FR3016849A1 - DETERMINING AN ANGULAR STEERING REFERENCE POSITION ASSISTED FROM FRONTS AMOUNTING AND DESCENDING FROM AN INDEX SIGNAL - Google Patents

DETERMINING AN ANGULAR STEERING REFERENCE POSITION ASSISTED FROM FRONTS AMOUNTING AND DESCENDING FROM AN INDEX SIGNAL Download PDF

Info

Publication number
FR3016849A1
FR3016849A1 FR1450752A FR1450752A FR3016849A1 FR 3016849 A1 FR3016849 A1 FR 3016849A1 FR 1450752 A FR1450752 A FR 1450752A FR 1450752 A FR1450752 A FR 1450752A FR 3016849 A1 FR3016849 A1 FR 3016849A1
Authority
FR
France
Prior art keywords
steering
index
pulse
angular
index pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1450752A
Other languages
French (fr)
Other versions
FR3016849B1 (en
Inventor
Romaric Pregniard
Christophe Ravier
Xavier Palandre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Europe SAS
Original Assignee
JTEKT Europe SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1450752A priority Critical patent/FR3016849B1/en
Application filed by JTEKT Europe SAS filed Critical JTEKT Europe SAS
Priority to BR112016016334A priority patent/BR112016016334A8/en
Priority to PCT/FR2015/050202 priority patent/WO2015114256A1/en
Priority to EP15705342.2A priority patent/EP3099557B1/en
Priority to CN201580006336.1A priority patent/CN106029474B/en
Priority to US15/113,392 priority patent/US9937951B2/en
Priority to PL15705342T priority patent/PL3099557T3/en
Publication of FR3016849A1 publication Critical patent/FR3016849A1/en
Application granted granted Critical
Publication of FR3016849B1 publication Critical patent/FR3016849B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0245Means or methods for determination of the central position of the steering system, e.g. straight ahead position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Navigation (AREA)

Abstract

La présente invention concerne un procédé de détermination d'une position de référence (θréf) absolue de direction assistée, comprenant une étape d'acquisition d'une première position de front (θF1) correspondant à un premier front (F1) d'une première impulsion d'index (T1) générée lorsqu'un l'organe de direction mobile (2) franchit une position indexée selon un premier sens de déplacement (CW), une étape d'acquisition d'une seconde position de front (θF2) correspondant à un second front (F2) d'une seconde impulsion d'index (T2) générée lorsque l'organe de direction mobile (2) franchit la même position indexée selon un second sens de déplacement (CCW) opposé au premier sens de déplacement, et une étape (d) de calcul d'une position de référence (θréf), au cours de laquelle on calcule, à partir d'une moyenne de la première position de front (θF1) et de la seconde position de front (θF2), une position de référence (θréf) de la direction assistée.The present invention relates to a method for determining an absolute reference position (θref) of assisted steering, comprising a step of acquiring a first front position (θF1) corresponding to a first front (F1) of a first index pulse (T1) generated when the movable steering member (2) passes an indexed position in a first direction of movement (CW), a step of acquiring a corresponding second edge position (θF2) at a second edge (F2) of a second index pulse (T2) generated when the movable direction member (2) passes the same indexed position in a second direction of movement (CCW) opposite to the first direction of movement, and a step (d) of calculating a reference position (θref), during which is calculated, from an average of the first front position (θF1) and the second front position (θF2) , a reference position (θref) of the power steering .

Description

DETERMINATION D'UNE POSITION DE REFERENCE ANGULAIRE DE DIRECTION ASSISTEE A PARTIR DE FRONTS MONTANTS ET DESCENDANTS D'UN SIGNAL D'INDEX La présente invention concerne le domaine général des directions assistées, et notamment des directions à assistance électrique, ainsi que les procédés de gestion de telles directions assistées. Elle concerne plus particulièrement les procédés qui permettent de déterminer la position absolue d'un organe mobile de la direction, par exemple 10 la position angulaire absolue du volant de conduite, ou bien la position absolue de la crémaillère de direction. Cette information de position absolue du volant (ou de la crémaillère) peut en effet être nécessaire à l'accomplissement de diverses fonctions embarquées, telles que le retour automatique de la direction au point 15 milieu, le contrôle des indicateurs de changement de direction ou de l'orientation de feux directionnels, l'assistance au stationnement, etc. A cet effet, il est notamment connu de déduire la position angulaire absolue du volant à partir d'une part d'une position d'origine "mécanique" absolue, définie par étalonnage en usine, et d'autre part d'une mesure de la 20 position angulaire relative de l'arbre du moteur d'assistance de direction, ladite mesure de position angulaire relative permettant de quantifier le déplacement angulaire du volant, et plus globalement le déplacement des différents organes constitutifs de la chaîne cinématique de la direction, par rapport à ladite position d'origine. 25 La position d'origine absolue peut avantageusement correspondre au point milieu de la direction, c'est-à-dire à la configuration dans laquelle le volant (respectivement la crémaillère) est centré, c'est-à-dire qu'il n'est orienté ni vers la gauche, ni vers la droite. Toutefois, en cas d'interruption de l'alimentation électrique du 30 calculateur qui stocke l'information relative à la position d'origine, par exemple lors d'un remplacement de batterie, ou bien encore suite à un décalage mécanique survenu entre le moteur d'assistance et le reste de la chaîne cinématique, par exemple lors d'un saut de la courroie d'entraînement qui relie l'arbre dudit moteur d'assistance au pignon qui engrène sur la crémaillère de 35 direction, le référentiel basé sur ladite position d'origine absolue peut être perdu ou faussé.The present invention relates to the general field of assisted steering, and in particular to electric-assisted steering, as well as to the management methods of the steering system. such assisted directions. It relates more particularly to the methods which make it possible to determine the absolute position of a movable member of the direction, for example the absolute angular position of the steering wheel, or the absolute position of the steering rack. This absolute position information of the steering wheel (or the rack) may indeed be necessary for the performance of various onboard functions, such as the automatic return of the direction to the middle point, the control of the indicators of change of direction or direction. orientation of directional lights, parking assistance, etc. For this purpose, it is in particular known to deduce the absolute angular position of the steering wheel from, on the one hand, an absolute "mechanical" origin position, defined by factory calibration, and on the other hand a measurement of the relative angular position of the steering assist motor shaft, said relative angular position measurement making it possible to quantify the angular displacement of the steering wheel, and more generally the displacement of the various components constituting the kinematic chain of the steering, by relation to said original position. The position of absolute origin may advantageously correspond to the midpoint of the direction, that is to say to the configuration in which the steering wheel (respectively the rack) is centered, that is to say that it 'is oriented neither to the left nor to the right. However, in the event of interruption of the power supply of the computer which stores the information relating to the original position, for example during a battery replacement, or else following a mechanical shift occurring between the motor of assistance and the rest of the drive train, for example during a jump of the drive belt which connects the shaft of said assistance motor to the pinion which meshes with the steering rack, the reference system based on said position of absolute origin can be lost or distorted.

C'est pourquoi on peut prévoir des moyens, intégrés à la direction assistée, qui permettent de retrouver ladite position d'origine. A cet effet, il est notamment connu de mettre en place, au sein de la direction assistée, et plus particulièrement au niveau de la colonne de 5 direction qui supporte le volant de conduite, un capteur de type « index ». Un tel index est de préférence conçu pour marquer une position de référence (position d'index) unique dans un même tour complet de volant de conduite, et plus particulièrement pour générer une impulsion lorsque la colonne de direction passe par une position angulaire indexée prédéterminée, 10 qui constitue ainsi une référence mécanique absolue. A partir de l'information fournie par cet index, on peut, lors d'une opération d'étalonnage initial (apprentissage) en usine, mesurer l'écart qui existe entre d'une part la position angulaire de référence, qui correspond typiquement à la position angulaire qu'occupe le volant de conduite au moment 15 du franchissement de l'index, et d'autre part la position de l'origine absolue choisie, qui correspond typiquement à la position angulaire qu'occupe ce même volant de conduite lorsque la direction se trouve en son point milieu. Les positions angulaires peuvent être notamment mesurées au moyen de tout capteur approprié, et par exemple d'un capteur de position 20 angulaire associé à l'arbre du moteur d'assistance. En définitive, l'origine absolue du mécanisme de direction peut être définie comme la somme (algébrique) de la position de référence (position repérée par l'index) et d'un terme correctif de type « offset », qui correspond à l'écart susmentionné, évalué initialement par étalonnage. 25 Selon ce principe, on peut à tout moment, dès lors que l'information sur la position de référence (position d'index) est connue, retrouver l'origine absolue du référentiel de la direction, en ajoutant à ladite position de référence (position d'index) un terme correctif, qui correspond à l'écart angulaire (offset) mesuré initialement lors de l'opération d'étalonnage en usine. 30 En pratique, en croisant les informations issues d'une part de l'index, et d'autre part du capteur qui mesure la position angulaire relative de l'arbre du moteur d'assistance, et plus particulièrement en identifiant la position angulaire relative de l'arbre moteur à laquelle on détecte l'impulsion d'index, on peut avantageusement ré-étalonner le référentiel de mesure, chaque fois que 35 cela est nécessaire, en retrouvant son origine absolue.That is why it is possible to provide means, integrated with the power steering, which make it possible to recover said original position. To this end, it is particularly known to set up, within the power steering, and more particularly at the level of the steering column which supports the steering wheel, an "index" type sensor. Such an index is preferably designed to mark a single reference position (index position) in the same complete turn of the steering wheel, and more particularly to generate a pulse when the steering column passes through a predetermined indexed angular position, 10 which thus constitutes an absolute mechanical reference. From the information provided by this index, it is possible, during an initial calibration operation (learning) in the factory, to measure the difference that exists between on the one hand the angular position of reference, which corresponds typically to the angular position occupied by the steering wheel at the time of crossing the index, and secondly the position of the absolute origin chosen, which typically corresponds to the angular position occupied by the same steering wheel when the direction is in its middle point. The angular positions may in particular be measured by means of any suitable sensor, for example an angular position sensor associated with the assistance motor shaft. Finally, the absolute origin of the steering mechanism can be defined as the sum (algebraic) of the reference position (position indicated by the index) and of a corrective term of "offset" type, which corresponds to the above-mentioned deviation, initially evaluated by calibration. According to this principle, it is possible at any time, when the information on the reference position (index position) is known, to find the absolute origin of the reference frame of the direction, by adding to said reference position ( index position) a corrective term, which corresponds to the angular deviation (offset) initially measured during the factory calibration operation. In practice, by crossing the information coming from the index on the one hand and the sensor, which measures the relative angular position of the assistance motor shaft, and more particularly by identifying the relative angular position. of the motor shaft to which the index pulse is detected, it is advantageous to re-calibrate the measurement reference system, whenever necessary, by finding its absolute origin.

