ou tubulaires ne doivent en particulier pas être confondus avec des torons à couches dits "compacts", assemblages de fils enroulés au même pas et dans le même sens d'enroulement. Dans de tels torons compacts, la compacité est telle que pratiquement aucune couche distincte de fils n'est visible; il en résulte que la section transversale de tels torons a un contour qui n'est plus circulaire, mais polygonal. [28] Un toron à couches tubulaires ou cylindriques, également appelé toron non 2015PAT00205 FR - 6 - compact, est un toron dans lequel au moins deux couches de fils ont un pas ou un sens d'enroulement différent l'une de l'autre. [29] De préférence, les fils d'une même couche d'un toron prédéterminé (interne ou externe) présentent tous un diamètre sensiblement identique. En particulier, tous les fils d'un même toron présentent tous un diamètre sensiblement identique. Avantageusement, les torons externes sont sensiblement tous identiques et présentent notamment tous un diamètre sensiblement identique. Par « sensiblement identiques» ou « sensiblement égaux », on entend que les fils et les torons présentent respectivement des diamètres égaux aux tolérances industrielles près, c'est-à-dire que l'écart entre le diamètre du plus petit fil, respectivement du plus petit toron, et le plus grand fil, respectivement le plus grand toron, est inférieur ou égal à 10% par rapport à la valeur moyenne des diamètres des fils, respectivement des torons. [30] Avantageusement, la distance interfils D'3 est supérieure ou égale à 30 pm, de préférence à 35 pm et plus préférentiellement à 40 pm. En augmentant la distance interfils D3', on favorise davantage, d'une part, le passage de la gomme au travers de la couche externe et donc l'adhésion avec le mélange adjacent et, d'autre part, la pénétrabilité du câble par la gomme. [31] De préférence, le diamètre Dl de chaque toron interne est sensiblement égal au diamètre DE de chaque toron externe. [32] Dans un mode de réalisation, L=6. [33] Dans un mode de réalisation, chaque toron interne et externe comprend une couche intermédiaire du toron interne et externe respectivement constituée de N et N' fils intermédiaires enroulée en hélice autour de chaque couche interne respectivement du toron interne et externe, la couche externe du toron interne et externe étant enroulée en hélice autour de chaque couche intermédiaire respectivement du toron interne et externe. [34] Avantageusement, M=M', N=N' et P=P'. Ainsi, le câble est industriellement plus facile à fabriquer. [035] Avantageusement, la distance interfils D2' des fils de la couche intermédiaire de chaque toron externe est supérieure ou égale à 25 pm, de préférence à 30 pm et plus préférentiellement à 35 pm. En augmentant la distance interfils D2', on favorise le passage de la gomme au travers de la couche intermédiaire. On freine voire on empêche ainsi la propagation des agents corrosifs depuis la couche interne du toron vers la couche externe du toron et donc on préserve davantage l'adhésion avec le mélange adjacent. [036] Dans un mode de réalisation préférentiel, D3'>D2'. L'adhésion entre le câble et 2015PAT00205 FR - 7 - le mélange adjacent se faisant majoritairement entre le mélange adjacent et la couche externe de chaque toron, on maximise l'adhésion en favorisant le passage de la gomme entre les fils de la couche externe par rapport à son passage entre le fils de la couche intermédiaire. [037] Dans un mode de réalisation avantageux, le rapport D2'/D3' vérifie 0,51D2'/D3S1,5, de préférence 0,71D2'/D3S1,3, plus préférentiellement 0,81D2'/D3S1,2. Les canaux de passage de la gomme comprennent une ouverture externe permettant à la gomme de pénétrer depuis l'extérieur du câble vers l'intérieur du câble et une ouverture interne permettant à la gomme de déboucher au coeur du câble, par exemple au contact de la couche interne. Afin d'assurer une pénétration maximale de la gomme, les ouvertures externe et interne présentent de préférence des dimensions relativement proches. Ainsi, on optimise la pénétration de la gomme en évitant qu'une des ouvertures externe et interne de chaque canal de passage ne limite le flux de gomme. [038] Avantageusement, chaque distance inter-fils D2', D3' est inférieure ou égale à 100 pm, de préférence à 60 pm. [39] Optionnellement, la couche intermédiaire de chaque toron externe est non compacte et insaturée. [40] Optionnellement, la couche externe de chaque toron externe est non compacte et insaturée. [41] Par couche non compacte, on entend que chaque fil de la couche est distant des fils de la couche qui lui sont adjacents. Ainsi, chaque fil de la couche n'est, dans le cas d'une répartition homogène des fils de la couche, pas au contact des fils de la couche qui lui sont adjacents. [042] Par définition, une couche insaturée de fils est telle qu'il existe suffisamment de place dans cette couche pour y ajouter au moins un (X+1)ième fil du même diamètre que les X fils de la couche, plusieurs fils pouvant alors être au contact les uns des autres. [043] De préférence, N' et P' sont tels que N'+P'>22. [044] Ainsi, on maximise la force à rupture du câble en utilisant à un nombre important de fils sur les couches externes et intermédiaires pour reprendre les pressions. En effet, lors de la traction du câble les fils externes de chaque toron externe viennent exercer une force radiale dirigée vers l'intérieur du câble sur les fils externes du toron interne. En utilisant un nombre suffisant de fils sur les couches externes de chaque toron interne et externe, on s'assure que la force radiale est suffisamment répartie de façon à réduire la pression s'exerçant sur chaque fil unitaire. Toutefois, la présence d'un nombre important de fils n'empêche pas la pénétrabilité 2015PAT00205 FR - 8 - des couches externes des torons externes qui garantit une bonne adhésion avec le mélange adjacent. [45] De préférence, M'=2, 3 ou 4, N'=7, 8, 9 ou 10 et P'=13, 14, 15 ou 16. [46] Dans un mode de réalisation, P'=14 ou 15. Ainsi, chaque toron externe est, de préférence, de structure 2+7+14, 2+7+15, 2+8+14, 2+8+15, 2+9+14, 2+9+15, 2+10+14, 2+10+15, 3+7+14, 3+7+15, 3+8+14, 3+8+15, 3+9+14, 3+9+15, 3+10+14, 3+10+15, 4+7+14, 4+7+15, 4+8+14, 4+8+15, 4+9+14, 4+9+15, 4+10+14, 4+10+15. [47] Dans un mode de réalisation, M'=2, N'=7, 8, 9 ou 10 et P'=13, 14, 15 ou 16, de préférence M'=2, N'=7, 8 ou 9 et P'=14, et plus préférentiellement M'=2, N'=9 et P'=14. Ainsi, chaque toron externe présente, de préférence, une structure 2+7+14, 2+8+14 et 2+9+14 et plus préférentiellement une structure 2+9+14. [48] Dans un autre mode de réalisation, M'=3, N'=7, 8, 9 ou 10 et P'=13, 14, 15 ou 16, de préférence M'=3, N'=8 ou 9 et P'=14 ou 15, et plus préférentiellement M'=3, N'=9 et P'=14. Ainsi, chaque toron externe présente, de préférence, une structure 3+8+14, 3+9+14, 3+8+15, 3+9+15 et plus préférentiellement une structure 3+9+14. [49] Dans un autre mode de réalisation, M'=4, N'=7, 8, 9 ou 10 et P'=13, 14, 15 ou 16, de préférence M'=4, N'=7, 8, 9 ou 10 et P'=14 ou 15, et plus préférentiellement M'=4, N'=9 et P'=14. Ainsi, chaque toron externe présente, de préférence, une structure 4+7+14, 4+7+15, 4+8+14, 4+8+15, 4+9+14, 4+9+15, 4+10+14, 4+10+15 et plus préférentiellement une structure 4+9+14. [50] Avantageusement, chaque diamètre dl', d2', d3' de chaque fil respectivement de chaque couche interne, intermédiaire et externe de chaque toron externe vérifie 0,15 dl', d2', d3' 0,5 mm, de préférence 0,18 dl', d2', d3' 0,30 mm, plus préférentiellement 0,20 dl', d2', d3' 0,28 mm. Ces diamètres permettent d'obtenir un compromis optimisé de résistance et d'endurance à la compression lorsque le câble est notamment utilisé dans une armature de carcasse. [51] De préférence, chaque diamètre d2', d3' de chaque fil respectivement de chaque couche intermédiaire et externe de chaque toron externe vérifie d2'=d3'. [52] De préférence, chaque diamètre dl', d2' de chaque fil respectivement de chaque couche interne et intermédiaire de chaque toron externe vérifie d1'=d2'. [53] En variante, on pourra prévoir que d1'>d2'. Ainsi, cela permet de renforcer la couche intermédiaire par l'ajout d'un fil par rapport au cas où d1'=d2' et donc d'augmenter la force à rupture du câble. Cela permet également d'augmenter davantage l'insaturation de la couche externe par rapport au cas où d1'=d2' et donc d'améliorer encore davantage l'adhésion avec le mélange adjacent. [54] Avantageusement, chaque diamètre dl, d2, d3 de chaque fil respectivement de chaque couche interne, intermédiaire et externe de chaque toron interne vérifie 2015PAT00205 FR - 9 - 0,15 dl, d2, d3 0,5 mm, de préférence 0,18 dl, d2, d3 0,30 mm, plus préférentiellement 0,20 dl, d2, d3 0,28 mm. Ces diamètres permettent d'obtenir un compromis optimisé de résistance et d'endurance lorsque le câble est notamment utilisé dans une armature de carcasse. [055] De préférence, chaque diamètre d2, d3 de chaque fil respectivement de chaque couche intermédiaire et externe de chaque toron interne vérifie d2=d3. [56] De préférence, chaque diamètre dl, d2 de chaque fil respectivement de chaque couche interne et intermédiaire de chaque toron interne vérifie dl =d2. [57] En variante, on pourra prévoir que dl >d2. Ainsi, cela permet de renforcer la couche intermédiaire par l'ajout d'un fil par rapport au cas où dl=d2 et donc d'augmenter la force à rupture du câble. Cela permet également d'augmenter davantage l'insaturation de la couche externe par rapport au cas où dl=d2 et donc d'améliorer encore davantage l'adhésion avec le mélange adjacent. [58] De préférence, N et P sont tels que N+P>22. [059] De préférence, M=2, 3 ou 4, N=7, 8, 9 ou 10 et P=13, 14, 15 ou 16. [060] Dans un mode de réalisation, P=14 ou 15. Ainsi, chaque toron interne est, de préférence, de structure 2+7+14, 2+7+15, 2+8+14, 2+8+15, 2+9+14, 2+9+15, 2+10+14, 2+10+15, 3+7+14, 3+7+15, 3+8+14, 3+8+15, 3+9+14, 3+9+15, 3+10+14, 3+10+15, 4+7+14, 4+7+15, 4+8+14, 4+8+15, 4+9+14, 4+9+15, 4+10+14, 4+10+15. [061] Dans un mode de réalisation, M=2, N=7, 8, 9 ou 10 et P=13, 14, 15 ou 16, de préférence M=2, N=7, 8 ou 9 et P=14, et plus préférentiellement M=2, N=9 et P=14. Ainsi, chaque toron interne présente, de préférence, une structure 2+7+14, 2+8+14 et 2+9+14 et plus préférentiellement une structure 2+9+14. [62] Dans un autre mode de réalisation, M=3, N=7, 8, 9 ou 10 et P=13, 14, 15 ou 16, de préférence M=3, N=8 ou 9 et P=14 ou 15. Ainsi, chaque toron interne présente, de préférence, une structure 3+8+14, 3+9+14, 3+8+15, 3+9+15 et plus préférentiellement une structure 3+9+14. [63] Dans un autre mode de réalisation, M=4, N=7, 8, 9 ou 10 et P=13, 14, 15 ou 16, de préférence M=4, N=7, 8, 9 ou 10 et P=14 ou 15, et plus préférentiellement M=4, N=9 et P=14. Ainsi, chaque toron interne présente, de préférence, une structure 4+7+14, 4+7+15, 4+8+14, 4+8+15, 4+9+14, 4+9+15, 4+10+14, 4+10+15 et plus préférentiellement une structure 4+9+14. [64] Avantageusement, la distance interfils D2 des fils de la couche intermédiaire de chaque toron interne est supérieure ou égale à 25 pm, de préférence à 30 pm, plus préférentiellement à 35 pm. [65] Avantageusement, la distance interfils D3 des fils de la couche externe de chaque toron interne est supérieure ou égale à 25 pm, de préférence à 30 pm, plus 2015PAT00205 FR -10- préférentiellement à 35 pm et encore plus préférentiellement à 40 pm. [066] Ainsi, la gomme peut pénétrer à l'intérieur de chaque toron interne pour ralentir, voire empêcher la propagation des agents corrosifs au sein de chaque toron interne. [067] Avantageusement, chaque distance inter-fils D2, D3 est inférieure ou égale à 100 pm, de préférence à 60 pm. [68] Optionnellement, la couche intermédiaire de chaque toron interne est non compacte et insaturée. [69] Optionnellement, la couche externe de