FR3009869A1 - METHOD FOR DETECTING A POWER BATTERY DISCONNECTION IN A MOTOR VEHICLE - Google Patents

METHOD FOR DETECTING A POWER BATTERY DISCONNECTION IN A MOTOR VEHICLE Download PDF

Info

Publication number
FR3009869A1
FR3009869A1 FR1358125A FR1358125A FR3009869A1 FR 3009869 A1 FR3009869 A1 FR 3009869A1 FR 1358125 A FR1358125 A FR 1358125A FR 1358125 A FR1358125 A FR 1358125A FR 3009869 A1 FR3009869 A1 FR 3009869A1
Authority
FR
France
Prior art keywords
voltage
battery
signal
intensity
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1358125A
Other languages
French (fr)
Other versions
FR3009869B1 (en
Inventor
Gilles Brust
Frederic Fluxa
Vahe Baghdassarians
Herve Fricou
Erwann Fouche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR1358125A priority Critical patent/FR3009869B1/en
Priority to EP14752901.0A priority patent/EP3036549A1/en
Priority to CN201480051241.7A priority patent/CN105556320B/en
Priority to JP2016535513A priority patent/JP6306185B2/en
Priority to PCT/FR2014/051586 priority patent/WO2015025089A1/en
Publication of FR3009869A1 publication Critical patent/FR3009869A1/en
Application granted granted Critical
Publication of FR3009869B1 publication Critical patent/FR3009869B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

L'invention propose un procédé de détection d'une déconnexion de batterie électrique (10) dans un système équipé de deux réseaux électriques interconnectés par un convertisseur (DC/DC) de tension continue en tension continue (4). La batterie (10) appartient à l'un des deux réseaux (2), et le convertisseur (4) est configuré pour recharger la batterie (2). On ajoute un signal de tension prédéfini (Uvar) à une composante de tension continue (Us) délivrée par le convertisseur (4) au réseau (2) comprenant la batterie (10), et on mesure le courant (I) traversant la batterie (10) en y recherchant un signal de courant (Ialternatif) correspondant au signal de tension ajouté (Uvar), pour vérifier que la batterie (10) est bien connectée au réseau (2).The invention proposes a method for detecting an electric battery disconnection (10) in a system equipped with two electrical networks interconnected by a DC voltage DC converter (4). The battery (10) belongs to one of the two networks (2), and the converter (4) is configured to recharge the battery (2). A predefined voltage signal (Uvar) is added to a DC voltage component (Us) delivered by the converter (4) to the network (2) comprising the battery (10), and the current (I) passing through the battery ( 10) by searching for a current signal (Ialternative) corresponding to the added voltage signal (Uvar), to verify that the battery (10) is connected to the network (2).

Description

Procédé de détection d'une déconnexion de batterie d'alimentation d'un véhicule automobile L'invention a pour objet la sécurisation de l'alimentation en énergie électrique de réseaux de bord de véhicules automobiles. Elle peut également s'appliquer de manière plus générale à des systèmes électriques, notamment à des systèmes électriques embarqués, combinant deux réseaux électriques, interconnectés par un convertisseur de tension de type DC/DC (convertisseur de courant continu en courant continu), un des réseaux comprenant une batterie d'accumulation électrique rechargée par le convertisseur DC/DC. L'invention concerne plus particulièrement la sécurisation de l'alimentation en électricité à basse tension d'un système électrique automobile comprenant deux réseaux électriques interconnectés par un convertisseur DC/DC. Ces deux réseaux peuvent fonctionner à des tensions nominales identiques ou à des tensions nominales différentes. Typiquement, dans des véhicules où au moins certaines machines électriques servent soit à récupérer de l'énergie de freinage, soit à aider à la propulsion du véhicule, soit les deux, le véhicule peut comprendre un réseau à haute tension incluant les machines électriques, afin de limiter les pertes par effet Joule dans les conducteurs et afin de pouvoir utiliser des câbles conducteurs de moindre diamètre.The invention relates to the securing of the power supply of motor vehicle edge systems. It can also be applied more generally to electrical systems, in particular to embedded electrical systems, combining two electrical networks, interconnected by a DC / DC voltage converter (DC direct current converter), one of the following: networks comprising an electric storage battery recharged by the DC / DC converter. The invention relates more particularly to securing the low-voltage power supply of an automotive electrical system comprising two electrical networks interconnected by a DC / DC converter. These two networks can operate at identical nominal voltages or at different nominal voltages. Typically, in vehicles where at least some electrical machines serve either to recover braking energy, or to assist in the propulsion of the vehicle, or both, the vehicle may comprise a high voltage network including electrical machinery, so to limit the losses by Joule effect in the conductors and in order to be able to use conductive cables of smaller diameter.