De la sorte, on peut de nouveau assimiler, dans ce référentiel ré-étalonné, la position angulaire relative de l'arbre moteur à la position angulaire absolue du volant. Toutefois, un tel procédé de détermination d'origine absolue, qui se 5 fonde sur la détection d'une position de référence au moyen d'un index, peut parfois souffrir d'une certaine imprécision. En effet, au moment où il devient nécessaire de ré-étalonner le référentiel de mesure, les conditions de mise en oeuvre de l'index, et plus globalement de la direction, peuvent différer des conditions dans lesquelles 10 l'étalonnage avait été effectué en usine. Les conditions de mise en oeuvre de l'index n'étant pas strictement reproductibles, une certaine imprécision affecte la mesure même de la position de référence, et, par conséquent, la définition de l'origine absolue à partir de cette position de référence. 15 Cette imprécision peut notamment trouver son origine dans les dérives thermiques de l'index, les variations de température ayant en effet tendance à modifier la largeur de l'impulsion d'index. Plus particulièrement, lorsque la température du capteur augmente, la largeur d'impulsion, et notamment la largeur à mi-hauteur, tend également à augmenter, ce qui peut 20 fausser un repérage de la position de référence si ledit repérage repose sur la détection du front montant ou du front descendant de ladite impulsion. Une autre source d'erreur réside dans l'élasticité intrinsèque des organes mécaniques qui forment la chaîne cinématique qui relie l'arbre du moteur d'assistance à la colonne de direction équipée de l'index, ou dans les 25 jeux qui peuvent exister au niveau des liaisons entre ces organes mécaniques. Des déformations élastiques ou des jeux dans la chaîne cinématique peuvent en effet générer un décalage entre le repère attaché au moteur d'assistance et le repère attaché à l'index, ce qui peut nuire à la fiabilité de la corrélation (qui est présumée exacte, dans l'hypothèse d'une chaîne 30 cinématique parfaitement rigide) entre la position angulaire relative mesurée au niveau de l'arbre moteur et la position indexée absolue détectée par l'index. Une dilatation ou une contraction thermique des organes de direction, et notamment de la crémaillère, peuvent également contribuer à décaler l'index. 35 Enfin, un autre type d'erreur peut résulter des conditions dans lesquelles s'opère le passage de la colonne de direction devant la position indexée, la position apparente et la largeur de l'impulsion d'index pouvant notamment être sensibles à la vitesse instantanée de rotation du volant de conduite, ou bien encore au degré des efforts qui s'exercent sur ledit volant de conduite ou sur la crémaillère de direction.In this way, it is again possible to assimilate, in this re-calibrated reference frame, the relative angular position of the motor shaft at the absolute angular position of the flywheel. However, such an absolute origin determination method, which is based on the detection of a reference position by means of an index, can sometimes suffer from a certain inaccuracy. Indeed, at the moment when it becomes necessary to recalibrate the measurement reference system, the conditions of implementation of the index, and more generally of the direction, may differ from the conditions under which the calibration had been carried out. factory. Since the conditions for implementing the index are not strictly reproducible, a certain inaccuracy affects the actual measurement of the reference position and, consequently, the definition of the absolute origin from this reference position. This inaccuracy can notably originate in the thermal drifts of the index, the temperature variations having indeed a tendency to modify the width of the index pulse. More particularly, as the temperature of the sensor increases, the pulse width, and in particular the width at half height, also tends to increase, which may bias a reference position marking if said registration is based on the detection of the sensor. rising edge or falling edge of said pulse. Another source of error lies in the intrinsic elasticity of the mechanical members that form the kinematic chain which connects the assistance motor shaft to the index-equipped steering column, or in the games that may exist at the time. level of the connections between these mechanical organs. Elastic deformations or games in the driveline can indeed generate a shift between the mark attached to the assistance engine and the mark attached to the index, which can affect the reliability of the correlation (which is assumed to be accurate, assuming a perfectly rigid kinematic chain) between the relative angular position measured at the motor shaft and the absolute indexed position detected by the index. Thermal expansion or contraction of the steering members, and in particular the rack, can also help to shift the index finger. Finally, another type of error may result from the conditions under which the passage of the steering column in front of the indexed position takes place, the apparent position and the width of the index pulse being particularly sensitive to speed. instantaneous rotation of the steering wheel, or even the degree of effort exerted on said steering wheel or on the steering rack.

Les objets assignés à l'invention visent par conséquent à remédier aux inconvénients susmentionnés, et à proposer un nouveau type de direction assistée et un nouveau procédé qui permettent de définir rapidement, avec une précision et une fiabilité améliorées, une position de référence de direction assistée, à partir de laquelle déterminer les positions absolues des organes de ladite direction assistée. Les objets assignés à l'invention sont atteints au moyen d'un procédé de définition d'une position de référence de direction assistée, ladite direction assistée comprenant au moins un organe de direction mobile dont la position varie selon l'orientation donnée à la direction, ledit procédé comprenant : - une étape (a) de repérage, au cours de laquelle on génère une impulsion d'index lorsque l'organe de direction mobile passe par une position prédéterminée, dite « position indexée », - une étape (b) de traitement, au cours de laquelle on analyse l'impulsion d'index pour y détecter un front montant et/ou un front descendant, - une étape (c) de caractérisation au cours de laquelle on associe au front, montant ou descendant, identifié lors de l'étape (b) de traitement une valeur dite « position de front », qui est représentative de la position que l'organe de direction mobile occupe quand ledit front se produit, ledit procédé étant caractérisé en ce que - les étapes (a) de repérage, (b) de traitement, et (c) de caractérisation sont répétées pour d'une part une première impulsion d'index qui est générée lorsque l'organe de direction mobile franchit la position indexée selon un premier sens de déplacement, et d'autre part une seconde impulsion d'index qui est générée lorsque ledit organe de direction mobile franchit cette même position indexée selon un second sens de déplacement, opposé au premier sens de déplacement, de telle manière que l'on acquiert respectivement d'une part une première position de front, qui correspond à un premier front généré selon le premier sens de déplacement, et d'autre part une seconde position de front, qui correspond à un second front qui est généré selon le second sens de déplacement et qui est de même nature, montante ou descendante, que le premier front, et en ce que ledit procédé comporte une étape (d) de calcul d'une position de référence, au cours de laquelle on calcule, à partir de la première position de front et de la seconde position de front, une position de référence 10 de la direction assistée. Avantageusement, les inventeurs ont en effet constaté qu'en recherchant la position de référence, c'est-à-dire le centre véritable de la position indexée, à partir de deux fronts de même nature (par exemple deux fronts montants) correspondant à la même position indexée qui est « vue » 15 d'une part dans un premier sens de passage, puis d'autre part dans un second sens de passage contraire au premier, on pouvait réduire significativement les erreurs liées à une estimation qui reposait jusqu'à présent sur un passage unique, et sur une impulsion unique. En effet, en moyennant les deux perceptions (distinctes mais 20 sensiblement symétriques) d'une même position indexée, telles qu'elles sont livrées par les deux impulsions qui correspondent à deux franchissements, en opposition, et plus particulièrement dans le sens horaire puis dans le sens antihoraire (ou inversement), d'une seule et même position angulaire matérielle du capteur à index, les erreurs attachées à la première impulsion sont 25 compensées par les erreurs (sensiblement symétriques) attachées à la seconde impulsion, de sorte que, globalement, en moyenne, lesdites erreurs, ainsi que les phénomènes d'hystérésis, s'annulent mutuellement. Le procédé permet donc de s'affranchir des sources d'erreurs mentionnées plus haut, et ainsi de définir avec une grande précision et une 30 grande fiabilité une position de référence absolue qui correspond au véritable centre matériel de la position indexée. En d'autres termes, le procédé conforme à l'invention rend avantageusement la mesure de la position de référence (position d'index) reproductible, en réduisant voire en éliminant les dérives et les sources 35 d'imprécision, quel que soit le moment où intervient ladite mesure de la position de référence.The objects assigned to the invention therefore seek to overcome the aforementioned drawbacks, and to propose a new type of power steering and a new method that can quickly define, with improved accuracy and reliability, a reference position of power steering from which to determine the absolute positions of the members of said power steering. The objects assigned to the invention are achieved by means of a method of defining a power steering reference position, said power steering comprising at least one movable steering member whose position varies according to the orientation given to the direction. , said method comprising: - a step (a) of locating, during which an index pulse is generated when the movable direction member passes through a predetermined position, called "indexed position", - a step (b) processing, during which the index pulse is analyzed to detect a rising edge and / or a falling edge, - a characterization step (c) during which the rising or falling edge is identified. during the step (b) of treatment, a value called "front position", which is representative of the position that the movable direction member occupies when said front occurs, said method being characterized in that the steps of (a) tracking, (b) processing, and (c) characterization are repeated for firstly a first index pulse which is generated when the movable steering member passes the indexed position according to a first direction of movement, and secondly a second index pulse which is generated when said movable direction member crosses the same indexed position in a second direction of movement, opposite the first direction of movement, so that the on the one hand, a first front position, which corresponds to a first front generated in the first direction of movement, and on the other hand a second front position, which corresponds to a second front which is generated according to the second edge, are respectively acquired. direction of movement and which is of the same nature, ascending or descending, as the first front, and in that said method comprises a step (d) of calculating a reference position, during which one calculates, from the first front position and the second front position, a reference position 10 of the power steering. Advantageously, the inventors have indeed found that by looking for the reference position, that is to say the true center of the indexed position, from two fronts of the same nature (for example two rising fronts) corresponding to the same indexed position which is "seen" on the one hand in a first direction of passage, then on the other hand in a second direction of passage opposite to the first one, could significantly reduce the errors associated with an estimate which was based up to present on a single passage, and on a single impulse. Indeed, by averaging the two perceptions (distinct but substantially symmetrical) of the same indexed position, as they are delivered by the two pulses which correspond to two crossings, in opposition, and more particularly in the clockwise direction then in counterclockwise (or vice versa), of one and the same material angular position of the index sensor, the errors attached to the first pulse are compensated by the (substantially symmetrical) errors attached to the second pulse, so that globally on average, the said errors, as well as the hysteresis phenomena, cancel each other out. The method thus makes it possible to overcome the sources of errors mentioned above, and thus to define with great precision and high reliability an absolute reference position which corresponds to the true material center of the indexed position. In other words, the method according to the invention advantageously makes the measurement of the reference position (index position) reproducible, reducing or even eliminating drifts and sources of inaccuracy, whatever the moment where said measurement of the reference position occurs.