chaque toron interne est non compacte et insaturée. [70] Dans un mode de réalisation préféré, les fils, notamment les fils de la couche interne de chaque toron interne et/ou externe, sont non-préformés. En évitant la préformation, on évite les étapes industrielles nécessaires à la préformation des fils. On réduit la complexité du procédé tout en conservant un câble présentant une force à rupture élevée et une excellente adhésion avec le mélange adjacent. [71] Pour ce qui suit, on rappelle que, de manière connue, le pas représente la longueur, mesurée parallèlement à l'axe du câble, au bout de laquelle un fil ayant ce pas effectue un tour complet autour dudit axe du câble. [72] Selon des caractéristiques optionnelles indépendantes les unes des autres relatives au pas de chaque fil de chaque couche : - Les fils de la couche interne de chaque toron interne sont enroulés au pas pl qui vérifie 4 pl 11 mm, de préférence 5 pl 9 mm. - Les fils de la couche interne de chaque toron externe sont enroulés au pas pl' qui vérifie 4 pl' 11 mm, de préférence 5 pl' 9 mm. - Les fils de la couche intermédiaire de chaque toron interne sont enroulés au pas p2 qui vérifie 6 p2 20 mm, de préférence 8 p2 18 mm. - Les fils de la couche intermédiaire de chaque toron externe sont enroulés au pas p2' qui vérifie 6 p2' 20 mm, de préférence 8 p2' 18 mm. - Les fils de la couche externe de chaque toron interne sont enroulés au pas p3 qui vérifie 10 p3 30 mm, de préférence 14 p3 22 mm. - Les fils de la couche externe de chaque toron externe sont enroulés au pas p3' qui vérifie 10 p3' 30 mm, de préférence 14 p3' 22 mm. [073] Selon une autre caractéristique optionnelle, les torons externes sont enroulés au pas P qui vérifie 30 P 80 mm, de préférence 40 P 70 mm. [074] De préférence, le câble comprend une couche de frettage comprenant un fil de frette enroulé autour de la couche externe du câble. En variante, le câble est dépourvu de couche de frettage. 2015PAT00205 FR [075] Dans le cas où l'on souhaite conférer au câble, en plus des propriétés d'auto-frettage décrites ci-dessus, une résistance à la compression encore améliorée, on ajoute une couche de frettage qui soulage la couche externe du câble vis-à-vis de la compression et donc améliore l'endurance du câble. [076] Une telle couche de frettage est constituée par exemple d'un fil unique, métallique ou non, revêtu ou non d'une couche métallique, par exemple de laiton. On pourra avantageusement choisir un fil de frette en acier inoxydable afin de réduire l'usure par fretting des fils de la couche externe des torons externes au contact de la frette en acier inoxydable, le fil en acier inoxydable pouvant être éventuellement remplacé, de manière équivalente, par un fil composite dont seule la peau est en acier inoxydable et l'âme en acier au carbone. [77] De préférence, le sens d'enroulement du fil de la couche de frettage est différent du sens d'enroulement des torons externes. [78] Dans un mode de réalisation, les fils externes de la couche externe de chaque toron externe sont enroulés dans un sens d'enroulement identique à celui des fils externes de la couche externe de chaque toron interne. [79] De façon optionnelle, les torons externes sont enroulés autour du toron interne dans un sens d'enroulement opposé à celui des fils externes de la couche externe de chaque toron externe. [80] Un autre objet de l'invention est un pneumatique comprenant au moins un câble tel que défini ci-dessus. [81] De préférence, le pneumatique comporte une armature de carcasse ancrée dans deux bourrelets, ladite armature de carcasse comportant au moins élément de renfort, dit de carcasse, comprenant un câble tel que défini ci-dessus. [82] Avantageusement, l'armature de carcasse comprend au moins une nappe de carcasse comprenant des éléments de renfort, dit de carcasse, les éléments de renfort de carcasse faisant un angle supérieur ou égal à 65°, de préférence à 80° par rapport à la direction circonférentielle du pneumatique. [083] Le câble est tout particulièrement destiné à des véhicules industriels choisis parmi des véhicules lourds tels que "Poids lourd" - i.e., métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route -, engins agricoles ou de génie civil, autres véhicules de transport ou de manutention. [084] Dans un mode de réalisation préféré, le pneumatique présente une dimension de type W R U avec lik35, de préférence Uk49 et plus préférentiellement lik57. Ainsi, de manière préférentielle, le pneumatique est pour véhicule de type génie civil. Ainsi, le pneumatique présente une dimension dans laquelle le diamètre, en pouces, du 2015PAT00205 FR -12- siège de la jante sur laquelle le pneumatique est destiné à être monté est supérieur ou égal à 35 pouces, de préférence à 49 pouces et plus préférentiellement à 57 pouces. [085] Dans un mode de réalisation, le pneumatique comprend une armature de sommet agencée radialement à l'intérieur de la bande de roulement et radialement à l'extérieur de l'armature de carcasse, l'armature de sommet comprenant : - une armature de protection, et - une armature de travail agencée radialement à l'intérieur de l'armature de protection. [086] Dans un mode de réalisation, l'armature de protection est intercalée radialement entre la bande de roulement et l'armature de travail. [087] Avantageusement, l'armature de protection comprenant au moins une nappe de protection comprenant des éléments de renfort, dits de protection, le ou les éléments de renfort de protection faisant un angle au moins égal à 10°, de préférence allant de 10° à 35° et plus préférentiellement de 15° à 30° avec la direction circonférentielle du pneumatique. [088] Dans un mode de réalisation, l'armature de travail comprenant au moins une nappe de travail comprenant des éléments de renfort, dits de travail, les éléments de renfort de travail faisant un angle au plus égal à 60°, de préférence allant de 15° à 40° avec la direction circonférentielle du pneumatique. [89] Avantageusement, l'armature de sommet comprend une armature de frettage comprenant au moins une nappe de frettage. [90] Dans un mode de réalisation, chaque nappe de frettage comprenant des éléments de renfort, dits de frettage, les éléments de renfort de frettage faisant un angle au plus égal à 10°, de préférence allant de 5° à 10° avec la direction circonférentielle du pneumatique. [091] De préférence, l'armature de frettage est agencée radialement à l'intérieur de l'armature de travail et radialement à l'extérieur de l'armature de carcasse. [092] L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins dans lesquels : la figure 1 est une vue en coupe perpendiculaire à la direction circonférentielle d'un pneumatique selon l'invention ; la figure 2 est une vue de détails de la zone I de la figure 1 ; la figure 3 est une vue schématique en coupe perpendiculaire à l'axe du câble (supposé rectiligne et au repos) d'un câble selon l'invention ; la figure 4 est une vue schématique analogue à celle de la figure 3 du toron 2015PAT00205 FR -13- interne du câble selon l'invention ; la figure 5 est une vue schématique analogue à celle de la figure 3 d'un toron externe du câble selon l'invention ; la figure 6 est une photographie du câble selon l'invention de la figure 3 ; et la figure 7 est une photographie analogue à celle de la figure 6 du câble de l'état de la technique 189.23. [93] EXEMPLE DE PNEUMATIQUE SELON L'INVENTION [94] Tout intervalle de valeurs désigné par l'expression « de a à b » signifie le domaine de valeurs allant de la borne « a » jusqu'à la borne « b » c'est-à-dire incluant les bornes strictes « a » et « b ». [95] Dans les figures, on a représenté un repère X, Y, Z correspondant aux orientations habituelles respectivement axiale (X), radiale (Y) et circonférentielle (Z) d'un pneumatique. On a également représenté un plan circonférentiel médian M (plan perpendiculaire à l'axe de rotation du pneumatique qui est situé à mi-distance des deux bourrelets et passant par le milieu de l'armature de sommet). [96] On a représenté sur les figures 1 et 2 un pneumatique selon l'invention et désigné par la référence générale 10. [97] Le pneumatique 10 est pour véhicule lourd de type génie civil, par exemple de type « dumper ». Le pneumatique 10 présente une dimension de type W R U, U avec Lik35, de préférence Uk49 et plus préférentiellement lik57. Par exemple, la dimension du pneumatique 10 pourrait être 40.00 R 57 ou encore 59/80 R 63. [98] De façon connue pour l'homme du métier, W, désigne : - lorsqu'il est sous la forme H/B, le rapport nominal d'aspect H/B tel que défini par l'ETRTO (H étant la hauteur de la section du pneumatique et B étant la largeur de la section du pneumatique) - lorsqu'il est sous la forme H.00 ou B.00, dans lequel H=B, H et B étant tel que défini ci-dessus. U représente le diamètre, en pouces, du siège de la jante sur laquelle le pneumatique est destiné à être monté, R désigne le type d'armature de carcasse du pneumatique, ici radiale. [099] Le pneumatique 10 comporte un sommet 12 renforcé par une armature de sommet 14, deux flancs 16 et deux bourrelets 18, chacun de ces bourrelets 18 étant renforcé avec une tringle 20. Le sommet 12 est surmonté radialement d'une bande de roulement 22 réunie aux bourrelets 18 par les flancs 16. Une armature de carcasse 24 est ancrée dans les deux bourrelets 18, et est ici enroulée autour des deux tringles 20 2015PAT00205 FR -14- et comprend un retournement 26 disposé vers l'extérieur du pneumatique 20 qui est ici représenté monté sur une jante 28. L'armature de carcasse 24 est surmontée radialement par l'armature de sommet 14. [0100] L'armature de carcasse 24 comprend au moins une nappe de carcasse 30 comprenant des éléments de renfort, dit de carcasse. Chaque élément de renfort de carcasse comprend un câble 31 selon l'invention. Les éléments de renfort de carcasse sont agencés sensiblement parallèlement les uns aux autres et s'étendent d'un bourrelet 18 à l'autre de manière à former un angle supérieur ou égal à 65°, de préférence à 80° et plus préférentiellement compris entre 80° et 90° avec la direction circonférentielle Z du pneumatique 10. [0101] Le pneumatique 10 comprend également une nappe d'étanchéité 32 constituée d'un élastomère (communément appelée gomme intérieure) qui définit la face radialement interne 34 du pneumatique 10 et qui est destinée à protéger la nappe de carcasse 30 de la diffusion d'air provenant de l'espace intérieur au pneumatique 10. [0102] L'armature de sommet 14 comprend, radialement de l'extérieur vers l'intérieur du pneumatique 10, une armature de protection 36 agencée radialement à l'intérieur de la bande de roulement 22, une armature de travail 38 agencée radialement à l'intérieur de l'armature de protection 36 et une armature additionnelle 40 agencée radialement à l'intérieur de l'armature de travail 38. L'armature de protection 36 est ainsi radialement intercalée entre la bande de roulement 22 et l'armature de travail 38. [0103] L'armature de protection 36 comprend des première et deuxième nappes de protection 42, 44 comprenant des éléments de renfort métalliques de protection, la première nappe 42 étant agencée radialement à l'intérieur de la deuxième nappe 44.The invention relates to multi-strand cables that can be used in particular for reinforcing tires, particularly tires for heavy industrial vehicles. [2] A radial carcass reinforcement tire comprises a tread, two inextensible beads, two sidewalls connecting the beads to the tread, and a belt, or crown reinforcement, circumferentially disposed between the carcass reinforcement and the tread. rolling. [3] This crown reinforcement comprises several layers of rubber, possibly reinforced by reinforcing elements such as cables or monofilaments, metal or textile type. [4] The crown reinforcement generally