Pour les autres fonctions standards le véhicule peut comprendre un second réseau électrique alimenté à une tension inférieure. On peut par exemple avoir un premier réseau électrique fonctionnant à une tension comprise entre 24 et 58 volts, par exemple à une tension de 48 volts, et un second réseau électrique, basse tension fonctionnant à des tensions nominales comprises entre 10,5 et 15 volts.For other standard functions the vehicle may include a second power grid powered at a lower voltage. For example, it is possible to have a first electrical network operating at a voltage of between 24 and 58 volts, for example at a voltage of 48 volts, and a second electrical network, low voltage operating at nominal voltages of between 10.5 and 15 volts. .

Le second réseau électrique « basse tension » peut comprendre une batterie d'accumulateurs électriques dédiée, qui est par exemple rechargée au moyen d'un convertisseur DC/DC à partir du réseau haute tension pendant les phases de roulage du véhicule.The second electrical network "low voltage" may include a dedicated electric storage battery, which is for example recharged by means of a DC / DC converter from the high voltage network during the vehicle running phases.

Pour des raisons de gestion de l'énergie électrique du réseau « basse tension » et de gestion de la recharge de la batterie d'accumulateur « basse tension », le convertisseur DC/DC peut être piloté par une unité de commande électronique qui est elle-même alimentée par la batterie du réseau basse tension. Pour certaines fonctions sécuritaires du véhicule, il peut être nécessaire de sécuriser l'alimentation en énergie électrique du réseau « basse tension ». Un moyen de sécuriser cette alimentation peut être d'utiliser la redondance d'alimentation en électricité par la batterie d'accumulation « basse tension » d'une part, et par l'alimentation en électricité du réseau basse tension par le second réseau via le convertisseur DC/DC. Il est dans ce cas important, avant de désactiver l'alimentation du réseau basse tension par le convertisseur DC/DC, de vérifier que la batterie basse tension est effectivement connectée au réseau basse tension, de manière à pouvoir ensuite assurer l'alimentation électrique du réseau « basse tension » Ce peut être le cas, par exemple, pour des véhicules destinés à économiser de l'énergie, grâce à des systèmes de type « stop and start » dans lesquels un moteur thermique servant à propulser le véhicule est éteint lors d'un arrêt à un feu rouge et est relancé rapidement quand le conducteur ré-appuie sur la pédale d'accélération. Si la sécurisation de l'alimentation en énergie électrique du réseau « basse tension » ne peut être portée que sur la batterie d'accumulateur « basse tension », il est indispensable de s'assurer que cette batterie d'accumulateurs « basse tension » n'est pas déconnectée avant d'engager l'arrêt automatique du moteur. La demande de brevet EP 195 8851 propose l'utilisation d'une seconde batterie pour sécuriser le réseau de bord à basse tension. L'ajout d'une seconde batterie alourdit le véhicule et augmente le coût de revient du véhicule.For reasons of management of the electrical energy of the "low voltage" network and management of the charging of the "low voltage" accumulator battery, the DC / DC converter can be controlled by an electronic control unit which is it - even powered by the battery of the low voltage network. For certain safety functions of the vehicle, it may be necessary to secure the power supply of the "low voltage" network. One way to secure this power supply may be to use the power supply redundancy by the "low voltage" storage battery on the one hand, and by the supply of electricity to the low voltage network by the second network via the DC / DC converter. In this case, it is important, before switching off the low-voltage network supply via the DC / DC converter, to check that the low-voltage battery is actually connected to the low-voltage grid, so that it can then supply power to the low-voltage grid. This may be the case, for example, for vehicles designed to save energy, thanks to "stop and start" systems in which a heat engine used to propel the vehicle is switched off when a stop at a red light and is restarted quickly when the driver re-presses the accelerator pedal. If the supply of electrical power to the "low voltage" network can only be secured to the "low voltage" storage battery, it is essential to ensure that this "low voltage" storage battery is not disconnected before engaging the automatic engine stop. The patent application EP 195 8851 proposes the use of a second battery for securing the low-voltage onboard network. The addition of a second battery weighs down the vehicle and increases the cost of the vehicle.