Ledit procédé permet ainsi avantageusement de définir de manière fiable et actualisable l'origine absolue du référentiel de direction, à toute période de la vie du véhicule, à partir d'une part de la position de référence (qui est mise à jour chaque fois que cela est nécessaire par une nouvelle acquisition d'impulsion d'index) et d'autre part d'un terme correctif (d'origine) déterminé initialement par étalonnage en usine comme indiqué plus haut. D'autres objets, caractéristiques et avantages de l'invention apparaîtront plus en détail à la lecture de la description qui suit, ainsi qu'à l'aide des dessins annexés, fournis à titre purement illustratif et non limitatif, parmi 10 lesquels : La figure 1 illustre, selon une vue schématique, un exemple de direction assistée conforme à l'invention. La figure 2 illustre un schéma de fonctionnement d'un procédé conforme à l'invention. 15 La figure 3 illustre, sur un diagramme représentant une première et une seconde impulsion d'index générées respectivement dans le sens horaire et dans le sens antihoraire, le principe de définition des positions de front, ainsi que d'une position de référence, qui correspond ici au centre commun desdites impulsions d'index. 20 La présente invention concerne une direction assistée 1, ainsi qu'un procédé de définition d'une position de référence e) réf de direction assistée, ladite direction assistée 1 comprenant au moins un organe de direction mobile 2, dont la position varie selon l'orientation donnée à la direction. 25 Tel que cela est illustré sur la figure 1, la direction assistée 1 selon l'invention peut avantageusement comprendre, de manière connue en soi, une colonne de direction 2, qui forme de préférence l'organe de direction mobile 2 au sens de l'invention (et qui pourra être assimilée, par commodité, audit organe mobile 2 dans ce qui suit), ladite colonne de direction 2 portant à l'une 30 de ses extrémités un volant de conduite 3, sur lequel le conducteur peut agir pour choisir l'orientation de la direction, et à son autre extrémité un pignon 4 qui engrène de préférence sur une crémaillère 5, elle-même guidée en translation dans un carter de direction fixé sur la carrosserie du véhicule (non représenté). 35 De préférence, les extrémités gauche et droite de la crémaillère 5 sont reliées chacune à une roue directrice 6, 7 par une biellette de direction 8, 9, de sorte que les déplacements alternés de la crémaillère 5 commandent les changements d'orientation (en lacet) desdites roues directrices 6, 7, c'est-à-dire l'orientation de la direction. La direction 1 comprend également un moteur d'assistance 10 à double sens de rotation dont l'arbre 11 est accouplé à un organe mobile de la direction, tel que la colonne de direction 2 ou la crémaillère 5, de manière à pouvoir appliquer audit organe mobile 2, selon des lois d'assistance prédéterminées, un effort d'assistance, moteur ou éventuellement résistant. De façon particulièrement préférentielle, ledit moteur d'assistance 10 10 est un moteur électrique, et plus particulièrement un moteur à courant continu. Toutefois, l'invention pourrait éventuellement s'appliquer à un autre type de moteur d'assistance, par exemple hydraulique. Selon une variante possible de réalisation, illustrée sur la figure 1, 15 le moteur d'assistance 10 pourra être accouplé à la crémaillère 5 par un mécanisme d'entraînement à courroie de transmission 12 et vis à billes 13. Toutefois, l'invention est parfaitement applicable à toute direction pourvue d'un quelconque mécanisme d'assistance. Ainsi, la direction 1 pourrait comporter par exemple un mécanisme 20 d'assistance à double pignon, dans lequel un pignon moteur fixé à l'arbre 11 du moteur d'assistance 10 viendrait engrener sur une denture de la crémaillère 5, à distance du pignon 4 manoeuvré par la colonne de direction 2, ou bien encore un mécanisme d'assistance à simple pignon, dans lequel le moteur d'assistance 10 agirait directement sur la colonne de direction 2, par 25 l'intermédiaire par exemple d'un réducteur à roue tangente et vis sans fin. Selon l'invention, le procédé de définition d'une position de référence bref comprend une étape (a) de repérage, au cours de laquelle on génère une impulsion d'index T1, T2 lorsque l'organe de direction mobile 2 passe par une position prédéterminée, dite « position indexée ». 30 Concrètement, on utilisera à cet effet un capteur à index, ci-après « index » 14, qui permet de repérer matériellement une position absolue de l'organe de direction mobile 2, dans un référentiel considéré comme fixe et par rapport auquel s'effectuent les déplacements guidés dudit organe de direction mobile 2, tel que le référentiel associé à la carrosserie du véhicule et/ou le 35 référentiel associé au carter de direction (carter de direction qui est de préférence fixé à ladite carrosserie).Said method thus advantageously makes it possible to reliably and updatably define the absolute origin of the direction reference frame, at any period of the life of the vehicle, from a part of the reference position (which is updated whenever this is necessary by a new acquisition of index pulse) and secondly a corrective (original) term initially determined by factory calibration as indicated above. Other objects, features and advantages of the invention will appear in more detail on reading the description which follows, and with the aid of the accompanying drawings, provided for purely illustrative and non-limiting purposes, among which: Figure 1 illustrates, in a schematic view, an example of power steering according to the invention. Figure 2 illustrates a flow diagram of a method according to the invention. FIG. 3 illustrates, on a diagram representing a first and a second index pulse generated respectively clockwise and counterclockwise, the principle of defining the front positions, as well as a reference position, which here corresponds to the common center of said index pulses. The present invention relates to a power steering 1, as well as a method for defining a reference position e) power steering ref, said power steering 1 comprising at least one movable steering member 2, whose position varies according to the direction given to management. As illustrated in FIG. 1, the power steering 1 according to the invention may advantageously comprise, in a manner known per se, a steering column 2, which preferably forms the movable steering member 2 in the sense of FIG. invention (and which can be assimilated, for convenience, to said movable member 2 in what follows), said steering column 2 carrying at one of its ends a steering wheel 3, on which the driver can act to choose the orientation of the steering, and at its other end a pinion 4 which preferably meshes with a rack 5, itself guided in translation in a steering box fixed to the vehicle body (not shown). Preferably, the left and right ends of the rack 5 are each connected to a steering wheel 6, 7 by a steering rod 8, 9, so that the alternating movements of the rack 5 control the changes of orientation (in yaw) of said steering wheels 6, 7, that is to say the orientation of the steering. The direction 1 also comprises an assistance motor 10 with a double direction of rotation whose shaft 11 is coupled to a movable member of the steering, such as the steering column 2 or the rack 5, so as to be able to apply to said member mobile 2, according to predetermined assistance laws, an assistance effort, motor or possibly resistant. In a particularly preferred manner, said assistance motor 10 is an electric motor, and more particularly a DC motor. However, the invention could possibly be applied to another type of assistance engine, for example hydraulic. According to a possible variant embodiment, illustrated in FIG. 1, the assistance motor 10 can be coupled to the rack 5 by a transmission belt drive mechanism 12 and a ball screw 13. However, the invention is perfectly applicable to any direction provided with any assistance mechanism. Thus, the direction 1 could comprise for example a double-pinion assistance mechanism 20, in which a motor pinion fixed to the shaft 11 of the assistance motor 10 would mesh with a toothing of the rack 5, away from the pinion. 4 maneuvered by the steering column 2, or even a single pinion assistance mechanism, wherein the assistance motor 10 acts directly on the steering column 2, for example through a reducer to tangent wheel and worm. According to the invention, the method for defining a short reference position comprises a step (a) of locating, during which an index pulse T1, T2 is generated when the mobile steering member 2 passes through a predetermined position, called "indexed position". Concretely, an index sensor, hereinafter referred to as "index" 14, will be used for this purpose, which makes it possible to locate an absolute position of the mobile steering member 2 in a reference frame considered as fixed and with respect to which perform the guided movements of said movable steering member 2, such as the reference frame associated with the vehicle body and / or the reference associated with the steering gear (steering gear which is preferably attached to said body).

L'impulsion d'index T1, T2 formera avantageusement une impulsion de largeur non nulle (largeur qui correspondra par exemple à une rotation de 30 degrés du volant de conduite), de préférence sous forme d'un signal analogique, et par exemple d'une courbe en cloche.The index pulse T1, T2 will advantageously form a pulse of non-zero width (width which will correspond for example to a rotation of 30 degrees of the driving wheel), preferably in the form of an analog signal, and for example of a bell curve.

Une impulsion d'index T1, T2 sera avantageusement générée automatiquement à chaque franchissement, par l'organe de direction mobile 2, du point (ou du secteur, notamment du secteur angulaire) correspondant à la position indexée. De préférence, on pourra utiliser, tel que cela est illustré sur la figure 2, un index 14 comprenant un aimant 15, solidaire de l'organe mobile 2, destiné à coopérer avec un détecteur magnétique 16, du genre sonde à effet Hall, lui-même fixé à un carter de capteur 17 (solidaire du carter de direction) par rapport auquel s'effectue le déplacement dudit organe mobile 2. Ainsi, le passage dudit aimant 15 devant le détecteur magnétique 16, en l'espèce au plus près dudit détecteur magnétique, génère une variation du champ magnétique qui traverse ledit détecteur 16, en l'occurrence l'apparition d'un pic de champ magnétique, qui se traduit par une impulsion d'index T1, T2. En d'autres termes, l'impulsion d'index T1, T2 est de préférence 20 une impulsion analogique délivrée par un capteur à index magnétique. On pourra ainsi générer une impulsion d'index au moyen d'un index 14 de structure relativement simple, robuste, compacte, et peu coûteuse, et qui fonctionne avantageusement sans contact, et donc sans générer d'usure. Le cas échéant, l'index 14 pourrait fonctionner selon une 25 technologie autre que magnétique, et notamment optique. Par exemple, on pourrait prévoir sur l'organe de direction mobile 2 un trou ou un système réfléchissant qui permettrait de générer une impulsion lumineuse, dans le spectre visible ou invisible (par exemple infrarouge), en interagissant par transmission ou réflexion avec un faisceau incident émis par une source 30 lumineuse solidaire du carter de capteur 17 (lui-même solidaire du carter de direction). Le faisceau transmis, dévié ou réfléchi serait ensuite perçu par un détecteur optique, de type photodiode ou CCD, également placé sur le carter de capteur 17. Selon une variante de réalisation préférentielle, l'index 14 formera 35 un capteur rotatif, repérant une position indexée qui correspond à une position angulaire dans un mouvement de rotation de l'organe de direction mobile 2, par exemple une position angulaire absolue dans un tour de manoeuvre de l'organe de direction mobile 2, et plus particulièrement dans un tour du volant de conduite 3. Par ailleurs, l'organe de direction mobile 2 sera de préférence 5 constitué par la colonne de direction 2 qui porte le volant de conduite 3. On pourra alors avantageusement générer une impulsion d'index T1, T2 au passage de ladite colonne de direction 2 par une position angulaire indexée prédéterminée. Plus particulièrement, selon un exemple de réalisation, le signal 10 d'impulsion d'index T1, T2 pourra ainsi être généré lors du passage en rotation de la partie de la colonne de direction 2 porteuse de l'aimant 15 en vis-à-vis (au plus près) du détecteur magnétique 16 porté par le carter de capteur 17 dans lequel ladite colonne de direction 2 tourne sous l'action du volant de conduite 3 dont elle est solidaire. 15 On notera que, avantageusement, le placement de l'index 14 au niveau de la colonne de direction permettra une intégration simple et compacte dudit index 14. Ceci étant, selon une autre variante possible de l'invention, l'index pourrait être formé par un capteur translatif. 20 Ainsi, l'invention pourrait parfaitement s'appliquer en agençant l'index 14 différemment, par exemple au niveau de la crémaillère 5, de manière à détecter le passage en translation longitudinale d'un tronçon de ladite crémaillère 5, par exemple du milieu (mi-longueur) de ladite crémaillère, porteur de l'aimant 15, par une position indexée matérialisée par un détecteur 25 magnétique 16 intégré au carter de direction qui guide la translation de ladite crémaillère 5. Dans tous les cas, la direction assistée et l'index 14 seront de préférence agencés pour que, par construction, la position indexée, repérée par l'index 14, soit relativement proche du point milieu de la direction. 30 Avantageusement, un tel choix permet en pratique de générer une impulsion d'index T1, T2 rapidement, peu après le déverrouillage de la direction et la mise en service du véhicule, du fait que des mouvements du volant de faible amplitude suffisent alors à provoquer le franchissement de la position indexée, et donc la génération d'une impulsion exploitable pour 35 calculer une position de référence.An index pulse T1, T2 will advantageously be automatically generated at each crossing, by the mobile steering member 2, the point (or sector, including the angular sector) corresponding to the indexed position. Preferably, it will be possible to use, as is illustrated in FIG. 2, an index 14 comprising a magnet 15, integral with the movable member 2, intended to cooperate with a magnetic detector 16, of the Hall-type probe type, even attached to a sensor casing 17 (integral with the steering casing) with respect to which the displacement of said movable member 2 is effected. Thus, the passage of said magnet 15 in front of the magnetic detector 16, in this case as close as possible to said magnetic detector, generates a variation of the magnetic field that passes through said detector 16, in this case the appearance of a magnetic field peak, which results in an index pulse T1, T2. In other words, the index pulse T1, T2 is preferably an analog pulse delivered by a magnetic index sensor. It will thus be possible to generate an index pulse by means of an index 14 of relatively simple structure, robust, compact, and inexpensive, and which operates advantageously without contact, and therefore without generating wear. If necessary, the index 14 could operate according to a technology other than magnetic, and especially optical. For example, it could be provided on the movable steering member 2 a hole or a reflective system that would generate a light pulse, in the visible or invisible spectrum (eg infrared), interacting by transmission or reflection with an incident beam emitted by a light source integral with the sensor housing 17 (itself secured to the steering housing). The transmitted, deflected or reflected beam would then be perceived by an optical detector, of the photodiode or CCD type, also placed on the sensor housing 17. According to a preferred embodiment, the index 14 will form a rotary sensor, locating a position indexed which corresponds to an angular position in a rotational movement of the movable steering member 2, for example an absolute angular position in a maneuvering turn of the movable steering member 2, and more particularly in a turn of the steering wheel. 3. Furthermore, the movable steering member 2 will preferably be constituted by the steering column 2 which carries the steering wheel 3. It will then be possible advantageously to generate an index pulse T1, T2 at the passage of said column. direction 2 by a predetermined indexed angular position. More particularly, according to an exemplary embodiment, the index pulse signal T1, T2 can thus be generated during the rotation of the portion of the steering column 2 carrying the magnet 15 vis-à- screw (closer) of the magnetic sensor 16 carried by the sensor housing 17 in which said steering column 2 rotates under the action of the steering wheel 3 which it is secured. It will be noted that, advantageously, the placement of the index 14 at the level of the steering column will allow a simple and compact integration of said index 14. This being so, according to another possible variant of the invention, the index could be formed by a translational sensor. Thus, the invention could be perfectly applied by arranging the index 14 differently, for example at the rack 5, so as to detect the passage in longitudinal translation of a section of said rack 5, for example medium (mid-length) of said rack, carrying the magnet 15, by an indexed position embodied by a magnetic sensor 16 integrated in the steering box which guides the translation of said rack 5. In all cases, the power steering and the index 14 will preferably be arranged so that, by construction, the indexed position, identified by the index 14, is relatively close to the mid-point of the direction. Advantageously, such a choice makes it possible in practice to generate an index pulse T1, T2 rapidly, shortly after the unlocking of the steering and the putting into service of the vehicle, because movements of the low-amplitude steering wheel are then sufficient to provoke crossing the indexed position, and thus generating a usable pulse to calculate a reference position.