comprises at least two superimposed vertex plies, sometimes referred to as working plies or crossed plies, the reinforcing elements of which, generally of metal, are arranged substantially parallel to one another within a web, but crossed from one web to another, that is to say inclined, symmetrically or otherwise, with respect to the median circumferential plane, an angle which is generally between 10 ° and 45 °. The working plies generally comprise reinforcement elements having a very low elongation so as to ensure their function of guiding the tire. [5] The crown reinforcement may also comprise various other layers or layers of auxiliary rubber, of varying widths depending on the case, with or without reinforcing elements. By way of example, mention may be made of so-called protection plies responsible for protecting the rest of the belt from external aggressions, perforations, or so-called shrinking plies comprising reinforcement elements oriented substantially in the circumferential direction, whether they are radially external or internal with respect to the working plies. The protective plies generally comprise reinforcing elements having a high elongation so as to be deformed under the effect of a stress exerted by an indenter, for example a rock. [6] The carcass reinforcement comprises, for its part, at least one so-called working rubber ply, reinforced by reinforcement elements such as wire ropes. A working sheet reinforcement element comprising a multi-strand wire rope with two structural layers 189 is known from the state of the art. 23. This cable comprises an inner layer of the cable consisting of an inner strand and an outer layer of the cable consisting of six outer strands wound helically around the inner layer of the cable. [7] Each inner and outer strand has an inner strand layer consisting of three internal strands, an intermediate layer of nine strands and an outer strand layer of fifteen outer strands. Each wire has a diameter equal to 0.23 mm. [008] A tire of heavy industrial vehicle, including civil engineering, is subject to many attacks. Indeed, the rolling of this type of tire is usually done on a rough surface sometimes leading to perforations of the tread. These perforations allow the entry of corrosive agents, for example air and water, which oxidize the metal reinforcing elements of the crown reinforcement and sometimes of the carcass reinforcement, which considerably reduces the service life. of the tire. [009] Concerning the carcass reinforcement, the inventors at the origin of the invention have identified that the most detrimental effect of the corrosive agents was not so much the alteration of the mechanical properties of the cable, in particular its force at rupture, that the loss of adhesion between the wires located at the periphery of the cable (the outer wires of the outer strands) and the adjacent rubber subsequent to the corrosion of the adhesion interface by these corrosive agents. When it occurs, this loss of adhesion leads to a separation of the cable of its adjacent eraser. Once disconnected, the cable then slides in a sheath formed by the adjacent rubber and no longer takes the forces exerted on the tire. [10] A solution to increase the life of the tire is to fight against the action of corrosive agents within each strand. It is thus possible to cover each inner and intermediate layer of each strand with gum during the cable manufacturing process. During this process, the deposited gum penetrates the capillaries present between each layer of each strand and thus prevents the propagation of corrosive agents. Such cables, generally called cables gummed in situ, are well known in the state of the art. However, the manufacturing process of these cables gummed in situ requires a mastery of many industrial constraints to avoid including the overflow of the eraser at the periphery of each strand. [11] Another solution to increase the life of the tire is to increase the breaking strength of the cables of the state of the art. Generally, the breaking force is increased by increasing the diameter of the wires constituting the cable and / or the number of wires and / or the unit resistance of each wire. However, further increasing the diameter of the wires, for example beyond 0.50 mm, necessarily causes a decrease in the flexibility of the cable which is not desirable for a cable used in the carcass reinforcement. Increasing the number of wires usually leads to a decrease in the penetrability of the strands by the rubber. Increasing the unit resistance of each wire requires significant investments in the wire manufacturing facilities. However, increasing the breaking force also does not compensate for the loss of adhesion between each metallic reinforcing element and the adjacent mixture. [12] The object of the invention is to provide a cable having improved breaking force and adhesion with respect to prior art cables while avoiding the aforementioned disadvantages. [13] For this purpose, the subject of the invention is a multi-strand cable having two strand layers, comprising: - an inner layer of the cable consisting of a single inner strand, - an outer layer of the compact cable and consisting of L> 1 outer strands, each inner and outer strand comprising: - an inner and outer strand inner layer respectively consisting of M and M 'internal thread (s), - an outer layer of the inner and outer strand respectively consisting of P and P 'outer wires spirally wound around each inner layer respectively of the inner and outer strand, wherein the interfering distance D3' of the outer layer of each outer strand wires is greater than or equal to 25 pm. [14] The cable according to the invention has a breaking force and an improved adhesion compared to cables of the state of the art 189. 23 while avoiding the disadvantages described above. [15] Beforehand, it is necessary to recall that in cable 189. 23 of the state of the art, the outer strands are contiguous and thus form a vault around the inner strand giving the cable a relatively high breaking force. Breaking this vault, for example by increasing the diameter of the inner strand relative to those of the outer strands, would result, unless further modification, in a drop in the breaking force. Indeed, by removing the vault around the inner strand, the outer son of each outer strand would, during the pulling of the cable, exert a radial force directed towards the inside of the cable on the outer son of the inner strand while the arch allowed a distribution of this force both in a longitudinal component between the outer strands and in a radial component between the outer strands and the inner strand. [16] In the cable according to the invention, as the outer layer of the cable is compact, the inventors at the origin of the invention have maintained the vault, thus giving the cable a relatively high breaking strength, or even greater than the cables of the state of the art. [17] By definition, a compact layer is such that there is theoretically no space for the gum to pass between the strands of the layer. [18] In addition, unlike the cables of the state of the art, the inventors at the origin of the invention have discovered that adhesion problems can be solved by using external strands highly penetrable by the eraser, each outer strand comprising an outer layer having a relatively high interfering distance D3 '. Indeed, the gum penetrating the outer strands relatively well between the son of the outer layer, the latter prevents the action of corrosive agents between the adjacent mixture and this outer layer. Thus, the cable according to the invention thus cooperates with the rubber to take up the forces exerted on the tire and is therefore more resistant to compression. [19] In addition, even if the outer layer of the cable is compact, the rubber manages to penetrate, through the outer strands, into contact with the inner strand because of the distance interfers D3 'relatively high. Thus, it limits the propagation of corrosive agents along the cable while maintaining the vault created by the outer strands and thus the high breaking force of the cable. [20] The interleaf distance of a layer is defined, on a section of the cable perpendicular to the main axis of the cable, as the smallest distance separating, on average on said layer, two adjacent wires of said layer. Thus, channels allow the passage of the gum through the outer layer to effectively penetrate the eraser in each outer strand but also through the outer strands to reach the inner strand. [21] Preferably, each wire of the cable is metallic. The invention is preferably implemented with steel wires, more preferably carbonaceous pearlitic (or ferritic-pearlitic) steel, hereinafter referred to as "carbon steel", or else stainless steel (by definition, steel comprising at least one minus 11% chromium and at least 50% iron). But it is of course possible to use other steels or other alloys. [22] When carbon steel is used, its carbon content (% by weight of steel) is preferably between 0.4% and 1.2%, especially between 0.5% and 1.1% ; these levels represent a good compromise between the mechanical properties required for the tire and the feasibility of the wires. It should be noted that a carbon content of between 0.5% and 0.6% makes such steels ultimately less expensive because easier to draw. Another advantageous embodiment of the invention may also consist, depending on the applications concerned, of using steels with a low carbon content, for example between 0.2% and 0.5%, in particular because of a cost lower and easier to draw. [23] The metal or steel used, whether in particular carbon steel or stainless steel, may itself be coated with a metal-improving layer. example the properties of implementation of the wire rope and / or its constituent elements, or the properties of use of the cable and / or the tire themselves, such as adhesion properties, corrosion resistance or resistance to aging. [24] According to a preferred embodiment, the steel used is covered with a layer of brass (Zn-Cu alloy) or zinc. It is recalled that during the manufacturing process of the son, the coating of brass or zinc facilitates the drawing of the wire, as well as the bonding of the wire with the eraser. But the son could be covered with a thin metal layer other than brass or zinc, having for example the function of improving the corrosion resistance of these son and / or their adhesion to the gum, for example a thin layer Co, Ni, Al, an alloy of two or more of Cu, Zn, Al, Ni, Co, Sn. [25] One skilled in the art knows how to manufacture steel son having such characteristics, in particular by adjusting the composition of the steel and the final work hardening rates of these son, according to his specific needs, in particular. for example using micro-alloyed carbon steels containing specific addition elements such as Cr, Ni, Co, V, or various other known elements (see for example Research Disclosure 34984 - "Micro-alloyed steel cord constructions for tires" - May 1993, Research Disclosure 34054 - "High tensile strength steel cord constructions for tires" - August 1992). [26] Preferably, each strand is of the tubular or cylindrical layer type. By tubular or cylindrical layer strand is thus meant strands consisting of a core comprising an inner layer, and optionally a core or a core, and one or more concentric layers, here the intermediate and outer layers, each of form cylindrical or tubular, arranged around this core, such that, at least in the strand at rest, the thickness of each intermediate and outer layer is substantially equal to the diameter of the son constituting it; As a result, the cross section of the strand has a substantially circular outline or envelope. [27] Thus, the