L'invention a pour but de proposer un système de surveillance de la bonne connexion d'une batterie d'un réseau basse tension dans un véhicule automobile alimentée par deux réseaux électriques interconnectés par un convertisseur DC/DC, en particulier lorsque l'un des réseaux comporte une batterie rechargée au travers du convertisseur à partir de l'autre réseau. Le réseau alimenté au travers du convertisseur DC/DC comporte parfois un démarreur, mais ne comporte généralement pas de producteur d'énergie (alternateur ou alterno démarreur par exemple), celui-ci étant porté sur le premier réseau électrique. Le dispositif de surveillance proposé doit être fiable, ne pas perturber les composants électriques et consommateurs électriques des deux réseaux et doit pouvoir être mis en place pour un faible coût de revient et sans alourdir le véhicule.The aim of the invention is to propose a system for monitoring the good connection of a battery of a low-voltage network in a motor vehicle powered by two electrical networks interconnected by a DC / DC converter, in particular when one of the networks includes a battery recharged through the converter from the other network. The network fed through the DC / DC converter sometimes comprises a starter, but generally does not include a generator of energy (alternator or alternator starter for example), the latter being carried on the first power grid. The proposed monitoring device must be reliable, not disturb the electrical components and electrical consumers of the two networks and must be able to be set up for a low cost and without burdening the vehicle.