A titre indicatif, la position indexée, codée par l'index 14, sera ainsi de préférence située dans une plage angulaire comprise entre -3 degrés et +3 degrés (d'angle volant) par rapport au point milieu. Le point milieu correspondra de préférence à la configuration selon 5 laquelle la direction assistée 1 se trouve sensiblement à mi-course entre sa position de braquage complet à gauche et sa position de braquage complet à droite, le volant de conduite 3 se trouvant en position angulaire centrale, ni tourné vers la gauche, ni tourné vers la droite, et/ou, de manière équivalente, la crémaillère se trouvant en position centrale, à mi-course selon son sens de 10 déplacement longitudinal, dans le carter de direction. Un tel point milieu correspondra alors à un « zéro volant », défini à l'échelle du mécanisme de direction lui-même. Toutefois, on notera que, de manière alternative ou complémentaire, mais sensiblement équivalente dans son principe, on pourra 15 définir un point milieu à l'échelle du véhicule, de type « zéro ligne droite », comme correspondant à la configuration dans laquelle les roues directrices 6, 7 présentent un angle de braquage nul, qui maintient le véhicule sur une trajectoire en ligne droite. Par ailleurs, la direction assistée 1 étant pilotée (manuellement) au 20 moyen d'un volant de conduite 3, on génère de préférence au plus une impulsion d'index T1, T2 par tour complet de volant de conduite 3. Une telle disposition permettra d'identifier avec précision, et au moyen d'un index 14 de structure simple et non redondante, la position indexée, et d'associer ensuite, sans confusion possible, cette information de 25 position indexée aux informations de position angulaire mesurées au moyen d'un autre capteur, ici de préférence associé à l'arbre 11 du moteur d'assistance 10. Selon une variante de mise en oeuvre, on pourra générer une, et une seule, impulsion d'index par tour complet de volant de conduite 3. 30 Selon cette variante, qui est particulièrement bien adaptée à une technologie d'index 14 rotatif, repérant par exemple une position indexée angulaire (unique par tour) de la colonne de direction 2, l'index 14 pourra ainsi fournir un seul « top » par tour de volant, c'est-à-dire par rotation mécanique de 360 degrés du volant de conduite 3. 35 En complément, si la course totale du volant de conduite 3 s'étend sur plusieurs tours, et par exemple sensiblement sur trois tours, on pourra compléter l'index 14 en lui adjoignant un indicateur de tour (typiquement un compteur de tour) qui permet de distinguer dans quel tour est engagé le volant, et par exemple de déterminer s'il s'agit du tour correspondant au braquage à gauche, du tour correspondant au braquage à droite, ou bien du tour intermédiaire central. On pourra alors, lors de l'étape (a) de repérage, prendre en considération l'impulsion d'index T1, T2 seulement si celle-ci est générée alors que le volant de conduite 3 se trouve dans son tour intermédiaire central, c'est-à-dire seulement lorsqu'il est possible d'affirmer que, mécaniquement, et par élimination, une situation de braquage prononcé est exclue, si bien que le volant se trouve nécessairement dans un tour qui lui permet de passer effectivement par le point milieu. Selon une autre variante de mise en oeuvre, on pourra agencer l'index 14 de telle sorte qu'il ne délivre qu'une seule impulsion d'index T1, T2 sur l'ensemble de la course de l'organe mobile de direction 2 (dans un sens de parcourt monotone considéré), c'est-à-dire que l'index 14 ne repère qu'une seule position angulaire sur l'ensemble de la plage angulaire totale de rotation du volant 3 (depuis la position extrémale de braquage total à gauche jusqu'à la position extrémale opposée de braquage total à droite).As an indication, the indexed position, coded by the index 14, will thus preferably be in an angular range of between -3 degrees and +3 degrees (flying angle) relative to the midpoint. The mid-point will preferably correspond to the configuration in which the power steering 1 is substantially midway between its full left steering position and its full steering position to the right with the steering wheel 3 in the angular position. central, neither turned to the left nor turned to the right, and / or, equivalently, the rack being in the central position, halfway in its direction of longitudinal displacement, in the steering housing. Such a midpoint will then correspond to a "flying zero", defined on the scale of the steering mechanism itself. However, it will be noted that, alternatively or additionally, but substantially equivalent in principle, it will be possible to define a vehicle-scale mid-point of the "zero straight line" type as corresponding to the configuration in which the wheels 6, 7 have a zero steering angle, which keeps the vehicle on a straight line trajectory. Furthermore, the power steering 1 being controlled (manually) by means of a steering wheel 3, it is preferably generated at most one index pulse T1, T2 per complete turn of steering wheel 3. Such a provision will allow to accurately identify, by means of an index 14 of simple, non-redundant structure, the indexed position, and subsequently to associate, without possible confusion, this indexed position information with the angular position information measured by means of a further sensor, here preferably associated with the shaft 11 of the assistance motor 10. According to an alternative embodiment, it will be possible to generate one and only one index pulse per complete revolution of the steering wheel 3 According to this variant, which is particularly well suited to a rotary indexing technology 14, for example identifying an angular indexed position (unique per revolution) of the steering column 2, the index 14 can thus provide a single "top" " by turn of the steering wheel, that is to say by mechanical rotation of 360 degrees of the steering wheel 3. 35 In addition, if the total stroke of the steering wheel 3 extends over several laps, and for example substantially three laps , we can complete the index 14 by adding a tower indicator (typically a lap counter) that can distinguish in which tower is engaged the steering wheel, and for example to determine if it is the turn corresponding to the steering on the left, the turn corresponding to the right turn, or the central intermediate turn. It will then be possible, during the step (a) of locating, to take into consideration the index pulse T1, T2 only if this one is generated while the driving wheel 3 is in its central intermediate tower, c only when it is possible to assert that, mechanically, and by elimination, a pronounced steering situation is excluded, so that the steering wheel is necessarily in a turn which allows it to actually pass through the midpoint. According to another variant of implementation, it will be possible to arrange the index 14 so that it delivers only one index pulse T1, T2 over the entire travel of the movable steering member 2 (In a monotonous traveling sense considered), that is to say that the index 14 only identifies a single angular position over the entire angular range of rotation of the wheel 3 (since the extreme position of total steering to the left to the opposite extreme steering position to the right).

Une telle variante de mise en oeuvre est particulièrement adaptée à un capteur translatif, permettant par exemple de coder une position unique de la crémaillère 5 par rapport au carter de direction. Elle garantit en outre matériellement l'unicité de la position indexée, ce qui exclut toute erreur liée à un déphasage (de l'équivalent d'un tour de 25 volant) dans la détermination de la position de référence. Le procédé conforme à l'invention comprend avantageusement, suite à l'étape (a) de repérage, une étape (b) de traitement, au cours de laquelle on analyse l'impulsion d'index T1, T2 pour y détecter un front montant F1, F2 et/ou un front descendant F3, F4, tel que cela est illustré sur la figure 2. 30 Le front montant F1, F2 d'une impulsion d'index T1, T2 pourra être détecté lorsque le signal analogique de ladite impulsion T1, T2, issu de l'index 14, franchit (selon une pente ascendante) un seuil haut Sm>, prédéterminé, tel que cela est illustré sur les figures 2 et 3. De manière analogue, le front descendant d'une impulsion d'index 35 T1, T2 pourra être détecté lorsque le signal analogique de ladite impulsion T1, T2 issu de l'index 14, franchit (selon une pente descendante) un seuil bas Si-ni, prédéterminé, inférieur au seuil haut Smax susmentionné. Chaque impulsion T1, T2 pouvant ainsi être caractérisée par un front montant et un front descendant (séparés par une valeur caractéristique de la largeur d'impulsion), on pourra avantageusement convertir (traduire) chaque impulsion d'index T1, T2 en un signal logique (par exemple binaire, de type booléen) d'impulsion, tel que cela est illustré sur les figures 2 et 3. Le procédé conforme à l'invention comprend ensuite une étape (c) de caractérisation au cours de laquelle on associe au front F1, F2, F3, F4, montant ou descendant, identifié lors de l'étape (b) de traitement, une valeur dite « position de front » OF1, eF2, eF3, eF4, qui est représentative de la position (et plus particulièrement de la position angulaire) que l'organe de direction mobile 2 occupe quand ledit front F1, F2, F3, F4 se produit. Par convention et par commodité, quel que soit l'organe de direction mobile 2 concerné, on exprimera de préférence la position dudit organe de direction 2 sous forme d'une position angulaire équivalente, correspondant à la position angulaire que doit occuper le volant de conduite 3 pour permettre audit organe de se trouver dans la configuration considérée. A titre indicatif, la largeur de l'une ou l'autre des impulsions d'index 20 (largeur valant ici 6F3 - en pour la première impulsion d'index T1) pourra être comprise entre 20 degrés et 40 degrés, et par exemple sensiblement égale à 30 degrés. La position de front OF1, 6F2, 6F3, 6F4 qui correspond à chaque front F1, F2, F3, F4 considéré sera de préférence mesurée par un second capteur 25 20, distinct de l'index 14, et plus préférentiellement par un capteur de position relative, typiquement un capteur inductif du genre « resolver », permettant de mesurer, à partir d'une origine quelconque librement choisie, les différents déplacements d'un organe de la direction 2 dont la position, variable dépend de, et est représentative de, l'orientation de la direction 1. 30 Un tel capteur de position relative permettra de déterminer les différentes positions successives de l'organe de direction 2 les unes par rapport aux autres, une position dudit organe de direction 2 étant connue relativement à une autre position précédemment occupée par ledit organe de direction 2, et ce indépendamment de toute origine fixe.Such an implementation variant is particularly suitable for a translational sensor, allowing for example to code a single position of the rack 5 relative to the steering housing. It also guarantees the uniqueness of the indexed position, which excludes any error related to a phase shift (of the equivalent of a steering wheel revolution) in the determination of the reference position. The method according to the invention advantageously comprises, following step (a) of marking, a step (b) of processing, during which the index pulse T1, T2 is analyzed in order to detect a rising edge. F1, F2 and / or a falling edge F3, F4, as illustrated in FIG. 2. The rising edge F1, F2 of an index pulse T1, T2 may be detected when the analog signal of said pulse T1, T2, derived from the index 14, crosses (on an ascending slope) a high threshold Sm>, predetermined, as is illustrated in FIGS. 2 and 3. Similarly, the falling edge of a pulse d T1 index, T2 can be detected when the analog signal of said pulse T1, T2 from the index 14, passes (in a downward slope) a low threshold Si-ni, predetermined, lower than the high threshold Smax above. Each pulse T1, T2 can thus be characterized by a rising edge and a falling edge (separated by a characteristic value of the pulse width), it will advantageously convert (translate) each index pulse T1, T2 into a logic signal (For example binary, Boolean type) of pulse, as is illustrated in Figures 2 and 3. The method according to the invention then comprises a step (c) of characterization in which is associated with the F1 front , F2, F3, F4, ascending or descending, identified during the step (b) of treatment, a value called "front position" OF1, eF2, eF3, eF4, which is representative of the position (and more particularly of the angular position) that the movable steering member 2 occupies when said front F1, F2, F3, F4 occurs. By convention and for convenience, whatever the movable steering member 2 concerned, the position of said steering member 2 will preferably be expressed in the form of an equivalent angular position corresponding to the angular position to be occupied by the steering wheel. 3 to allow said body to be in the configuration considered. As an indication, the width of one or the other of the index pulses 20 (here 6F3 width - in the case of the first T1 index pulse) may be between 20 degrees and 40 degrees, and for example substantially equal to 30 degrees. The front position OF1, 6F2, 6F3, 6F4 which corresponds to each front F1, F2, F3, F4 considered will preferably be measured by a second sensor 20, distinct from the index 14, and more preferably by a position sensor. relative, typically an inductive sensor of the "resolver" type, making it possible to measure, from any freely chosen origin, the different displacements of a member of the direction 2 whose position, variable depends on, and is representative of, the orientation of the direction 1. Such a relative position sensor will make it possible to determine the different successive positions of the steering member 2 relative to one another, a position of said steering member 2 being known relative to another position. previously occupied by said steering member 2, regardless of any fixed origin.