strands with cylindrical or tubular layers should not in particular be confused with so-called "compact" strands, son assemblies wound at the same pitch and in the same direction of winding. In such compact strands, the compactness is such that virtually no distinct layer of wires is visible; As a result, the cross-section of such strands has a contour that is no longer circular, but polygonal. [28] A tubular or cylindrical layer strand, also called a compact strand, is a strand in which at least two layers of strands have a different pitch or winding direction from each other . [29] Preferably, the son of the same layer of a predetermined strand (internal or external) all have a substantially identical diameter. In particular, all the son of the same strand all have a substantially identical diameter. Advantageously, the outer strands are substantially all identical and in particular all have a substantially identical diameter. "Substantially identical" or "substantially equal" means that the yarns and strands respectively have diameters equal to the close industrial tolerances, that is to say that the difference between the diameter of the smallest yarn, respectively the smaller strand, and the largest wire, respectively the largest strand, is less than or equal to 10% compared to the average value of the diameters of the strands or strands respectively. [30] Advantageously, the interfilential distance D'3 is greater than or equal to 30 μm, preferably 35 μm and more preferably 40 μm. By increasing the interfering distance D3 ', the passage of the gum through the outer layer and thus the adhesion with the adjacent mixture and, on the other hand, the penetrability of the cable by the rubber. [31] Preferably, the diameter D1 of each inner strand is substantially equal to the diameter DE of each outer strand. [32] In one embodiment, L = 6. [33] In one embodiment, each inner and outer strand comprises an intermediate layer of the inner and outer strand respectively consisting of N and N 'intermediate threads wound helically around each inner layer respectively of the inner and outer strand, the outer layer inner and outer strand being wound helically around each intermediate layer respectively of the inner and outer strand. [34] Advantageously, M = M ', N = N' and P = P '. Thus, the cable is industrially easier to manufacture. [035] Advantageously, the interfering distance D2 'of the wires of the intermediate layer of each outer strand is greater than or equal to 25 μm, preferably 30 μm and more preferably 35 μm. By increasing the interfering distance D2 ', the passage of the gum through the intermediate layer is favored. This prevents or even prevents the propagation of corrosive agents from the inner layer of the strand to the outer layer of the strand and thus further preservation of adhesion with the adjacent mixture. [036] In a preferred embodiment, D3 '> D2'. As the adhesion between the cable and the adjacent mixture is predominantly between the adjacent mixture and the outer layer of each strand, the adhesion is maximized by promoting the passage of the gum between the strands of the outer layer by relative to its passage between the son of the intermediate layer. [037] In an advantageous embodiment, the ratio D2 '/ D3' satisfies 0.51D2 '/ D3S1.5, preferably 0.71D2' / D3S1.3, more preferably 0.81D2 '/ D3S1.2. The passage channels of the eraser comprise an external opening allowing the rubber to penetrate from the outside of the cable towards the inside of the cable and an internal opening allowing the rubber to open into the heart of the cable, for example in contact with the cable. inner layer. In order to ensure maximum penetration of the rubber, the outer and inner openings preferably have relatively close dimensions. Thus, the penetration of the rubber is optimized by avoiding that one of the external and internal openings of each passage channel limits the flow of gum. [038] Advantageously, each inter-son distance D2 ', D3' is less than or equal to 100 μm, preferably 60 μm. [39] Optionally, the intermediate layer of each outer strand is non-compact and unsaturated. [40] Optionally, the outer layer of each outer strand is non-compact and unsaturated. [41] By noncompact layer, it is meant that each wire of the layer is distant from the son of the layer which are adjacent thereto. Thus, each wire of the layer is, in the case of a homogeneous distribution of the son of the layer, not in contact with the son of the layer that are adjacent thereto. [042] By definition, an unsaturated layer of son is such that there is sufficient space in this layer to add at least one (X + 1) th thread of the same diameter as the X son of the layer, several son can then be in contact with each other. [043] Preferably, N 'and P' are such that N '+ P'> 22. [044] Thus, the breaking force of the cable is maximized by using a large number of wires on the outer and intermediate layers to take up the pressures. Indeed, when pulling the cable the outer son of each outer strand come to exert a radial force directed towards the inside of the cable on the outer son of the inner strand. By using a sufficient number of wires on the outer layers of each inner and outer strand, it is ensured that the radial force is sufficiently distributed so as to reduce the pressure exerted on each unit wire. However, the presence of a large number of yarns does not prevent the outer layers of outer strands from penetrating, which ensures good adhesion with the adjacent mixture. [45] Preferably, M '= 2, 3 or 4, N' = 7, 8, 9 or 10 and P '= 13, 14, 15 or 16. [46] In one embodiment, P '= 14 or 15. Thus, each outer strand is preferably of structure 2 + 7 + 14, 2 + 7 + 15, 2 + 8 + 14, 2 + 8 + 15, 2 + 9 + 14, 2 + 9 + 15, 2+ 10 + 14, 2 + 10 + 15, 3 + 7 + 14, 3 + 7 + 15, 3 + 8 + 14, 3 + 8 + 15, 3 + 9 + 14, 3 + 9 + 15, 3 + 10 + 14, 3 + 10 + 15, 4 + 7 + 14, 4 + 7 + 15, 4 + 8 + 14, 4 + 8 + 15, 4 + 9 + 14, 4 + 9 + 15, 4 + 10 + 14, 4 + 10 + 15. [47] In one embodiment, M '= 2, N' = 7, 8, 9 or 10 and P '= 13, 14, 15 or 16, preferably M' = 2, N '= 7, 8 or 9 and P '= 14, and more preferably M' = 2, N '= 9 and P' = 14. Thus, each outer strand preferably has a structure 2 + 7 + 14, 2 + 8 + 14 and 2 + 9 + 14 and more preferably a structure 2 + 9 + 14. [48] In another embodiment, M '= 3, N' = 7, 8, 9 or 10 and P '= 13, 14, 15 or 16, preferably M' = 3, N '= 8 or 9 and P '= 14 or 15, and more preferably M' = 3, N '= 9 and P' = 14. Thus, each outer strand preferably has a structure 3 + 8 + 14, 3 + 9 + 14, 3 + 8 + 15, 3 + 9 + 15 and more preferably a structure 3 + 9 + 14. [49] In another embodiment, M '= 4, N' = 7, 8, 9 or 10 and P '= 13, 14, 15 or 16, preferably M' = 4, N '= 7, 8 , 9 or 10 and P '= 14 or 15, and more preferably M' = 4, N '= 9 and P' = 14. Thus, each outer strand preferably has a structure 4 + 7 + 14, 4 + 7 + 15, 4 + 8 + 14, 4 + 8 + 15, 4 + 9 + 14, 4 + 9 + 15, 4+ 10 + 14, 4 + 10 + 15 and more preferably a 4 + 9 + 14 structure. [50] Advantageously, each diameter d1 ', d2', d3 'of each wire respectively of each inner, intermediate and outer layer of each outer strand satisfies 0.15 dl', d2 ', d3' 0.5 mm, preferably 0.18 dl ', d2', d3 '0.30 mm, more preferably 0.20 dl', d2 ', d3' 0.28 mm. These diameters make it possible to obtain an optimized compromise of compressive strength and endurance when the cable is used in particular in a carcass reinforcement. [51] Preferably, each diameter d2 ', d3' of each wire respectively of each intermediate and outer layer of each outer strand satisfies d2 '= d3'. [52] Preferably, each diameter d1 ', d2' of each wire respectively of each inner and intermediate layer of each outer strand satisfies d1 '= d2'. [53] Alternatively, it can be expected that d1 '> d2'. Thus, this makes it possible to reinforce the intermediate layer by adding a wire with respect to the case where d1 '= d2' and thus to increase the breaking force of the cable. This also makes it possible to further increase the unsaturation of the outer layer with respect to the case where d1 '= d2' and thus to further improve the adhesion with the adjacent mixture. [54] Advantageously, each diameter d1, d2, d3 of each wire respectively of each inner, intermediate and outer layer of each inner strand satisfies 2015PAT00205 FR - 9 - 0.15 dl, d2, d3 0.5 mm, preferably 0 , 18 dl, d2, d3 0.30 mm, more preferably 0.20 dl, d2, d3 0.28 mm. These diameters make it possible to obtain an optimized compromise of resistance and endurance when the cable is used in particular in a carcass reinforcement. [055] Preferably, each diameter d2, d3 of each wire respectively of each intermediate and outer layer of each inner strand verifies d2 = d3. [56] Preferably, each diameter d1, d2 of each wire respectively of each inner and intermediate layer of each inner strand verifies d1 = d2. [57] Alternatively, it can be expected that dl> d2. Thus, this makes it possible to reinforce the intermediate layer by adding a wire with respect to the case where d1 = d2 and thus to increase the breaking force of the cable. This also makes it possible to further increase the unsaturation of the outer layer with respect to the case where d1 = d2 and thus to further improve the adhesion with the adjacent mixture. [58] Preferably, N and P are such that N + P> 22. [059] Preferably, M = 2, 3 or 4, N = 7, 8, 9 or 10 and P = 13, 14, 15 or 16. [060] In one embodiment, P = 14 or 15. Thus, each inner strand is preferably of structure 2 + 7 + 14, 2 + 7 + 15, 2 + 8 + 14, 2 + 8 + 15, 2 + 9 + 14, 2 + 9 + 15, 2+ 10 + 14, 2 + 10 + 15, 3 + 7 + 14, 3 + 7 + 15, 3 + 8 + 14, 3 + 8 + 15, 3 + 9 + 14, 3 + 9 + 15, 3 + 10 + 14, 3 + 10 + 15, 4 + 7 + 14, 4 + 7 + 15, 4 + 8 + 14, 4 + 8 + 15, 4 + 9 + 14, 4 + 9 + 15, 4 + 10 + 14, 4 + 10 + 15. [061] In one embodiment, M = 2, N = 7, 8, 9 or 10 and P = 13, 14, 15 or 16, preferably M = 2, N = 7, 8 or 9 and P = 14 , and more preferably M = 2, N = 9 and P = 14. Thus, each inner strand preferably has a structure 2 + 7 + 14, 2 + 8 + 14 and 2 + 9 + 14 and more preferably a structure 2 + 9 + 14. [62] In another embodiment, M = 3, N = 7, 8, 9 or 10 and P = 13, 14, 15 or 16, preferably M = 3, N = 8 or 9 and P = 14 or 15. Thus, each inner strand preferably has a structure 3 + 8 + 14, 3 + 9 + 14, 3 + 8 + 15, 3 + 9 + 15 and more preferably a structure 3 + 9 + 14. [63] In another embodiment, M = 4, N = 7, 8, 9 or 10 and P = 13, 14, 15 or 16, preferably M = 4, N = 7, 8, 9 or 10 and P = 14 or 15, and more preferably M = 4, N = 9 and P = 14. Thus, each inner strand preferably has a structure 4 + 7 + 14, 4 + 7 + 15, 4 + 8 + 14, 4 + 8 + 15, 4 + 9 + 14, 4 + 9 + 15, 4+ 10 + 14, 4 + 10 + 15 and more preferably a 4 + 9 + 14 structure. [64] Advantageously, the interfering distance D2 of the wires of the intermediate layer of each inner strand is greater than or equal to 25 μm, preferably 30 μm, more preferably 35 μm. [65] Advantageously, the inter-wire distance D3 of the wires of the outer layer of each inner strand is greater than or equal to 25 μm, preferably 30 μm, more preferably 2015 to 35 μm and even more preferably to 40 μm. . [066] Thus, the rubber can penetrate inside each inner strand to slow down, or even prevent the propagation of corrosive agents within each inner strand. [067] Advantageously, each inter-son distance D2, D3 is less than or equal to 100 μm, preferably 60 μm. [68] Optionally, the intermediate layer of each inner strand is non-compact and unsaturated. [69] Optionally, the outer layer of each inner strand is non-compact and unsaturated. [70] In a preferred embodiment, the wires, especially the wires of the inner layer of each inner and / or outer strand, are non-preformed. By avoiding preformation, it avoids the industrial steps necessary for preforming the son. The complexity of the process is reduced while maintaining a cable having high breaking strength and excellent adhesion with the adjacent mixture. [71] For the following, it is recalled that, in a known manner, the pitch represents the length, measured parallel to the axis of the cable, at the end of which a wire having this step performs a complete revolution about said axis of the cable. [72] According to optional features independent of each other relating to the pitch of each wire of each layer: the wires of the inner layer of each inner strand are wound at a pitch p1 which satisfies 4 pl 11 mm, preferably 5 pl 9 mm. The wires of the inner layer of each outer strand are wound at a pitch of 10 μm, preferably 5 μm to 9 mm. The wires of the intermediate layer of each inner strand are wound at a pitch p2 which satisfies 6 μm 20 mm, preferably 8 μm 18 mm. The wires of the intermediate layer of each outer strand are wound at a pitch p2 'which satisfies 6 p2' 20 mm, preferably 8 p2 '18 mm. The wires of the outer layer of each inner strand are wound at pitch p3 which satisfies 10 μm, preferably 14 μm, 22 mm. The wires of the outer layer of each outer strand are wound at the pitch p3 'which satisfies 10 p3' 30 mm, preferably 14 p3 '22 mm. [073] According to another optional feature, the outer strands are wound at a pitch P which satisfies 30 P 80 mm, preferably 40 P 70 mm. [074] Preferably, the cable comprises a hooping layer comprising a hoop wire wrapped around the outer layer of the cable. In a variant, the cable does not have a shrinking layer. 