De façon particulièrement préférentielle, on utilisera comme second capteur 20 un capteur (de type « resolver ») mesurant la position angulaire relative de l'arbre 11 du moteur d'assistance 10. En raison du couplage mécanique existant entre l'arbre 11 du 5 moteur d'assistance et l'organe de direction mobile considéré, en l'espèce la colonne de direction 2, la position dudit arbre 11 moteur est représentative, au rapport de réduction du mécanisme d'entraînement près, de la position dudit organe mobile 2, c'est-à-dire en l'espèce de la position angulaire (relative) de la colonne de direction 2, et donc de la position angulaire (relative) du volant de 10 conduite 3 (et plus globalement des modifications relatives de l'orientation de la direction). Avantageusement, l'expression des positions de front en , eF2, eF3, eF4 en référence à l'arbre 11 du moteur d'assistance 10 permet d'exploiter directement, à moindre coût, un capteur de position angulaire relative déjà 15 disponible car intégré au moteur électrique d'assistance 10, sans avoir à recourir à l'ajout d'un capteur spécifique. Selon l'invention, et tel que cela est illustré sur la figure 3, les étapes (a) de repérage, (b) de traitement, et (c) de caractérisation sont répétées pour d'une part une première impulsion d'index T1 qui est générée 20 lorsque l'organe de direction mobile 2 franchit la position indexée selon un premier sens de déplacement CW (ici, par convention, le sens horaire « ClockWise », en référence préférentielle à l'acquisition de positions angulaires), et d'autre part une seconde impulsion d'index T2 qui est générée lorsque ledit organe de direction mobile 2 franchit cette même position indexée 25 selon un second sens de déplacement CCW (ici, par convention, le sens antihoraire, « CounterClockWise », en référence préférentielle à l'acquisition de positions angulaires), opposé au premier sens de déplacement CW. De cette manière, on acquiert respectivement d'une part une première position de front en, qui correspond à un premier front F1 généré 30 selon le premier sens de déplacement CW, et d'autre part une seconde position de front 6F2, qui correspond à un second front F2 qui est généré selon le second sens de déplacement CCW et qui est de même nature, montante ou descendante, que le premier front F1. Par simple convention, on pourra considérer que le mouvement 35 horaire CW est associé à une manoeuvre de braquage à droite, tandis que le mouvement anti-horaire CCW est associé à une manoeuvre contraire, de braquage à gauche (ou inversement). Le procédé comprend ensuite une étape (d) de calcul d'une position de référence eréf, au cours de laquelle on calcule, à partir de la première position de front en et de la seconde position de front 0F2, et plus particulièrement à partir d'une moyenne de la première position de front en et de la seconde position de front 6F2, une position de référence eréf de la direction assistée 1. En d'autres termes, le procédé selon l'invention comprend : - une étape d'acquisition d'une première position de front (étape qui correspondant à une première exécution des étapes (a) de repérage, (b) de traitement, et (c) de caractérisation), au cours de laquelle on détecte un premier front F1 (ou respectivement F3), à savoir un front montant F1 ou (respectivement) un front descendant F3, qui appartient à une première impulsion d'index T1 générée lorsque l'organe de direction mobile 2 franchit la position indexée selon un premier sens de déplacement CW, et au cours de laquelle on acquiert une première position de front en (respectivement 0F3) qui correspond à une valeur représentative de la position qu'occupe l'organe de direction mobile 2 lorsque survient ledit premier front F1 (respectivement F3), - une étape d'acquisition d'une seconde position de front (étape qui correspondant à une seconde exécution des étapes (a) de repérage, (b) de traitement, et (c) de caractérisation), au cours de laquelle on détecte un second front F2 (ou respectivement F4), de même nature montante ou descendante que le premier front F1 (respectivement que F3), et qui appartient à une seconde impulsion d'index T2 générée lorsque l'organe de direction mobile 2 franchit la position indexée selon un second sens de déplacement CCW, opposé au premier sens de déplacement CW, et au cours de laquelle on acquiert une seconde position de front 6F2 (respectivement 0E4) qui correspond à une valeur représentative de la position qu'occupe l'organe direction mobile 2 lorsque survient ledit second front F2 (respectivement F4), puis - une étape (d) de calcul d'une position de référence, au cours de laquelle on calcule, à partir de la première position de front en (respectivement eF3) et de la seconde position de front 0F2 (respectivement 0F4), et plus particulièrement à partir d'une moyenne desdites positions de front, une position de référence eréf de la direction assistée 1.In a particularly preferred manner, the second sensor 20 will use a sensor (resolver type) measuring the relative angular position of the shaft 11 of the assistance motor 10. Due to the mechanical coupling existing between the shaft 11 of the the assistance motor and the mobile steering member considered, in this case the steering column 2, the position of said motor shaft 11 is representative, at the reduction ratio of the drive mechanism near, the position of said movable member 2 , that is to say in this case the angular position (relative) of the steering column 2, and therefore the angular position (relative) of the steering wheel 3 (and more generally relative modifications of the steering column 3). direction of management). Advantageously, the expression of the front positions at, eF2, eF3, eF4 with reference to the shaft 11 of the assistance motor 10 makes it possible to directly exploit, at a lower cost, a relative angular position sensor already available since integrated. the electric motor assistance 10, without having to resort to the addition of a specific sensor. According to the invention, and as illustrated in FIG. 3, the steps (a) of locating, (b) of processing, and (c) of characterization are repeated for firstly a first T1 index pulse which is generated when the movable steering member 2 passes the indexed position according to a first direction of movement CW (here, by convention, the clockwise direction "ClockWise", with reference to the acquisition of angular positions), and on the other hand a second index pulse T2 which is generated when said movable steering member 2 passes this same indexed position 25 in a second direction of movement CCW (here, by convention, the counterclockwise direction, "CounterClockWise", in preferential reference to the acquisition of angular positions), opposite to the first direction of movement CW. In this way, on the one hand, a first front position, which corresponds to a first front F1 generated in the first direction CW, and a second front position 6F2, which corresponds to a second front F2 which is generated according to the second direction of displacement CCW and which is of the same nature, rising or falling, as the first edge F1. By simple convention, it can be considered that the clockwise movement CW is associated with a steering maneuver on the right, while the counterclockwise movement CCW is associated with a counterclockwise maneuver (or vice versa). The method then comprises a step (d) of calculating an eref reference position, during which, from the first front position en and the second front position 0F2, and more particularly from an average of the first front position and the second front position 6F2, an erf reference position of the power steering 1. In other words, the method according to the invention comprises: - an acquisition step a first front position (a step corresponding to a first execution of the steps (a) of locating, (b) of processing, and (c) of characterization), during which a first front F1 (or respectively F3), namely a rising edge F1 or (respectively) a falling edge F3, which belongs to a first index pulse T1 generated when the mobile steering member 2 passes the indexed position according to a first direction of movement CW, and during the which acquires a first front position at (respectively 0F3) which corresponds to a value representative of the position occupied by the movable steering member 2 when said first front F1 (respectively F3) occurs, - a step of acquisition of a second front position (a step corresponding to a second execution of the steps (a) of locating, (b) of processing, and (c) of characterization), during which a second front F2 (or F4 respectively) is detected. ), of the same ascending or descending nature as the first front F1 (respectively F3), and which belongs to a second index pulse T2 generated when the movable steering member 2 passes the indexed position according to a second direction of movement CCW , opposite the first direction of movement CW, and during which a second front position 6F2 (respectively 0E4) is acquired which corresponds to a value representative of the position occupied by the mobile direction member 2 when said second front F2 (respectively F4) occurs, then - a step (d) of calculating a reference position, during which one calculates, from the first front position in (respectively eF3) and the second front position 0F2 (respectively 0F4), and more particularly from an average of said front positions, an erect reference position of the power steering 1.

Avantageusement, le fait de regrouper (en l'espèce de sommer pour obtenir une moyenne) les informations de positions de front en, 6F2 issues de fronts de même nature (c'est-à-dire deux front montants F1, F2, ou, respectivement, deux fronts descendants F3, F4) mais acquis selon des sens de déplacement CW, CCW opposés permet d'annuler, par compensation symétrique, les erreurs et phénomènes de dérive qui peuvent affecter individuellement chacune des première et seconde impulsion T1, T2. La position de référence eréf peut être ainsi définie très simplement, mais néanmoins très précisément.Advantageously, the fact of grouping (in this case summing to obtain an average) the information of front positions at, 6F2 coming from fronts of the same nature (that is to say two rising front F1, F2, or, respectively, two falling edges F3, F4) but acquired in opposite directions of movement CW, CCW makes it possible to cancel, by symmetrical compensation, the errors and drift phenomena which can individually affect each of the first and second pulses T1, T2. The reference position eref can thus be defined very simply, but nevertheless very precisely.

On notera que ladite position de référence eréf est ici strictement comprise, du fait le cas échéant de l'utilisation d'une moyenne, entre la première position de front en et la seconde position de front 6F2. Une fois déterminée, ladite position de référence eréf va pouvoir servir pour fixer l'origine absolue, le cas échéant en ajoutant à cette position de référence une valeur corrective de type offset apprise lors de l'étalonnage en usine. Les mesures de position (via le second capteur 20, qui mesure ici des positions relatives) pourront alors être effectuées à partir de (en référence à) ladite origine absolue. De préférence, selon une possibilité de réglage, ladite origine 20 absolue correspondra au point milieu dit « zéro volant » de la direction 1, tel que cela a été mentionné plus haut. Selon une autre possibilité de réglage, bien adaptée au véhicule fini, l'origine absolue pourra correspondre au « zéro ligne droite », c'est-à-dire à la configuration dans laquelle les roues 6, 7 directrices ont un angle de 25 braquage nul, de sorte à permettre un déplacement du véhicule en ligne droite (configuration qui ne coïncide pas nécessairement de manière exacte avec le « zéro volant »). Avantageusement, et quelle que soit la définition choisie pour le réglage de l'origine absolue, dès lors que les mesures de positions relatives (ici 30 de l'arbre 11 du moteur d'assistance 10) sont effectuées (systématiquement) en référence à cette origine absolue, elles deviendront en pratique des mesures de positions absolues, en l'espèce de la position angulaire absolue de la colonne de direction 2, de la position angulaire absolue du volant de conduite 3, et plus globalement de l'orientation absolue de la direction (par 35 rapport à son point milieu).It will be noted that said reference position eref is here strictly understood, if necessary by the use of an average, between the first front position and the second front position 6F2. Once determined, said reference position eref will be able to be used to fix the absolute origin, if necessary by adding to this reference position an offset-type corrective value learned during the factory calibration. The position measurements (via the second sensor 20, which measures here relative positions) can then be made from (with reference to) said absolute origin. Preferably, according to a setting possibility, said absolute origin will correspond to the midpoint known as the "flying zero" of the direction 1, as mentioned above. According to another adjustment possibility, well adapted to the finished vehicle, the absolute origin may correspond to the "zero straight line", that is to say to the configuration in which the wheels 6, 7 guide have a steering angle. zero, so as to allow movement of the vehicle in a straight line (a configuration that does not necessarily coincide exactly with the "flying zero"). Advantageously, and whatever the definition chosen for the absolute origin adjustment, since the relative position measurements (here of the support motor shaft 11) are carried out (systematically) with reference to this absolute origin, they will in practice become absolute position measurements, in this case the absolute angular position of the steering column 2, the absolute angular position of the steering wheel 3, and more generally the absolute orientation of the steering wheel. direction (relative to its midpoint).

On notera par ailleurs que, pour permettre l'exécution du procédé selon l'invention, il est nécessaire de mémoriser les fronts F1, F2, F3, F4 ainsi que les positions de front en , eF2, eF3, eF4 correspondantes, et de classer lesdits fronts (associés à leurs positions de front respectives) selon la nature (montante ou descendante) desdits fronts, et selon le sens de déplacement (sens de rotation) dans lequel lesdits fronts ont été acquis, et ce jusqu'à obtenir suffisamment de fronts pour réaliser le calcul prévu à l'étape (d). De façon particulièrement préférentielle, par souci de simplicité, de rapidité, et de correction symétrique des erreurs, on optera pour le calcul d'une 10 moyenne arithmétique des positions de front (chaque position de front étant pondérée de manière identique à l'autre). De préférence, la position de référence e réf pourra en particulier être définie à partir d'une moyenne de la première position de front en et de la seconde position de front eF2. 15 On pourra définir ainsi une position de référence de manière simple et rapide avec seulement deux positions de fronts correspondant à (seulement) une paire de fronts F1, F2 de même nature. Encore plus préférentiellement, la position de référence e réf pourra être définie comme (exactement) égale à la moyenne arithmétique des 20 première et seconde positions de front : eréf = 1/2 * (en + eF2) Ceci permettra notamment de définir la position de référence e réf comme le centre moyen des deux impulsions d'index T1, T2 considérées. Cela permettra notamment au procédé de converger rapidement, c'est-à-dire d'identifier rapidement une position de référence fiable, sitôt que les 25 manoeuvres alternées du volant de conduite 3 par le conducteur auront permis d'acquérir deux impulsions d'index T1, T2 opposées. Selon une autre variante préférentielle de mise en oeuvre du procédé, on acquiert une troisième position de front eF3, qui correspond à une valeur représentative de la position occupée par l'organe de direction mobile 2 30 lorsque survient un troisième front F3 (un front descendant sur les figures) qui appartient à la première impulsion d'index T1 et qui est de nature opposée à celle du premier front F1, ainsi qu'une quatrième position de front eF4, qui correspond à une valeur représentative de la position occupée par l'organe de direction mobile 2 lorsque survient un quatrième front F4 qui appartient à la 35 seconde impulsion T2 et qui est de nature opposée à celle du second front F2, et de même nature (ici descendante) que le troisième front F3.Note also that, to allow the execution of the method according to the invention, it is necessary to store the edges F1, F2, F3, F4 and the corresponding front positions, eF2, eF3, eF4, and classify said fronts (associated with their respective front positions) according to the nature (rising or falling) of said fronts, and according to the direction of movement (direction of rotation) in which said fronts have been acquired, and this until obtaining enough fronts to perform the calculation provided in step (d). In a particularly preferred manner, for the sake of simplicity, speed, and symmetrical error correction, one will opt for the calculation of an arithmetic mean of the front positions (each front position being weighted identically to the other) . Preferably, the reference position e ref may in particular be defined from an average of the first front position and the second front position eF2. A reference position can thus be defined in a simple and fast manner with only two positions of fronts corresponding to (only) a pair of fronts F1, F2 of the same nature. Even more preferably, the reference position e ref may be defined as (exactly) equal to the arithmetic mean of the first and second front positions: ## EQU1 ## This will in particular make it possible to define the position of reference e ref as the average center of the two index pulses T1, T2 considered. This will enable the process to converge rapidly, that is to say to quickly identify a reliable reference position, as soon as the alternating maneuvers of the steering wheel 3 by the driver have made it possible to acquire two index pulses. T1, T2 opposite. According to another preferred embodiment of the method, a third front position eF3 is acquired, which corresponds to a value representative of the position occupied by the movable steering member 2 when a third front F3 (a falling edge) occurs. in the figures) which belongs to the first index pulse T1 and which is of a nature opposite to that of the first front F1, and a fourth front position eF4, which corresponds to a value representative of the position occupied by the movable steering member 2 when a fourth front F4 occurs which belongs to the second pulse T2 and which is opposite in nature to that of the second front F2, and of the same nature (here descending) as the third front F3.

Lors de l'étape (d) de calcul, on pourra alors définir la position de référence eréf à partir d'une moyenne des première, seconde, troisième et quatrième positions de front en , eF2, eF3 ,eF4, et de préférence définir ladite position de référence eréf comme égale à la moyenne arithmétique des première, seconde, troisième et quatrième positions de front : eréf = 1/4 * (en + eF2 eF3 eF4) Un tel mode d'obtention sera avantageusement plus précis que le précédent utilisant seulement deux fronts F1, F2, même s'il peut nécessiter éventuellement une phase d'acquisition des signaux analogiques d'impulsion 10 d'index T1, T2 un peu plus longue. Ceci étant, on notera que, ici encore, l'acquisition de deux impulsions T1, T2 opposées, correspondant à deux « coups de volant 3 » alternés au voisinage de la position indexée (elle-même préférentiellement proche du point milieu de la direction), est suffisante pour obtenir une 15 convergence vers la position de référence. Comme indiqué plus haut, la direction assistée 1 comprenant un moteur d'assistance 10, les positions de front en , eF2, eF3, eF4 sont de préférence définies par les positions angulaires de l'arbre 11 du moteur d'assistance 10, telles que ces positions angulaires sont mesurées lorsque 20 surviennent (respectivement) les fronts F1, F2, F3, F4 considérés. En d'autres termes, lors étape (c) caractérisation, on mesure la position angulaire (relative) de l'arbre moteur 11 au moment où le front considéré F1, F2, F3, F4 se produit, et l'on considère cette valeur de position angulaire relative comme la position de front (toutes les positions de front étant 25 ainsi exprimées dans le même référentiel du moteur d'assistance 10). De préférence, lesdites positions angulaires sont mesurées au moyen d'un capteur de position relative 20, tel qu'un « resolver ». Bien entendu, l'invention peut porter sur tout procédé exploitant le procédé de détermination de position de référence susmentionné, et 30 notamment sur un procédé de détermination de la position angulaire absolue d'un volant de conduite 3 équipant une direction assistée 1 pourvue d'un moteur d'assistance 10, ledit procédé comprenant une phase de prise d'origine, au cours de laquelle on détermine une position de référence eréf selon un procédé conforme à l'invention, et l'on fixe, à partir de cette position 35 de référence, et de préférence au moyen d'un terme correctif obtenu par étalonnage en usine tel que cela a été décrit plus haut, l'origine d'un référentiel angulaire dans lequel s'effectuent les manoeuvres du volant de conduite, ledit procédé comprenant ensuite une phase de mesure de position au cours de laquelle on mesure, dans ledit référentiel angulaire, la position relative de l'arbre 11 du moteur d'assistance 10 (ou bien la position de tout autre organe de direction mobile appartenant à la chaîne cinématique manoeuvrée par le volant de conduite 3, et dont la position est de ce fait représentative de la position dudit volant 3) au moyen d'un capteur de position relative 20, de préférence de type « resolver », pour exprimer la position absolue du volant de conduite.During step (d) of calculation, it will then be possible to define the reference position eref from an average of the first, second, third and fourth front positions in, eF2, eF3, eF4, and preferably to define reference position eref equal to the arithmetic mean of the first, second, third and fourth front positions: eref = 1/4 * (in + eF2 eF3 eF4) Such a method of obtaining will advantageously be more accurate than the previous one using only two fronts F1, F2, although it may possibly require a phase of acquisition of the analog signals pulse index T1, T2 a little longer. This being the case, it will be noted that, here again, the acquisition of two opposite pulses T1, T2, corresponding to two "steering wheel shots 3" alternated in the vicinity of the indexed position (itself preferentially close to the middle point of the direction). is sufficient to achieve convergence to the reference position. As indicated above, the power steering 1 comprising an assistance motor 10, the front positions of, eF2, eF3, eF4 are preferably defined by the angular positions of the shaft 11 of the assistance engine 10, such as these angular positions are measured when the respective fronts F1, F2, F3, F4 occur (respectively). In other words, during step (c) characterization, the angular (relative) position of the drive shaft 11 is measured at the moment when the considered front F1, F2, F3, F4 occurs, and this value is considered. relative angular position as the front position (all the front positions are thus expressed in the same frame of the assistance engine 10). Preferably, said angular positions are measured by means of a relative position sensor 20, such as a "resolver". Of course, the invention may relate to any method using the abovementioned reference position determination method, and in particular to a method for determining the absolute angular position of a steering wheel 3 equipping a power steering 1 provided with an assistance motor 10, said method comprising a homing phase, during which an erf reference position is determined according to a method according to the invention, and from this position is fixed from reference, and preferably by means of a corrective term obtained by factory calibration as described above, the origin of an angular reference system in which the maneuvers of the steering wheel are performed, said method comprising then a position measuring phase during which is measured, in said angular reference, the relative position of the shaft 11 of the assistance motor 10 (or the position of to ut another movable steering member belonging to the kinematic chain operated by the steering wheel 3, and whose position is therefore representative of the position of said steering wheel 3) by means of a relative position sensor 20, preferably of the type "Resolver", to express the absolute position of the steering wheel.

L'invention concerne également un support de données lisible sur un calculateur et contenant des éléments de code de programme informatique permettant la mise en oeuvre d'un procédé selon l'une quelconque des variantes de l'invention lorsque ledit support est lu par un calculateur. L'invention concerne également en tant que telle une direction assistée 1 qui comprend au moins un support de référence, du genre carter, ainsi qu'au moins un moteur d'assistance 10 et au moins un organe de direction, du genre colonne de direction 2, qui est bidirectionnel, c'est-à-dire monté mobile par rapport au support de sorte à pouvoir se déplacer alternativement dans un premier sens de déplacement CW et dans un second sens de déplacement opposé CCW, et qui est couplé à l'arbre 11 du moteur d'assistance 10 de sorte à pouvoir effectuer les manoeuvres de la direction, ladite direction assistée comprenant également un index 14 qui génère une impulsion d'index T1, T2 à chaque passage de l'organe de direction 2 par une position indexée prédéterminée, ainsi qu'un capteur de position relative 20 permettant de mesurer la position angulaire de l'arbre 11 du moteur d'assistance 10. Selon l'invention, ladite direction assistée comprend une unité d'analyse 30 (typiquement un calculateur électronique qui peut être intégré au moteur d'assistance 10) qui est structurée ou programmée pour détecter les fronts montants F1, F2 et/ou descendants F3, F4 des impulsions d'index T1, T2, mémoriser les positions angulaires, dites « positions de front » eF1, eF2, eF3, eF4, de l'arbre 11 du moteur d'assistance qui correspondent auxdits fronts, classer les fronts F1, F2, F3, F4 par nature, selon que lesdits fronts sont descendants ou montants, classer lesdits fronts en fonction du sens de déplacement, horaire CW ou antihoraire CCW, selon lequel a été générée l'impulsion d'index T1, T2 à laquelle appartient chaque front considéré, puis calculer une position de référence eréf à partir de deux positions de front, et plus particulièrement à partir d'une moyenne de deux positions de front, associées à deux fronts F1, F2 (respectivement F3, F4) de même nature issus chacun respectivement d'une première impulsion d'index T1 et d'une second impulsion d'index T2 qui correspondent à des sens de déplacement CW, CCW opposés de l'organe de direction 2. L'invention porte également sur une unité d'analyse 30 en tant que telle, et plus globalement sur un module de direction assistée (sous-ensemble de direction assistée), tel qu'un ensemble moteur d'assistance/contrôleur, qui est destiné à être intégré dans une direction assistée, et qui contient une telle unité d'analyse 30 embarquée. L'invention porte bien entendu enfin sur un véhicule, et notamment un véhicule automobile, équipé d'une direction assistée 1 selon l'invention, qui peut avantageusement contrôler l'orientation des roues directrices 6, 7 (et le 15 cas échéant motrices) dudit véhicule. Bien entendu, l'invention n'est nullement limitée aux seules variantes de réalisation décrites, l'homme du métier étant notamment à même d'isoler ou de combiner librement entre elles l'une ou l'autre des caractéristiques mentionnées dans ce qui précède, ou de leur substituer des 20 équivalents. Ainsi, on notera que, de manière globale, l'utilisation, afin de calculer une position de référence de direction assistée, de la détection de deux fronts d'impulsion d'index distincts, de même nature (montante ou descendante) mais correspondant à des impulsions générées par le 25 franchissement, dans un premier sens CW puis dans un second sens opposé CCW, d'une même position indexée, peut constituer une invention à part entière, quelle que soit par ailleurs les informations (notamment de position) tirées desdits fronts, et quelle que soit la nature du traitement appliqué à ces informations (et en particulier quelle que soit la nature de l'étape de calcul (d), 30 dès lors que l'étape (d) de calcul permet de déterminer la position de référence à partir des informations de fronts, notamment à partir des positions respectives de chacun des fronts). 35The invention also relates to a data medium readable on a computer and containing computer program code elements allowing the implementation of a method according to any one of the variants of the invention when said medium is read by a computer. . The invention also relates as such to a power steering 1 which comprises at least one reference support, of the crankcase type, and at least one assistance engine 10 and at least one steering member, of the steering column type 2, which is bidirectional, that is to say mounted movably relative to the support so as to be able to move alternately in a first direction of movement CW and in a second direction of displacement CCW, and which is coupled to the 11 of the assistance motor shaft 10 so as to be able to perform the steering maneuvers, said power steering also comprising an index 14 which generates an index pulse T1, T2 every passage of the steering member 2 by a position predetermined indexing, and a relative position sensor 20 for measuring the angular position of the shaft 11 of the assistance motor 10. According to the invention, said power steering comprises an analysis unit 30 (typical an electronic computer which can be integrated into the assistance motor 10) which is structured or programmed to detect the rising edges F1, F2 and / or descendants F3, F4 of the index pulses T1, T2, to memorize the angular positions, called "Front positions" eF1, eF2, eF3, eF4, the shaft 11 of the assistance engine that correspond to said fronts, classify the fronts F1, F2, F3, F4 by nature, depending on whether said fronts are descending or amounts, classifying said fronts according to the direction of travel, CW or counter-clockwise CCW, according to which the index pulse T1, T2 to which each considered edge belongs, and then calculating an eref reference position from two positions of front, and more particularly from an average of two front positions, associated with two fronts F1, F2 (respectively F3, F4) of the same kind, each respectively derived from a first index pulse T1 and a second impu T2 index that correspond to directions of movement CW, CCW opposite the steering member 2. The invention also relates to an analysis unit 30 as such, and more generally to a power steering module (Assisted steering subassembly), such as a power assist / controller assembly, which is intended to be integrated in a power steering, and which contains such an onboard analysis unit. Finally, the invention finally relates to a vehicle, and in particular a motor vehicle, equipped with a power steering 1 according to the invention, which can advantageously control the orientation of the steering wheels 6, 7 (and optionally the motor) said vehicle. Of course, the invention is not limited to the only embodiments described, the person skilled in the art being able to isolate or combine freely between them one or other of the characteristics mentioned in the foregoing. or substitute equivalents for them. Thus, it will be noted that, overall, the use, in order to calculate a reference position of assisted steering, of the detection of two distinct index pulse fronts, of the same nature (rising or falling) but corresponding to pulses generated by the crossing, in a first direction CW and then in a second opposite direction CCW, of the same indexed position, may constitute an invention in its own right, regardless of the information (particularly of position) derived from said fronts, and regardless of the nature of the processing applied to this information (and in particular regardless of the nature of the calculation step (d), since the calculation step (d) makes it possible to determine the position reference from the edge information, in particular from the respective positions of each of the fronts). 35