2015PAT00205 EN [075] In the case where it is desired to confer on the cable, in addition to the self-hooping properties described above, a further improved compressive strength, a frettage layer is added which relieves the outer layer of the cable vis-à-vis the compression and thus improves the endurance of the cable. [076] Such a hooping layer consists for example of a single wire, metallic or not, coated or not with a metal layer, for example brass. It is advantageous to choose a stainless steel hoop wire in order to reduce the fretting wear of the wires of the outer layer of the outer strands in contact with the stainless steel hoop, the stainless steel wire possibly being replaced, in an equivalent manner. , by a composite thread of which only the skin is made of stainless steel and the core made of carbon steel. [77] Preferably, the winding direction of the wire of the hooping layer is different from the winding direction of the outer strands. [78] In one embodiment, the outer wires of the outer layer of each outer strand are wound in a winding direction identical to that of the outer wires of the outer layer of each inner strand. [79] Optionally, the outer strands are wrapped around the inner strand in a winding direction opposite to that of the outer strands of the outer layer of each outer strand. [80] Another object of the invention is a tire comprising at least one cable as defined above. [81] Preferably, the tire comprises a carcass reinforcement anchored in two beads, said carcass reinforcement comprising at least one reinforcement element, called carcass, comprising a cable as defined above. [82] Advantageously, the carcass reinforcement comprises at least one carcass ply comprising reinforcing elements, referred to as carcass elements, the carcass reinforcement elements making an angle greater than or equal to 65 °, preferably 80 ° relative to to the circumferential direction of the tire. [083] The cable is particularly intended for industrial vehicles chosen from heavy vehicles such as "heavy goods vehicles" - i. e. , metro, bus, road transport machinery (trucks, tractors, trailers), off-the-road vehicles -, agricultural or engineering machinery, other transport or handling vehicles. [084] In a preferred embodiment, the tire has a W R U type dimension with lik35, preferably Uk49 and more preferably lik57. Thus, preferably, the tire is for civil engineering type vehicle. Thus, the tire has a dimension in which the diameter, in inches, of the rim seat on which the tire is to be mounted is greater than or equal to 35 inches, preferably to 49 inches and more preferably at 57 inches. [085] In one embodiment, the tire comprises a crown reinforcement arranged radially inside the tread and radially outwardly of the carcass reinforcement, the crown reinforcement comprising: a reinforcement protection, and - a working frame arranged radially inside the protective frame. [086] In one embodiment, the protective armature is interposed radially between the tread and the armature work. [087] Advantageously, the protective reinforcement comprising at least one protective ply comprising reinforcing elements, said protective elements, the protective reinforcing element or elements forming an angle of at least 10 °, preferably ranging from 10 ° at 35 ° and more preferably from 15 ° to 30 ° with the circumferential direction of the tire. [088] In one embodiment, the working reinforcement comprising at least one working ply comprising so-called working reinforcement elements, the work reinforcing elements forming an angle at most equal to 60 °, preferably ranging from from 15 ° to 40 ° with the circumferential direction of the tire. [89] Advantageously, the crown reinforcement comprises a hooping reinforcement comprising at least one hooping sheet. [90] In one embodiment, each hooping sheet comprising reinforcement elements, said hooping elements, the hooping reinforcing elements making an angle at most equal to 10 °, preferably ranging from 5 ° to 10 ° with the circumferential direction of the tire. [091] Preferably, the hooping frame is arranged radially inside the working frame and radially outside the carcass reinforcement. [092] The invention will be better understood on reading the description which follows, given solely by way of example and with reference to the drawings in which: FIG. 1 is a sectional view perpendicular to the circumferential direction of a tire according to the invention; Figure 2 is a detail view of the area I of Figure 1; Figure 3 is a schematic sectional view perpendicular to the axis of the cable (assumed rectilinear and at rest) of a cable according to the invention; Figure 4 is a schematic view similar to that of Figure 3 of the 2015PAT00205 EN -13- internal strand of the cable according to the invention; Figure 5 is a schematic view similar to that of Figure 3 of an outer strand of the cable according to the invention; Figure 6 is a photograph of the cable according to the invention of Figure 3; and FIG. 7 is a photograph similar to that of FIG. 6 of the prior art cable 189. 23. [93] PNEUMATIC EXAMPLE ACCORDING TO THE INVENTION [94] Any range of values designated by the expression "from a to b" means the range of values from the "a" terminal to the "b" terminal. that is to say, including the strict limits "a" and "b". [95] In the figures, there is shown a reference X, Y, Z corresponding to the usual axial (X), radial (Y) and circumferential (Z) orientations of a tire, respectively. There is also shown a median circumferential plane M (plane perpendicular to the axis of rotation of the tire which is located midway between the two beads and passing through the middle of the crown reinforcement). [96] There is shown in Figures 1 and 2 a tire according to the invention and designated by the general reference 10. [97] The tire 10 is for a heavy vehicle of the civil engineering type, for example of the "dumper" type. The tire 10 has a dimension of the type W R U, U with Lik35, preferably Uk49 and more preferably lik57. For example, the size of the tire 10 could be 40. 00 R 57 or even 59/80 R 63. [98] In a manner known to those skilled in the art, W, denotes: when it is in the H / B form, the nominal aspect ratio H / B as defined by the ETRTO (H being the height of the section of the tire and B being the width of the section of the tire) - when it is in the form H. 00 or B. Wherein H = B, H and B being as defined above. U represents the diameter, in inches, of the seat of the rim on which the tire is intended to be mounted, R denotes the type of carcass reinforcement of the tire, here radial. [099] The tire 10 has a vertex 12 reinforced by a crown reinforcement 14, two sidewalls 16 and two beads 18, each of these beads 18 being reinforced with a rod 20. The top 12 is radially surmounted by a tread 22 joined to the beads 18 by the flanks 16. A carcass reinforcement 24 is anchored in the two beads 18, and is here wound around the two rods 20 and comprises a reversal 26 disposed towards the outside of the tire 20 which is shown here mounted on a rim 28. The carcass reinforcement 24 is radially surmounted by the crown reinforcement 14. The carcass reinforcement 24 comprises at least one carcass ply 30 comprising reinforcing elements, called carcass elements. Each carcass reinforcement element comprises a cable 31 according to the invention. The carcass reinforcement elements are arranged substantially parallel to each other and extend from one bead 18 to the other so as to form an angle greater than or equal to 65 °, preferably 80 ° and more preferably between 80 ° and 90 ° with the circumferential direction Z of the tire 10. The tire 10 also comprises a sealing ply 32 made of an elastomer (commonly called inner liner) which defines the radially inner face 34 of the tire 10 and which is intended to protect the carcass ply 30 from the diffusion of air from the interior space to the tire 10. The crown reinforcement 14 comprises, radially from the outside towards the inside of the tire 10, a protective reinforcement 36 arranged radially inside the tread 22, a working reinforcement 38 arranged radially at the inside of the protective armature 36 and an additional armature 40 arranged radially inside the armature 38. The protective armature 36 is thus radially interposed between the tread 22 and the armature 38. The protective armature 36 comprises first and second protective plies 42, 44 comprising protective metal reinforcing elements, the first ply 42 being arranged radially inside the second ply 44.