Claims (10)

REVENDICATIONS1. Procédé de définition d'une position de référence (eréf) de direction assistée (1), ladite direction assistée (1) comprenant au moins un organe de direction mobile (2) dont la position varie selon l'orientation donnée 5 à la direction, ledit procédé comprenant : - une étape (a) de repérage, au cours de laquelle on génère une impulsion d'index (T1, T2) lorsque l'organe de direction mobile (2) passe par une position prédéterminée, dite « position indexée », 10 - une étape (b) de traitement, au cours de laquelle on analyse l'impulsion d'index (T1) pour y détecter un front montant (F1, F2) et/ou un front descendant (F3, F4), - une étape (c) de caractérisation au cours de laquelle on associe au front (F1, F2, F3, F4), montant ou descendant, identifié lors 15 de l'étape (b) de traitement, une valeur dite « position de front » (0F1, 0F2, 0F3, 0E4), qui est représentative de la position que l'organe de direction mobile (2) occupe quand ledit front (F1, F2, F3, F4) se produit, ledit procédé étant caractérisé en ce que 20 - les étapes (a) de repérage, (b) de traitement, et (c) de caractérisation sont répétées pour d'une part une première impulsion d'index (T1) qui est générée lorsque l'organe de direction mobile (2) franchit la position indexée selon un premier sens de déplacement (CW), et d'autre part une seconde 25 impulsion d'index (T2) qui est générée lorsque ledit organe de direction mobile (2) franchit cette même position indexée selon un second sens de déplacement (CCW), opposé au premier sens de déplacement (CW), de telle manière que l'on acquiert respectivement d'une part une première position de front (en), 30 qui correspond à un premier front (F1) généré selon le premier sens de déplacement (CW), et d'autre part une seconde position de front (0F2), qui correspond à un second front (F2) qui est généré selon le second sens de déplacement (CCW) et qui est de même nature, montante ou descendante, que le premier 35 front (F1),et en ce que ledit procédé comporte une étape (d) de calcul d'une position de référence (eréf), au cours de laquelle on calcule, à partir de la première position de front (en) et de la seconde position de front (6F2), une position de référence (eréf) de la direction assistée.REVENDICATIONS1. A method of defining a reference position (erf) of power steering (1), said power steering (1) comprising at least one movable steering member (2) whose position varies according to the orientation given to the direction, said method comprising: - a step (a) of marking, during which an index pulse (T1, T2) is generated when the movable steering member (2) passes through a predetermined position, called "indexed position" A process step (b) in which the index pulse (T1) is analyzed to detect a rising edge (F1, F2) and / or a falling edge (F3, F4), a step (c) of characterization during which the forehead (F1, F2, F3, F4), ascending or descending, identified during the step (b) of processing, is associated with a value called "front position" (0F1, 0F2, 0F3, 0E4), which is representative of the position that the movable steering member (2) occupies when said front (F1, F2, F3, F4 ), said method being characterized in that the steps (a) of locating, (b) processing, and (c) characterizing are repeated for firstly a first index pulse (T1) which is generated when the movable steering member (2) passes the indexed position in a first direction of movement (CW), and on the other hand a second index pulse (T2) which is generated when said movable steering member (2) crosses this same indexed position in a second direction of movement (CCW), opposite to the first direction of movement (CW), so that a first front position (in) is acquired on the one hand, 30 which corresponds to a first front (F1) generated according to the first direction of movement (CW), and secondly a second front position (0F2), which corresponds to a second front (F2) which is generated according to the second direction of travel (CCW) and which is of the same nature, rising or falling, that the first front (F1), and in that said method comprises a step (d) of calculating a reference position (step), during which one calculates, from the first front position (in) and the second front position (6F2), a reference position (aft) of the power steering. 2. Procédé selon la revendication 1 caractérisé en ce que la position de référence (eréf) est définie à partir d'une moyenne de la première position de front (en) et de la seconde position de front (6F2), et de préférence définie comme égale à la moyenne arithmétique des première et seconde positions de front (en, 6F2).2. Method according to claim 1 characterized in that the reference position (erf) is defined from an average of the first front position (in) and the second front position (6F2), and preferably defined as equal to the arithmetic mean of the first and second front positions (at, 6F2). 3. Procédé selon la revendication 1 ou 2 caractérisé en ce que l'on acquiert une troisième position de front (6F3), qui correspond à une valeur représentative de la position occupée par l'organe de direction mobile (2) lorsque survient un troisième front (F3) qui appartient à la première impulsion d'index (T1) et qui est de nature opposée à celle du premier front (F1), ainsi qu'une quatrième position de front (6F4), qui correspond à une valeur représentative de la position occupée par l'organe de direction mobile (2) lorsque survient un quatrième front (F4) qui appartient à la seconde impulsion (T2) et qui est de nature opposée à celle du second front (F2), et de même nature que le troisième front (F3), et en ce que, lors de l'étape (d) de calcul, on définit la position de référence à partir d'une moyenne, et de préférence comme égale à la moyenne arithmétique, des première, seconde, troisième et quatrième positions de front (en , 6F2, 6F3, 6F4)-3. Method according to claim 1 or 2 characterized in that one acquires a third front position (6F3), which corresponds to a value representative of the position occupied by the movable steering member (2) when a third front (F3) which belongs to the first index pulse (T1) and which is opposite in nature to that of the first edge (F1), and a fourth edge position (6F4), which corresponds to a value representative of the position occupied by the movable steering member (2) when a fourth edge (F4) which belongs to the second pulse (T2) and which is opposite in nature to that of the second edge (F2), and of the same nature as the third front (F3), and in that, during the step (d) of calculation, the reference position is defined from an average, and preferably as equal to the arithmetic mean, of the first, second , third and fourth front positions (at, 6F2, 6F3, 6F4) - 4. Procédé selon l'une des revendications précédentes caractérisé en ce que, la direction assistée comprenant un moteur d'assistance (10), les positions de front (en , 6F2, 6F3, 6F4) sont définies par les positions angulaires de l'arbre (11) du moteur d'assistance (10), telles que ces positions angulaires sont mesurées, de préférence au moyen d'un capteur de position relative (20), lorsque surviennent les fronts (F1, F2, F3, F4) considérés.4. Method according to one of the preceding claims characterized in that, the power steering comprising an assistance motor (10), the front positions (in, 6F2, 6F3, 6F4) are defined by the angular positions of the shaft (11) of the assist motor (10), such that these angular positions are measured, preferably by means of a relative position sensor (20), when the edges (F1, F2, F3, F4) considered . 5. Procédé selon l'une des revendications précédentes caractérisé en ce que l'organe de direction mobile (2) est constitué par la colonne de direction (2) qui porte le volant de conduite (3), et en ce que l'on génère une impulsion d'index (T1, T2) au passage de ladite colonne de direction (2) par une position angulaire indexée prédéterminée.5. Method according to one of the preceding claims characterized in that the movable steering member (2) is constituted by the steering column (2) which carries the steering wheel (3), and in that one generates an index pulse (T1, T2) at the passage of said steering column (2) by a predetermined indexed angular position. 6. Procédé selon l'une des revendications précédentes caractérisé 35 en ce que, la direction assistée (1) étant pilotée au moyen d'un volant de 3016 84 9 22 conduite (3), on génère au plus une impulsion d'index (T1, T2) par tour complet de volant de conduite (3).6. Method according to one of the preceding claims characterized in that, the power steering (1) being controlled by means of a steering wheel (3), is generated at most one index pulse ( T1, T2) per complete turn of the steering wheel (3). 7. Procédé selon l'une des revendications précédentes caractérisé en ce que l'impulsion d'index (T1, T2) est une impulsion analogique, de 5 préférence délivrée par un capteur à index magnétique (14).7. Method according to one of the preceding claims, characterized in that the index pulse (T1, T2) is an analog pulse, preferably delivered by a magnetic index sensor (14). 8. Procédé de détermination de la position angulaire absolue d'un volant de conduite (3) équipant une direction assistée (1) pourvue d'un moteur d'assistance (10), ledit procédé comprenant une phase de prise d'origine, au cours de laquelle on détermine une position de référence (eréf) selon un 10 procédé conforme à l'une ou l'autre des revendications 1 à 7, et l'on fixe, à partir de cette position de référence (eréf), l'origine d'un référentiel angulaire dans lequel s'effectuent les manoeuvres du volant de conduite, ledit procédé comprenant ensuite une phase de mesure de position au cours de laquelle on mesure, dans ledit référentiel angulaire, la position relative de l'arbre (11) du 15 moteur d'assistance (10) au moyen d'un capteur de position relative (20), de type « resolver », pour exprimer la position absolue du volant de conduite (3).8. A method for determining the absolute angular position of a steering wheel (3) fitted to a power steering (1) provided with an assistance motor (10), said method comprising a homing phase, at the wherein a reference position (erf) is determined in accordance with a method according to any one of claims 1 to 7, and from this reference position (erf) is set origin of an angular reference system in which maneuvers of the steering wheel are performed, said method then comprising a position measuring phase during which the relative position of the shaft (11) is measured in said angular reference frame the assist motor (10) by means of a resolver-type relative position sensor (20) for expressing the absolute position of the steering wheel (3). 9. Support de données lisible sur un calculateur et contenant des éléments de code de programme informatique permettant la mise en oeuvre d'un procédé selon l'une quelconque des revendications 1 à 7 lorsque ledit 20 support est lu par un calculateur.9. Data carrier readable on a computer and containing computer program code elements for implementing a method according to any one of claims 1 to 7 when said medium is read by a computer. 10. Direction assistée (1) comprenant au moins un support de référence, du genre carter, ainsi qu'au moins un moteur d'assistance (10) et au moins un organe de direction (2), du genre colonne de direction, qui est monté mobile par rapport au support de sorte à pouvoir se déplacer alternativement 25 dans un premier sens de déplacement (CW) et dans un second sens de déplacement (CCW) opposé, et qui est couplé à l'arbre (11) du moteur d'assistance de sorte à pouvoir effectuer les manoeuvres de la direction, ladite direction assistée comprenant également un index (14) qui génère une impulsion d'index (T1, T2) à chaque passage de l'organe de direction (2) par 30 une position indexée prédéterminée, ainsi qu'un capteur de position relative (20) permettant de mesurer la position angulaire de l'arbre (11) du moteur d'assistance, ladite direction assistée étant caractérisée en ce qu'elle comprend une unité d'analyse (30) structurée ou programmée pour détecter les fronts montants (F1, F2) et/ou descendants (F3, F4) des impulsions d'index (T1, T2), mémoriser les positions angulaires, dites « positions de front » (en, 0F2, 0F3, 0E4), de l'arbre (11) du moteur d'assistance qui correspondent auxditsfronts, classer les fronts (F1, F2, F3, F4) par nature, selon que lesdits fronts sont descendants ou montants, classer lesdits fronts en fonction du sens de déplacement, horaire (CW) ou antihoraire (CCW), selon lequel a été générée l'impulsion d'index à laquelle appartient chaque front considéré, puis calculer une position de référence (bref) à partir de deux positions de front associées à deux fronts de même nature issus chacun respectivement d'une première impulsion d'index et d'une second impulsion d'index qui correspondent à des sens de déplacement opposés de l'organe de direction (2).1010. Power steering (1) comprising at least one reference support, of the crankcase type, and at least one assistance motor (10) and at least one steering member (2), of the steering column type, which is movably mounted relative to the support so as to be able to move alternately in a first direction of movement (CW) and in a second direction of displacement (CCW) opposite, and which is coupled to the shaft (11) of the motor of for assisting the steering maneuvers, said power steering also comprising an index (14) which generates an index pulse (T1, T2) at each passage of the steering member (2) by a predetermined indexed position, as well as a relative position sensor (20) for measuring the angular position of the assistance motor shaft (11), said power steering being characterized in that it comprises an analysis unit (30) structured or programmed to detect colds nts amounts (F1, F2) and / or descendants (F3, F4) of the index pulses (T1, T2), memorize the angular positions, called "front positions" (en, 0F2, 0F3, 0E4), of the a shaft (11) of the assistance motor which correspond to said bridges, classifying the fronts (F1, F2, F3, F4) by nature, according to whether said fronts are descending or rising, classifying said fronts according to the direction of movement, time ( CW) or counterclockwise (CCW), according to which was generated the index pulse to which each considered edge belongs, then calculate a reference position (brief) from two front positions associated with two fronts of the same nature from each respectively of a first index pulse and a second index pulse which correspond to opposite directions of movement of the steering member (2).
FR1450752A 2014-01-30 2014-01-30 DETERMINING AN ANGULAR STEERING REFERENCE POSITION ASSISTED FROM FRONTS AMOUNTING AND DESCENDING FROM AN INDEX SIGNAL Expired - Fee Related FR3016849B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FR1450752A FR3016849B1 (en) 2014-01-30 2014-01-30 DETERMINING AN ANGULAR STEERING REFERENCE POSITION ASSISTED FROM FRONTS AMOUNTING AND DESCENDING FROM AN INDEX SIGNAL
PCT/FR2015/050202 WO2015114256A1 (en) 2014-01-30 2015-01-29 Determination of a power steering angular reference position from the rising and falling edges of an index signal
EP15705342.2A EP3099557B1 (en) 2014-01-30 2015-01-29 Determination of a power steering angular reference position from the rising and falling edges of an index signal
CN201580006336.1A CN106029474B (en) 2014-01-30 2015-01-29 The method of the angle reference position of power steering system is determined according to the rising edge of exponential signal and failing edge
BR112016016334A BR112016016334A8 (en) 2014-01-30 2015-01-29 method of defining a reference position of an assisted driving system, method of determining the absolute angular position of a steering wheel, data readable on a calculator and assisted driving system
US15/113,392 US9937951B2 (en) 2014-01-30 2015-01-29 Determination of an angular reference position of a power steering system from rising and falling edges of an index signal
PL15705342T PL3099557T3 (en) 2014-01-30 2015-01-29 Determination of a power steering angular reference position from the rising and falling edges of an index signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1450752A FR3016849B1 (en) 2014-01-30 2014-01-30 DETERMINING AN ANGULAR STEERING REFERENCE POSITION ASSISTED FROM FRONTS AMOUNTING AND DESCENDING FROM AN INDEX SIGNAL