De façon optionnelle, les éléments de renfort métalliques de protection font un angle au moins égal à 10°, de préférence allant de 10° à 35° et préférentiellement de 15° à 30° avec la direction circonférentielle Z du pneumatique. [0104] L'armature de travail 38 comprend des première et deuxième nappes de travail 46, 48, la première nappe 46 étant agencée radialement à l'intérieur de la deuxième nappe 48. Chaque nappe 46, 48 comprend au moins élément de renfort métallique de travail comprenant un câble 50 conforme à l'invention. De façon optionnelle, les éléments de renforts métalliques de travail sont croisés d'une nappe de travail à l'autre et font un angle au plus égal à 60°, de préférence allant de 15° à 40° avec la direction circonférentielle Z du pneumatique. [0105] L'armature additionnelle 40, également appelée bloc limiteur, dont la fonction est de reprendre en partie les sollicitations mécaniques de gonflage, comprend, par exemple et de façon connue en soi, des éléments de renfort métalliques additionnels, 2015PAT00205 FR -15- par exemple tels que décrits dans FR 2 419 181 ou FR 2 419 182 faisant un angle au plus égal à 10°, de préférence allant de 5° à 10° avec la direction circonférentielle Z du pneumatique 10. [0106] EXEMPLE DE CABLE SELON L'INVENTION [0107] On a représenté sur les figures 3, 4 et 5 un câble 31 selon l'invention. [0108] Le câble 31 est métallique et est du type multi-torons à deux couches cylindriques de torons. Ainsi, on comprend que les couches de torons constituant le câble 31 sont au nombre de deux. Les couches de torons sont adjacentes et concentriques. Le câble 31 est dépourvu de gomme lorsqu'il n'est pas intégré au pneumatique. [0109] Le câble 31 comprend une couche interne Cl du câble 31 ainsi qu'une couche externe CE du câble 31. La couche interne Cl est constituée d'un unique toron interne TI. La couche externe CE est constituée de L>1 torons externes, c'est-à-dire de plusieurs torons externes TE enroulés en hélice autour de la couche interne Cl selon un pas P. Le câble 31 comprend également une frette F constituée d'un unique fil enroulé en hélice autour de la couche externe CE. Ici L=6. [0110] Dans le mode de réalisation décrit, les torons interne et externes sont identiques. Dans d'autres modes de réalisation, le toron interne est différents de chaque toron externe. [0111] Chaque toron interne et externe présente respectivement un diamètre Dl, DE. De préférence, que les torons interne et externes soient identiques ou non, Dl=DE. [0112] Le toron interne TI présente un pas infini. Les torons externes TE sont enroulés en hélice. Le pas P des torons externes TE est tel que 30 mm P 80 mm et de préférence 40 mm P 70 mm. Ici p=70 mm. [0113] La frette F est enroulée en hélice autour des torons externes TE dans un sens d'enroulement, ici le sens Z, opposé à celui des torons externes TE. [0114] Le toron interne TI présente un diamètre Dl sensiblement égal au diamètre DE de chaque toron externe TE. [0115] La couche externe CE du câble 31 est compacte. Par définition, une couche compacte de torons est telle qu'il n'existe théoriquement pas d'espace de passage de la gomme entre les torons de la couche. [0116] TORON INTERNE TI [0117] Le toron interne TI comprend une couche interne Cl du toron TI constituée de M fil(s) interne(s) F1, une couche intermédiaire C2 du toron TI constituée de N fils intermédiaires F2 enroulés en hélice autour de la couche interne Cl selon un pas p2, 2015PAT00205 FR -16- et une couche externe C3 du toron TI constituée de P fils externes F3 enroulés en hélice autour de la couche intermédiaire C2 selon un pas p3. Lorsque la couche interne Cl comprend plusieurs fils internes (M>1), les M fils internes sont enroulés en hélice selon un pas pl. [0118] On a ici N et P tels que N+P>22. D'autre part, M=2, 3 ou 4, N=7, 8, 9 ou 10 et P=13, 14, 15 ou 16. Dans le mode de réalisation décrit, M=4, N=7, 8, 9 ou 10 et P=13, 14, 15 ou 16, de préférence M=4, N=7, 8, 9 ou 10 et P=14 ou 15, et plus préférentiellement M=4, N=9 et P=14. [0119] On a pl qui vérifie 4 pl 11 mm, de préférence 5 pl 9 mm et ici p1=6,5 mm. On a p2 qui vérifie 6 p2 20 mm, de préférence 8 p2 18 mm et ici p2=12 mm. On a p3 qui vérifie 10 p3 30 mm, de préférence 14 p3 22 mm et ici p3=16 mm. [0120] Chaque fil interne Fl, intermédiaire F2 et externe F3 du toron interne TI présente respectivement un diamètre dl, d2 et d3. Chaque fil présente une résistance à la rupture, notée Rm, telle que 2500 Rm 3100 MPa. On dit de l'acier de ces fils qu'il est de grade NT (« Normal Tensile »). Chaque diamètre dl, d2, d3 de chaque fil respectivement de chaque couche interne Cl, intermédiaire C2 et externe C3 du toron interne TI vérifie 0,15 dl, d2, d3 0,5 mm, de préférence 0,18 dl, d2, d3 0,30 mm, plus préférentiellement 0,20 dl, d2, d3 0,28 mm. D'autres grades d'acier conduisant à des fils présentant une résistance à la rupture supérieure à celle des fils de grade NT peuvent être utilisés, par exemple les fils de grade HT (« High Tensile ») ou SHT (« Super High Tensile »). [0121] De préférence, on a ici d1=d2=d3=0,26 mm. En variante, on pourrait avoir dl>d2. [0122] Dans chaque couche intermédiaire C2 et externe C3, sur une section du câble perpendiculaire à l'axe principal du câble, au moins deux fils adjacents sont séparés respectivement par un canal P2, P3 de passage de la gomme. Deux fils adjacents d'une même couche C2, C3 sont séparés, en moyenne sur chaque couche C2, C3, par une distance interfils D2, D3 définie comme la plus petite distance séparant ces deux fils adjacents. D2 est supérieure ou égale à 25 pm. De façon avantageuse, D2 est supérieure ou égale à 30 pm, de préférence 35 pm. D3 est supérieure ou égale à 25 pm. De façon avantageuse, D3 est supérieure ou égale à 30 pm, de préférence 35 pm et plus préférentiellement à 40 pm. De plus, chaque distance inter-fils D2, D3 est inférieure ou égale à 100 pm, de préférence à 60 pm. [0123] La distance inter-fils D2 entre les M fils intermédiaires F2 est ici égale à 38,2 pm. La distance inter-fils D3 entre les N fils externes F3 est ici égale à 44,2 pm. Chaque couche intermédiaire C2 et externe C3 du toron interne TI est non compacte 2015PAT00205 FR -17- et insaturée. [0124] On a ici D3>D2 et le rapport D2/D3 vérifiant 0,51D2/D3<_1,5, de préférence 0,71D2/D3<_1,3, plus préférentiellement 0,81D2/D3<_1,2. En l'espèce, D2/D3=0,86. [0125] TORONS EXTERNES TE [0126] Chaque toron externe TE comprend une couche interne C1' du toron TE constituée de M' fil(s) interne(s) F1', une couche intermédiaire C2' du toron TE constituée de N' fils intermédiaires F2' enroulés en hélice autour de la couche interne C1' selon un pas p2', et une couche externe C3' du toron TE constituée de P' fils externes F3' enroulés en hélice autour de la couche intermédiaire C2' selon un pas p3'. Lorsque la couche interne C1' comprend plusieurs fils internes (M'>1), les M' fils internes sont enroulés en hélice selon un pas pl'. [0127] On a ici N' et P' tels que N'+P'>22. D'autre part, M'=2, 3 ou 4, N'=7, 8, 9 ou 10 et P'=13, 14, 15 ou 16. Dans le mode de réalisation décrit, M'=4, N'=7, 8, 9 ou 10 et P'=13, 14, 15 ou 16, de préférence M'=4, N'=7, 8, 9 ou 10 et P'=14 ou 15, et plus préférentiellement M'=4, N'=9 et P'=14. [0128] Pour chaque toron externe TE, considéré déroulé d'autour la couche interne Cl, on a pl' qui vérifie 4 pl' 11 mm, de préférence 5 pl' 9 mm et ici p1'=6,5 mm. On a p2' qui vérifie 6 p2' 20 mm, de préférence 8 p2' 18 mm et ici p2'=12 mm. On a p3' qui vérifie 10 p3' 30 mm, de préférence 14 p3' 22 mm et ici p3'=16 mm. [0129] Chaque fil interne F1', intermédiaire F2' et externe F3' de chaque toron externe TE présente respectivement un diamètre dl', d2' et d3'. Chaque fil présente une résistance à la rupture, notée Rm, telle que 2500 Rm 3100 MPa. On dit de l'acier de ces fils qu'il est de grade NT (« Normal Tensile »). Chaque diamètre dl', d2', d3' de chaque fil respectivement de chaque couche interne C1', intermédiaire C2' et externe C3' de chaque toron externe TE vérifie 0,15 dl', d2', d3' 0,5 mm, de préférence 0,18 dl', d2', d3' 0,30 mm, plus préférentiellement 0,20 dl', d2', d3' 0,28 mm. [0130] De préférence, on a ici d1'=d2'=d3'=0,26 mm. En variante, on pourrait avoir dt>d2'. [0131] De façon analogue au toron interne Tl, deux fils adjacents d'une même couche C2', C3' sont séparés, en moyenne sur chaque couche C2', C3', par une distance interfils D2', D3' définie comme la plus petite distance séparant ces deux fils adjacents. D2' est supérieure ou égale à 25 pm. De façon avantageuse, D2' est supérieure ou égale à 30 pm, de préférence 35 pm. D3' est supérieure ou égale à 25 pm. De façon avantageuse, D3' est supérieure ou égale à 30 pm, de préférence 35 pm et plus préférentiellement à 40 pm. De plus, chaque distance inter-fils D2', D3' est 2015PAT00205 FR -18- inférieure ou égale à 100 pm, de préférence à 60 pm. [0132] La distance inter-fils D2' entre les M fils intermédiaire F2' est ici égale à 38,2 pm. La distance inter-fils D3' entre les N fils externes F3' est ici égale à 44,2 pm. Chaque couche intermédiaire C2 et externe C3 du toron interne TI est non compacte et insaturée. [0133] On a ici D3'>D2' et le rapport D2'/D3' vérifiant 0,51D2'/D3S1,5, de préférence 0,71D2'/D3S1,3, plus préférentiellement 0,81D2'/D3S1,2. En l'espèce, D2'/D3'=0,86. [0134] Dans l'exemple décrit, les fils externes F3' de la couche externe C3' de chaque toron externe TE sont enroulés dans un sens d'enroulement identique à celui des fils externes F3 de la couche externe C3 de chaque toron interne TI. [0135] En outre, les torons externes TE sont enroulés autour du toron interne TI dans un sens d'enroulement opposé à celui des fils F3' de la couche externe C3' de chaque toron externe TE. Ainsi, les torons externes TE sont enroulés autour du toron interne TI dans le sens S et les fils F3' de la couche externe C3' de chaque toron externe TE sont enroulés dans le sens Z. [0136] Toujours dans l'exemple décrit, les fils Fl, F2 respectivement des couches interne et intermédiaire C1, C2 de chaque toron interne TI sont enroulés selon des sens d'enroulement identiques, ici selon le sens Z. De façon analogue, les fils F1', F2' respectivement des couches interne et intermédiaire C1', C2' de chaque toron externe TE sont enroulés selon des sens d'enroulement identiques, ici selon le sens Z. [0137] Les fils F3, F3' respectivement des couches externes C3, C3' de chaque toron interne TI et externe TE sont enroulés selon des sens d'enroulement identiques à ceux des fils F2, F2' respectivement des couches intermédiaires C2, C2' de chaque toron interne TI et externe TE, ici selon le sens Z. [0138] On fabrique le câble selon l'invention grâce à un procédé comprenant des étapes bien connues de l'homme du métier. Ainsi, on rappelle qu'il existe deux techniques possibles d'assemblage de fils ou de torons métalliques : soit par câblage: dans un tel cas, les fils ou torons ne subissent pas de torsion autour de leur propre axe, en raison d'une rotation synchrone avant et après le point d'assemblage ; soit par retordage : dans un tel cas, les fils ou torons subissent à la fois une torsion collective et une torsion individuelle autour de leur propre axe, ce qui génère un couple de détorsion sur chacun des fils ou torons. [0139] Le câble 31 est incorporé par calandrage à des tissus composites formés 2015PAT00205 FR -19- d'une composition connue à base de caoutchouc naturel et de noir de carbone à titre de charge renforçante, utilisée conventionnellement pour la fabrication des armatures de sommet de pneumatiques radiaux. Cette composition comporte essentiellement, en plus de l'élastomère et de la charge renforçante (noir de carbone), un antioxydant, de l'acide stéarique, une huile d'extension, du naphténate de cobalt en tant que promoteur d'adhésion, enfin un système de vulcanisation (soufre, accélérateur, ZnO). [0140] Les tissus composites renforcés par ces câbles comportent une matrice de caoutchouc formée de deux couches fines de gomme qui sont superposées de part et d'autre des câbles et qui présentent respectivement une épaisseur comprise entre 1 et 4 mm bornes incluses. Le pas de calandrage (pas de pose des câbles dans le tissu de caoutchouc) est compris entre 4 mm et 8 mm bornes incluses. [0141] Ces tissus composites sont ensuite utilisés en tant que nappe dans le pneumatique, notamment en tant que nappe dans 1"armature de carcasse lors du procédé de fabrication du pneumatique, dont les étapes sont par ailleurs connues de l'homme du métier. [0142] MESURES ET TESTS COMPARATIFS [0143] On a comparé un câble témoin T1 et un câble 11 selon l'invention. [0144] Le câble 11, est un câble 189.26 FR selon l'invention de structure [(4+9+14)x0.26)+6x(4+9+14)x0.26)]+0.26 et dont les fils sont de grade NT. Le câble 11 est le câble 31 décrit précédemment et représenté sur la figure 3 et photographié sur la figure 6. [0145] Le câble témoin T1, photographié sur la figure 7, est un câble 189.23 FR de structure [(3+9+15)x0.23+6x(3+9+15)x0.23]+0.26 et dont les fils sont de grade NT. [0146] Mesures dynamométriques [0147] La mesure de force à la rupture notée Fm (charge maximale en N) est effectuée en traction selon la norme ISO 6892-1 de 2009. Le tableau 1 ci-dessous présente les résultats obtenus de force à la rupture Fm. [0148] Note de faciès [0149] Ce test permet de noter la pénétrabilité du câble testé afin d'évaluer l'adhésion de ce dernier en pneumatique. Lors de ce test, on utilise des câbles issus de fabrication et non vieillis. Les câbles bruts sont préalablement enrobés de l'extérieur par une gomme dite d'enrobage. Pour cela, une série de 5 câbles disposés parallèlement (distance inter-câble : 20 mm) est placée entre deux couches ou "skims" (deux rectangles de 80 x 200 mm) d'une composition de caoutchouc diénique à l'état 2015PAT00205 FR -20- cru, chaque skim ayant une épaisseur de 5 mm ; le tout est alors bloqué dans un moule, chacun des câbles étant maintenu sous une tension suffisante (par exemple 3 daN) pour garantir sa rectitude lors de la mise en place dans le moule, à l'aide de modules de serrage ; puis on procède à la vulcanisation (cuisson) pendant environ 10 à 12 heures à une température d'environ 120°C et sous une pression de 15 bar (piston rectangulaire de 80 x 200 mm). Après quoi, on démoule l'ensemble et on découpe 5 éprouvettes de câbles ainsi enrobés, sous forme de parallélépipèdes de dimensions 7x7x60 mm, pour observation au microscope (grossissement 40 pour le câble et grossissement 120 pour chaque toron). [0150] On utilise comme gomme d'enrobage une composition de caoutchouc diénique conventionnelle pour pneumatique, à base de caoutchouc naturel (peptisé) et de noir de carbone N330 (65 pce), comportant en outre les additifs usuels suivants: soufre (7 pce), accélérateur sulfénamide (1 pce), ZnO (8 pce), acide stéarique (0,7 pce), antioxydant (1,5 pce), naphténate de cobalt (1,5 pce) (pce signifiant parties en poids pour cent parties d'élastomère) ; le module E10 de la gomme d'enrobage est de 10 M Pa environ. [0151] Lors de l'observation au microscope, on donne les notes suivantes à chaque toron externe : 0 : la couche externe du toron externe présente un capillaire débouchant sur l'interface adhésive entre le câble et le mélange adjacent. 1 : la couche intermédiaire du toron externe présente un capillaire débouchant sur la couche externe du toron externe. La couche externe est isolée. 2 : la couche intermédiaire présente un capillaire ne débouchant pas sur la couche externe. Les capillaires du toron externe sont localisés en périphérie du toron central à l'opposé de l'interface adhésive entre le câble et le mélange adjacent. 3 : la couche intermédiaire du toron externe ne présente pas de capillaire. Le capillaire est uniquement à l'intérieur de la couche interne. [0152] Puis, on fait la somme des notes obtenues pour chaque toron et pour chaque câble testé, soit au total 25 notes. On rapporte la somme à la note maximale possible, soit 75. [0153] On a rassemblé dans le tableau 1 ci-dessous les résultats des tests effectués sur le câble 11 selon l'invention et le câble témoin T1.Optionally, the protective metal reinforcing elements make an angle of at least 10 °, preferably from 10 ° to 35 ° and preferably from 15 ° to 30 ° with the circumferential direction Z of the tire. The working armature 38 comprises first and second working plies 46, 48, the first ply 46 being arranged radially inside the second ply 48. Each ply 46, 48 comprises at least one metallic reinforcing element working comprising a cable 50 according to the invention. Optionally, the metal reinforcing elements of work are crossed from one working ply to another and make an angle at most equal to 60 °, preferably ranging from 15 ° to 40 ° with the circumferential direction Z of the tire . The additional armature 40, also called limiter block, whose function is to partially recover the mechanical loading of inflation, comprises, for example and in a manner known per se, additional metal reinforcing elements, 2015PAT00205 EN -15 for example as described in FR 2 419 181 or FR 2 419 182 making an angle at most equal to 10 °, preferably ranging from 5 ° to 10 ° with the circumferential direction Z of the tire 10. EXAMPLE OF A CABLE According to the invention [0107] FIGS. 3, 4 and 5 show a cable 31 according to the invention. The cable 31 is metallic and is of the multi-strand type with two cylindrical layers of strands. Thus, it is understood that the strand layers constituting the cable 31 are two in number. The layers of strands are adjacent and concentric. The cable 31 is devoid of rubber when it is not integrated with the tire. The cable 31 comprises an inner layer C1 of the cable 31 and an outer layer CE of the cable 31. The inner layer C1 consists of a single inner strand TI. The outer layer CE consists of L> 1 outer strands, that is to say several outer strands TE helically wound around the inner layer C1 in a pitch P. The cable 31 also comprises a fret F consisting of a single wire wound helically around the outer layer CE. Here L = 6. In the embodiment described, the inner and outer strands are identical. In other embodiments, the inner strand is different from each outer strand. Each inner and outer strand has a diameter D1, DE, respectively. Preferably, the inner and outer strands are identical or not, D1 = DE. The inner strand TI has an infinite pitch. The outer strands TE are helically wound. The pitch P of the outer strands TE is such that 30 mm P 80 mm and preferably 40 mm P 70 mm. Here p = 70 mm. The hoop F is wound helically around the outer strands TE in a winding direction, here the direction Z, opposite that of the outer strands TE. The inner strand TI has a diameter D1 substantially equal to the diameter DE of each outer strand TE. The outer layer CE of the cable 31 is compact. By definition, a compact layer of strands is such that there is theoretically no space for passage of the eraser between the strands of the layer. INTERNAL TORON TI [0117] The internal strand TI comprises an inner layer C1 of the strand TI consisting of M internal thread (s) F1, an intermediate layer C2 of the strand TI consisting of N intermediate threads F2 helically wound around the inner layer C1 according to a step p2, 2015PAT00205 EN -16- and an outer layer C3 of the strand TI constituted by P external wires F3 wound helically around the intermediate layer C2 in a step p3. When the inner layer C1 comprises several internal wires (M> 1), the inner M wires are helically wound in a pitch pl. Here we have N and P such that N + P> 22. On the other hand, M = 2, 3 or 4, N = 7, 8, 9 or 10 and P = 13, 14, 15 or 16. In the embodiment described, M = 4, N = 7, 8, 9 or 10 and P = 13, 14, 15 or 16, preferably M = 4, N = 7, 8, 9 or 10 and P = 14 or 15, and more preferably M = 4, N = 9 and P = 14 . We have pl that verifies 4 pl 11 mm, preferably 5 pl 9 mm and here p1 = 6.5 mm. We have p2 which satisfies 6 p2 20 mm, preferably 8 p2 18 mm and here p2 = 12 mm. We have p3 which checks 10 p3 30 mm, preferably 14 p3 22 mm and here p3 = 16 mm. Each inner wire F1, intermediate F2 and outer F3 of the inner wire T1 respectively has a diameter d1, d2 and d3. Each wire has a breaking strength, denoted Rm, such that 2500 Rm 3100 MPa. The steel of these threads is said to be of grade NT ("Normal Tensile"). Each diameter d1, d2, d3 of each wire respectively of each inner layer C1, intermediate C2 and outer C3 of the inner strand TI satisfies 0.15 dl, d2, d3 0.5 mm, preferably 0.18 dl, d2, d3 0.30 mm, more preferably 0.20 dl, d2, d3 0.28 mm. Other steel grades leading to yarns having a higher tensile strength than NT grade yarns can be used, for example HT (High Tensile) or Super High Tensile (SHT) yarns. ). Preferably, here d1 = d2 = d3 = 0.26 mm. Alternatively, one could have dl> d2. In each intermediate layer C2 and outer C3, on a section of the cable perpendicular to the main axis of the cable, at least two adjacent son are respectively separated by a channel P2, P3 of the gum. Two adjacent wires of the same layer C2, C3 are separated, on average on each layer C2, C3, by an inter-wire distance D2, D3 defined as the smallest distance separating these two adjacent wires. D2 is greater than or equal to 25 μm. Advantageously, D2 is greater than or equal to 30 μm, preferably 35 μm. D3 is greater than or equal to 25 μm. Advantageously, D3 is greater than or equal to 30 μm, preferably 35 μm and more preferably 40 μm. In addition, each inter-wire distance D2, D3 is less than or equal to 100 μm, preferably 60 μm. The inter-son distance D2 between the M intermediate son F2 is here equal to 38.2 pm. The inter-son distance D3 between the N external wires F3 is here equal to 44.2 μm. Each intermediate layer C2 and outer C3 of the inner strand TI is non-compact and unsaturated. Here we have D3> D2 and the ratio D2 / D3 satisfying 0.51D2 / D3 <_1.5, preferably 0.71D2 / D3 <_1.3, more preferably 0.81D2 / D3 <_1.2. In this case, D2 / D3 = 0.86. EXTERNAL TORONS TE [0126] Each outer strand TE comprises an inner layer C1 'of the strand TE consisting of M' internal thread (s) F1 ', an intermediate layer C2' of the strand TE consisting of N 'strands intermediates F2 'wound helically around the inner layer C1' in a pitch p2 ', and an outer layer C3' of the strand TE constituted by P 'external wires F3' helically wound around the intermediate layer C2 'in a step p3 . When the inner layer C1 'comprises several internal wires (M'> 1), the inner threads M 'are helically wound in a pitch p1'. Here we have N 'and P' such that N '+ P'> 22. On the other hand, M '= 2, 3 or 4, N' = 7, 8, 9 or 10 and P '= 13, 14, 15 or 16. In the embodiment described, M' = 4, N ' = 7, 8, 9 or 10 and P '= 13, 14, 15 or 16, preferably M' = 4, N '= 7, 8, 9 or 10 and P' = 14 or 15, and more preferably M ' = 4, N '= 9 and P' = 14. For each outer strand TE, considered unrolled around the inner layer C1, it is pl 'which verifies 4 pl' 11 mm, preferably 5 pl '9 mm and here p1' = 6.5 mm. We have p2 'which verifies 6 p2' 20 mm, preferably 8 p2 '18 mm and here p2' = 12 mm. We have 10 'to 30 mm, preferably 14 to 22 mm, and here p' = 16 mm. Each internal thread F1 ', intermediate F2' and external F3 'of each outer strand TE respectively has a diameter dl', d2 'and d3'. Each wire has a breaking strength, denoted Rm, such that 2500 Rm 3100 MPa. The steel of these threads is said to be of grade NT ("Normal Tensile"). Each diameter d1 ', d2', d3 'of each wire respectively of each inner layer C1', intermediate C2 'and outer C3' of each outer strand TE satisfies 0.15 dl ', d2', d3 '0.5 mm, preferably 0.18 dl ', d2', d3 '0.30 mm, more preferably 0.20 dl', d2 ', d3' 0.28 mm. [0130] Preferably, d1 '= d2' = d3 '= 0.26 mm is used here. Alternatively, one could have dt> d2 '. In a similar way to the inner strand T1, two adjacent wires of the same layer C2 ', C3' are separated, on average on each layer C2 ', C3', by an interfering distance D2 ', D3' defined as the smaller distance separating these two adjacent wires. D2 'is greater than or equal to 25 pm. Advantageously, D 2 'is greater than or equal to 30 μm, preferably 35 μm. D3 'is greater than or equal to 25 μm. Advantageously, D3 'is greater than or equal to 30 μm, preferably 35 μm and more preferably 40 μm. In addition, each inter-wire distance D2 ', D3' is less than or equal to 100 μm, preferably 60 μm. The inter-son distance D2 'between the intermediate son M F2' is here equal to 38.2 pm. The inter-son distance D3 'between the N external wires F3' is here equal to 44.2 μm. Each intermediate layer C2 and outer C3 of the inner strand TI is non-compact and unsaturated. Here we have D3 '> D2' and the ratio D2 '/ D3' satisfying 0.51D2 '/ D3S1.5, preferably 0.71D2' / D3S1.3, more preferably 0.81D2 '/ D3S1.2 . In this case, D2 '/ D3' = 0.86. In the example described, the external wires F3 'of the outer layer C3' of each outer strand TE are wound in a winding direction identical to that of the outer wires F3 of the outer layer C3 of each inner strand TI . In addition, the outer strands TE are wound around the inner strand TI in a winding direction opposite to that of the wires F3 'of the outer layer C3' of each outer strand TE. Thus, the outer strands TE are wound