Publications (2)

Publication Number Publication Date
FR3016849A1 true FR3016849A1 (en) 2015-07-31
FR3016849B1 FR3016849B1 (en) 2016-02-19

Family

ID=50780658

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1450752A Expired - Fee Related FR3016849B1 (en) 2014-01-30 2014-01-30 DETERMINING AN ANGULAR STEERING REFERENCE POSITION ASSISTED FROM FRONTS AMOUNTING AND DESCENDING FROM AN INDEX SIGNAL

Country Status (7)

Country Link
US (1) US9937951B2 (en)
EP (1) EP3099557B1 (en)
CN (1) CN106029474B (en)
BR (1) BR112016016334A8 (en)
FR (1) FR3016849B1 (en)
PL (1) PL3099557T3 (en)
WO (1) WO2015114256A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019794B1 (en) * 2014-04-10 2017-12-08 Jtekt Europe Sas ESTIMATING THE AGING OF AN ASSISTED DIRECTION
CN109375620B (en) * 2018-10-12 2020-06-02 深圳市今天国际智能机器人有限公司 Method and device for controlling steering wheel to return to original point by using single photoelectric sensor
CN109174561A (en) * 2018-10-25 2019-01-11 威准(厦门)自动化科技有限公司 A kind of the base position automatic aligning method and device of the point plastic pin of dispenser
DE102020105797B4 (en) 2020-03-04 2023-08-24 Schaeffler Technologies AG & Co. KG Method for steering a vehicle, actuator for rear-axle steering of a vehicle and rear-axle steering with such an actuator
US11661101B2 (en) 2020-08-17 2023-05-30 Honda Motor Co., Ltd. Setting vehicle center in electronic power steering system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342647A2 (en) * 2002-03-05 2003-09-10 Alps Electric Co., Ltd. Rotation-angle detecting device capable of precisely detecting absolute angle
EP1754648A2 (en) * 2005-08-16 2007-02-21 ZF Lenksysteme GmbH Superposition steering system
DE102005059883A1 (en) * 2005-12-15 2007-06-21 Zf Lenksysteme Gmbh Steering system for motor vehicle has signal of first angle sensor divided over its maximum possible scope into number of signal periods

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61155059A (en) * 1984-12-27 1986-07-14 Jidosha Kiki Co Ltd Control unit for power steering device
JPS63297172A (en) * 1987-05-29 1988-12-05 Jidosha Kiki Co Ltd Control device for power steering device
JPS63197710U (en) * 1987-06-12 1988-12-20
JPH01208273A (en) * 1988-02-17 1989-08-22 Toyoda Mach Works Ltd Steering force control device
JP2003509999A (en) * 1999-09-17 2003-03-11 デルファイ・テクノロジーズ・インコーポレーテッド Method and apparatus for reliably generating index pulses for an electric power steering system
US6498451B1 (en) * 2000-09-06 2002-12-24 Delphi Technologies, Inc. Torque ripple free electric power steering
FR2829986B1 (en) * 2001-09-26 2003-12-26 Roulements Soc Nouvelle ELECTRIC POWER ASSISTED STEERING SYSTEM
US7362070B2 (en) * 2002-11-04 2008-04-22 Hamilton Sundstrand Corporation Electric motor control system including position determination and error correction
US7207412B2 (en) * 2004-02-17 2007-04-24 Denso Corporation Motor-driven power steering system
JP4294558B2 (en) * 2004-08-23 2009-07-15 ソニー株式会社 Angle detection signal processor
JP2007137299A (en) * 2005-11-21 2007-06-07 Toyota Motor Corp Power supply control device
KR101240140B1 (en) * 2009-09-01 2013-03-07 주식회사 만도 Method and Apparatus for Recognizing Rotor Position, and Electric Power Steering System Using the Same
JP5789911B2 (en) * 2009-10-06 2015-10-07 株式会社ジェイテクト Rotation angle detection device and electric power steering device
US8474570B2 (en) * 2009-12-25 2013-07-02 Toyota Jidosha Kabushiki Kaisha Electric power steering apparatus
US8577634B2 (en) * 2010-12-15 2013-11-05 Allegro Microsystems, Llc Systems and methods for synchronizing sensor data
JP5321614B2 (en) * 2011-02-28 2013-10-23 株式会社デンソー Rotating machine control device
JP5435310B2 (en) * 2011-09-08 2014-03-05 株式会社デンソー Rotating electrical machine control device and steering control system using the same
CN102594231B (en) * 2012-02-16 2014-09-17 吉林大学 Brushless motor rotor position signal decoding module for automobile electric power steering system
GB201220688D0 (en) * 2012-11-16 2013-01-02 Trw Ltd Improvements relating to electrical power assisted steering systems
GB201223174D0 (en) * 2012-12-21 2013-02-06 Trw Ltd Control of electric motors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1342647A2 (en) * 2002-03-05 2003-09-10 Alps Electric Co., Ltd. Rotation-angle detecting device capable of precisely detecting absolute angle
EP1754648A2 (en) * 2005-08-16 2007-02-21 ZF Lenksysteme GmbH Superposition steering system
DE102005059883A1 (en) * 2005-12-15 2007-06-21 Zf Lenksysteme Gmbh Steering system for motor vehicle has signal of first angle sensor divided over its maximum possible scope into number of signal periods

Also Published As

Publication number Publication date
BR112016016334A2 (en) 2017-08-08
BR112016016334A8 (en) 2020-06-16
CN106029474B (en) 2019-06-14
US20170008556A1 (en) 2017-01-12
WO2015114256A1 (en) 2015-08-06
EP3099557B1 (en) 2018-01-03
PL3099557T3 (en) 2018-07-31
CN106029474A (en) 2016-10-12
EP3099557A1 (en) 2016-12-07
US9937951B2 (en) 2018-04-10
FR3016849B1 (en) 2016-02-19

Similar Documents

Publication Publication Date Title
EP2171403B1 (en) Non-contact multi-turn absolute position magnetic sensor comprising a through-shaft
EP3099557B1 (en) Determination of a power steering angular reference position from the rising and falling edges of an index signal
EP2452160B1 (en) Multi-periodic absolute position sensor
EP2338030B2 (en) Magnetic position sensor with field direction measurement and flux collector
EP1845342B1 (en) Method of determining the angular position of a projector using several means for measuring a magnetic field.
EP3004511B1 (en) Detection of the position of a winding drum coupled to a motor via a damping flexible element
WO2010040429A1 (en) Hall effect measuring device
EP1403622B1 (en) Absolute angle sensor
FR2987113A1 (en) SENSOR DEVICE FOR DETECTING THE ROTATION ANGLE OF A ROTATING COMPONENT EQUIPPED WITH A VEHICLE
EP3044073B1 (en) Method for calculating, in real time, the absolute position of a power steering member with improved accuracy
FR2901357A1 (en) ROTATION ANGLE DETECTION DEVICE FOR ROTATION DEGREE MEASUREMENT OF A TREE EXCEEDING 360
FR2954272A1 (en) APPARATUS AND METHOD FOR MEASURING A ROTATING ANGLE OF AN AIRCRAFT LANDING TRAIN AND AIR LANDING TRAIN
FR2987116A1 (en) SENSOR DEVICE FOR DETECTING THE ROTATION ANGLES OF A ROTARY COMPONENT OF A VEHICLE
FR2862382A1 (en) ABSOLUTE TORSION TORQUE SENSOR SYSTEM AND MODULE COMPRISING SAME
FR3036479A1 (en) SENSOR DEVICE FOR SEIZING THE ROTATION ANGLES OF A ROTARY ORGAN OF A VEHICLE
EP1403621B1 (en) Absolute angle sensor
EP1631793B1 (en) Determination of the absolute angular position of a steering wheel by binary sequences discrimination
FR2993657A1 (en) DEVICE FOR MEASURING A TORQUE TRANSMITTED BY A POWER TRANSMISSION SHAFT WITH ACCOUNTING OF TEMPERATURE VARIATIONS
FR2954492A1 (en) INCREMENTAL ENCODER AND METHOD FOR DETERMINING A VALUE OF VARIATION OF STABLE ENCODER POSITIONS.
FR2608756A1 (en) Displacement sensor for automatic machines
EP2997334B1 (en) Position encoder
EP4343296A1 (en) Method for determining a torque applied between two rotating members
FR2898973A1 (en) Rotating shaft`s e.g. steering column, absolute angular position measuring sensor for motor vehicle, has processing unit calculating absolute angular position of shaft based on relative angular position and positions of distributed segments
EP0189721A1 (en) Process and device for measuring the steering-lock angle of a motor vehicle front wheel
FR2856147A1 (en) Steering wheel absolute angular position determining process, involves discriminating two respective absolute angular positions of wheel corresponding to binary sequence by estimation if sequence is unique and not unique

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

ST Notification of lapse

Effective date: 20190906