around the inner strand TI in the direction S and the wires F3 'of the outer layer C3' of each outer strand TE are wound in the Z direction. [0136] Still in the example described, the wires F1, F2 respectively of the inner and intermediate layers C1, C2 of each inner strand T1 are wound in identical winding directions, here in the direction Z. Similarly, the wires F1 ', F2' respectively of the inner layers and intermediate C1 ', C2' of each outer strand TE are wound in identical winding directions, here in the Z direction. The wires F3, F3 'respectively of the outer layers C3, C3' of each inner strand TI and outer TE are wound in the same winding directions as the wires F2, F2 'respectively of the intermediate layers C2, C2' of each inner strand TI and external TE, here in the Z direction. [0138] The cable is manufactured according to the invention by a process comprising steps well known to those skilled in the art. Thus, it is recalled that there are two possible techniques for assembling wire or metal strands: either by wiring: in such a case, the son or strands do not undergo torsion around their own axis, because of a synchronous rotation before and after the assembly point; or by twisting: in such a case, the son or strands undergo both a collective twist and an individual twist around their own axis, which generates a torque of untwisting each of the son or strands. The cable 31 is incorporated by calendering with composite fabrics formed of a known composition based on natural rubber and carbon black as a reinforcing filler, conventionally used for the manufacture of the crown reinforcement. radial tires. This composition essentially comprises, in addition to the elastomer and the reinforcing filler (carbon black), an antioxidant, stearic acid, an extension oil, cobalt naphthenate as adhesion promoter, finally a vulcanization system (sulfur, accelerator, ZnO). Composite fabrics reinforced by these cables comprise a rubber matrix formed of two thin layers of rubber which are superimposed on both sides of the cables and which respectively have a thickness of between 1 and 4 mm inclusive. The calender pitch (no laying of the cables in the rubber fabric) is between 4 mm and 8 mm inclusive. These composite fabrics are then used as a web in the tire, in particular as a web in the carcass reinforcement during the manufacturing process of the tire, the steps of which are otherwise known to those skilled in the art. COMPARATIVE MEASUREMENTS AND TESTS [0143] A control cable T1 and a cable 11 according to the invention were compared [0144] The cable 11 is a cable 189.26 FR according to the invention of structure [(4 + 9 + 14) x0.26) + 6x (4 + 9 + 14) x0.26)] + 0.26 and whose wires are of grade NT.The cable 11 is the cable 31 previously described and shown in Figure 3 and photographed on the Figure 6. [0145] The control cable T1, photographed in Figure 7, is a cable 189.23 FR of structure [(3 + 9 + 15) x0.23 + 6x (3 + 9 + 15) x0.23] +0.26 and whose yarns are of NT grade. [0146] Dynamometric measurements [0147] The measurement of force at break noted Fm (maximum load in N) is carried out in tension according to the ISO 6892-1 standard of 2009. Table 1 ci -dess We present the results obtained from force at fracture Fm. This test makes it possible to note the penetrability of the cable tested in order to evaluate the adhesion of the latter in a tire. [0148] In this test, cables from manufacturing and unaged are used. The raw cables are previously coated from the outside with a so-called coating gum. For this, a series of 5 cables arranged in parallel (inter-cable distance: 20 mm) is placed between two layers or "skims" (two rectangles of 80 x 200 mm) of a diene rubber composition in the state 2015PAT00205 EN Each skim having a thickness of 5 mm; the whole is then locked in a mold, each of the cables being kept under a sufficient tension (for example 3 daN) to ensure its straightness during the establishment in the mold, using clamping modules; then the vulcanization (baking) is carried out for about 10 to 12 hours at a temperature of about 120 ° C and a pressure of 15 bar (rectangular piston 80 x 200 mm). After that, the assembly is demolded and 5 specimens of cables thus coated, in the form of parallelepipeds of dimensions 7x7x60 mm, are cut for observation under the microscope (magnification 40 for the cable and magnification 120 for each strand). A conventional rubber diene rubber composition based on natural rubber (peptized) and carbon black N330 (65 phr), comprising the following usual additives: sulfur (7 phr), is used as a coating rubber. ), sulfenamide accelerator (1 phr), ZnO (8 phr), stearic acid (0.7 phr), antioxidant (1.5 phr), cobalt naphthenate (1.5 phr) (phr parts per hundred parts) elastomer); the E10 module of the coating gum is approximately 10 M Pa. During observation under the microscope, the following notes are given to each outer strand: 0: the outer layer of the outer strand has a capillary opening on the adhesive interface between the cable and the adjacent mixture. 1: the intermediate layer of the outer strand has a capillary opening on the outer layer of the outer strand. The outer layer is isolated. 2: the intermediate layer has a capillary that does not open on the outer layer. The capillaries of the outer strand are located at the periphery of the central strand opposite the adhesive interface between the cable and the adjacent mixture. 3: the intermediate layer of the outer strand does not have a capillary. The capillary is only inside the inner layer. Then, we sum the scores obtained for each strand and for each cable tested, a total of 25 notes. The sum is reported at the maximum possible score of 75. The results of the tests carried out on the cable 11 according to the invention and the control cable T1 are summarized in Table 1 below.
2015PAT00205 FR - 21 - Câble 189 23 - Témoin T1 Câble 189 26 -11 D2 (pm) 15,6 38,2 D3 (pm) 12,1 44,2 D2' (p 15,6 38,2 D3' (p 12,1 44,2 Sens d'enroulement TI ZZZ ZZZ Sens d'enroulement TE ZZZ ZZZ Sens d'enroulement S S assemblage Fm (N) 21051 25944 Note de faciès 0 % 44 % Tableau 1 [0154] On note que le câble 11 selon l'invention présente à la fois une force à la rupture améliorée et une adhésion que l'on peut envisager comme améliorée du fait de la moindre présence de capillaires à l'interface adhésive que pour le câble témoin T1 comme le montre la présence de nombreux capillaires sur la figure 7 (câble Témoin T1) et l'absence de ces capillaires sur la figure 6 (câble de l'invention 11). [0155] Bien entendu, l'invention n'est pas limitée à l'exemple de réalisation précédemment décrit. [0156] C'est ainsi par exemple que certains fils pourraient être à section non circulaire, par exemple déformé plastiquement, notamment à section sensiblement ovale ou polygonale, par exemple triangulaire, carrée ou encore rectangulaire. [0157] Les fils, de section circulaire ou non, par exemple un fil ondulé, pourront être vrillés, tordus en forme d'hélice ou en zig-zag. Dans de tels cas, il faut bien sûr comprendre que le diamètre du fil représente le diamètre du cylindre de révolution imaginaire qui entoure le fil (diamètre d'encombrement), et non plus le diamètre (ou toute autre taille transversale, si sa section n'est pas circulaire) du fil d'âme lui-même. [0158] Pour des raisons de faisabilité industrielle, de coût et de performance globale, on préfère mettre en oeuvre l'invention avec des fils linéaires, c'est-à-dire droit, et de section transversale conventionnelle circulaire. [0159] On pourra également combiner les caractéristiques des différents modes de réalisation décrits ou envisagés ci-dessus sous réserve que celles-ci soient compatibles entre elles. [0160] On pourra ainsi envisager des modes de réalisation dans lesquels chaque 2015PAT00205 FR -22- toron interne est tel que M=2, N=7, 8, 9 ou 10 et P=13, 14, 15 ou 16, de préférence M=2, N=7, 8 ou 9 et P=14, et plus préférentiellement M=2, N=9 et P=14 ou bien dans lesquels chaque toron interne est tel que M=3, N=7, 8, 9 ou 10 et P=13, 14, 15 ou 16, de préférence M=3, N=8 ou 9 et P=14 ou 15, et plus préférentiellement M=3, N=9 et P=14. [0161] On pourra également envisager des modes de réalisation dans lesquels chaque toron externe est tel que M'=2, N'=7, 8, 9 ou 10 et P'=13, 14, 15 ou 16, de préférence M'=2, N'=7, 8 ou 9 et P'=14, et plus préférentiellement M'=2, N'=9 et P'=14 ou bien dans lesquels chaque toron externe est tel que M'=3, N'=7, 8, 9 ou 10 et P'=13, 14, 15 ou 16, de préférence M'=3, N'=8 ou 9 et P'=14 ou 15, et plus préférentiellement M'=3, N'=9 et P'=14. [0162] Enfin, on pourra envisager des modes de réalisation dans lesquels chaque toron interne et/ou externe est à deux couches, c'est-à-dire que la couche externe est enroulée directement au contact de la couche interne de chaque toron interne et/ou externe. Chaque toron interne et/ou externe est dépourvu de couche intermédiaire.2015PAT00205 EN - 21 - Cable 189 23 - T1 indicator Cable 189 26 -11 D2 (pm) 15.6 38.2 D3 (pm) 12.1 44.2 D2 '(p 15.6 38.2 D3' (p) 12.1 44.2 Winding direction TI ZZZ ZZZ Winding direction TE ZZZ ZZZ Winding direction SS Assembly Fm (N) 21051 25944 Facing score 0% 44% Table 1 [0154] Note that the cable 11 according to the invention has both an improved breaking force and an adhesion that can be considered as improved due to the lower presence of capillaries at the adhesive interface than for the control cable T1 as shown by the presence of many capillaries in Figure 7 (T1 indicator cable) and the absence of these capillaries in Figure 6 (cable of the invention 11). [0155] Of course, the invention is not limited to the example of For example, some of the yarns could be of non-circular section, for example plastically deformed, in particular with a substantially oval or ygonal, for example triangular, square or rectangular. The son, of circular section or not, for example a corrugated wire, may be twisted, twisted helical or zig-zag. In such cases, it must of course be understood that the diameter of the wire represents the diameter of the cylinder of imaginary revolution which surrounds the wire (space diameter), and no longer the diameter (or any other transverse size, if its section is not circular) of the core wire itself. For reasons of industrial feasibility, cost and overall performance, it is preferred to implement the invention with linear son, that is to say right, and conventional circular cross section. It is also possible to combine the characteristics of the different embodiments described or envisaged above provided that they are compatible with each other. It will thus be possible to envisage embodiments in which each internal strand is such that M = 2, N = 7, 8, 9 or 10 and P = 13, 14, 15 or 16, preferably M = 2, N = 7, 8 or 9 and P = 14, and more preferably M = 2, N = 9 and P = 14 or in which each inner strand is such that M = 3, N = 7, 8, 9 or 10 and P = 13, 14, 15 or 16, preferably M = 3, N = 8 or 9 and P = 14 or 15, and more preferably M = 3, N = 9 and P = 14. Embodiments may also be envisaged in which each outer strand is such that M '= 2, N' = 7, 8, 9 or 10 and P '= 13, 14, 15 or 16, preferably M' = 2, N '= 7, 8 or 9 and P' = 14, and more preferably M '= 2, N' = 9 and P '= 14 or in which each external strand is such that M' = 3, N '= 7, 8, 9 or 10 and P' = 13, 14, 15 or 16, preferably M '= 3, N' = 8 or 9 and P '= 14 or 15, and more preferably M' = 3, N '= 9 and P' = 14. Finally, it is possible to envisage embodiments in which each inner and / or outer strand is in two layers, that is to say that the outer layer is wound directly in contact with the inner layer of each inner strand. and / or external. Each inner and / or outer strand is devoid of intermediate layer.
2015PAT00205 FR2015PAT00205 EN