A cette fin, l'invention propose un procédé de détection d'une déconnexion de batterie électrique dans un système équipé de deux réseaux électriques interconnectés par un convertisseur (DC/DC) de tension continue en tension continue, la batterie appartenant à l'un des deux réseaux, et le convertisseur permettant de recharger la batterie, c'est-à-dire connecté de manière à pouvoir recharger la batterie. De manière plus générale, la commande du convertisseur est configurée pour assurer, quand le convertisseur est en marche, l'alimentationen énergie du réseau comprenant la batterie, et pour recharger la batterie pour que celle-ci puisse prendre alimenter à son tour le réseau quand le convertisseur est inactif. On ajoute un signal de tension prédéfini à une composante de tension continue délivrée par le convertisseur au réseau comprenant la batterie, et on mesure le courant traversant la batterie en y recherchant un signal d'intensité de courant correspondant au signal de tension ajouté, pour vérifier que la batterie est bien connectée au réseau. Le système peut être par exemple un véhicule automobile à propulsion électrique ou un véhicule automobile à propulsion hybride. Le convertisseur peut être configuré pour recharger la batterie par intervalles de temps, la batterie alimentant au besoin le réseau dont elle fait partie pendant les autres intervalles de temps. La tension nominale de fonctionnement du réseau associée à la batterie est de préférence inférieure à la tension nominale de l'autre réseau. De préférence, cet autre réseau comprend une seconde batterie de tension nominale plus élevée. Dans le présent texte, sauf précision contraire, le terme "la batterie" désigne par défaut la batterie appartenant au réseau alimenté en tension par le convertisseur, c'est-à-dire le réseau de tension nominale la plus basse. Le réseau de tension nominale la plus haute peut comprendre une batterie, mais celle-ci est alors de préférence désignée par "seconde batterie". Selon un mode de réalisation avantageux, le signal de tension ajouté et le signal d'intensité recherché sont des signaux périodiques. Ces signaux peuvent être par exemple des signaux périodiques alternatifs, ou des signaux périodiques de signe constant. L'amplitude des signaux de tension est de préférence réduite devant la tension nominale du réseau alimenté par convertisseur et par la batterie, par exemple l'amplitude est inférieure à 2V pour un réseau de tension nominale voisine de 14V. L'amplitude du signal de tension peut être par exemple comprise entre 0.2V et 1,5V, et de préférence comprise entre 0.2V et 0.5V. La fréquence des signaux périodiques peut être par exemple comprise entre 20Hz et 100Hz. La fréquence des signaux périodiques peut être constante. Selon une autre variante de réalisation, on peut envoyer un motif particulier de signaux périodiques, par exemple un motif permettant d'obtenir un bruit induit en courant proche de celui induit par un alternateur de véhicule thermique classique. On peut alors utiliser des stratégies de détection de signal d'intensité déjà développées pour de tels véhicules avec alternateur. Selon un mode de réalisation particulièrement avantageux, le signal de tension ajouté est une modification, de signe prédéfini, du niveau de tension, et le signal d'intensité est une variation, de signe prédéfini, du niveau d'intensité. Il s'agit d'un changement soudain, de signe prédéfini, du niveau de tension, et le signal d'intensité est une variation, de signe prédéfini, du niveau d'intensité. L'amplitude de la variation du niveau de tension est de préférence réduite devant la tension nominale du réseau alimenté par convertisseur et par la batterie. On peut par exemple appliquer un échelon de tension d'amplitude comprise entre 0.2V et 2V, et de préférence comprise entre 0.2V et 1 V. Selon un mode de réalisation, on n'ajoute le signal de tension et on ne recherche le signal de courant, que quand la valeur absolue de l'intensité traversant la batterie est inférieure à un seuil d'intensité. Le seuil d'intensité est de préférence constant. On peut par exemple déclencher l'ajout de la composante alternative de tension si la valeur absolue de l'intensité traversant la batterie reste inférieure au seuil d'intensité pendant une durée supérieure à un seuil de temps, et poursuivre cet ajout tant que l'intensité reste inférieure au seuil d'intensité.To this end, the invention proposes a method of detecting an electric battery disconnection in a system equipped with two electrical networks interconnected by a DC voltage converter (DC / DC) in DC voltage, the battery belonging to one two networks, and the converter for recharging the battery, that is to say connected so as to recharge the battery. More generally, the control of the converter is configured to ensure, when the converter is running, the power supply of the network comprising the battery, and to recharge the battery so that it can take power in turn the network when the converter is inactive. A predefined voltage signal is added to a DC voltage component supplied by the converter to the network comprising the battery, and the current flowing through the battery is measured by searching for a current intensity signal corresponding to the voltage signal added, to verify that the battery is connected to the network. The system can be for example an electric motor vehicle or a hybrid propulsion vehicle. The converter can be configured to recharge the battery at intervals of time, the battery supplying the network of which it is part during the other time intervals if necessary. The nominal operating voltage of the network associated with the battery is preferably lower than the nominal voltage of the other network. Preferably, this other network comprises a second battery of higher nominal voltage. In the present text, unless otherwise stated, the term "battery" designates by default the battery belonging to the network supplied with voltage by the converter, that is to say the network of lowest nominal voltage. The highest rated voltage network may include a battery, but this is preferably referred to as a "second battery". According to an advantageous embodiment, the added voltage signal and the desired intensity signal are periodic signals. These signals may be for example reciprocal periodic signals, or periodic signals of constant sign. The amplitude of the voltage signals is preferably reduced in comparison with the nominal voltage of the network fed by converter and by the battery, for example the amplitude is less than 2V for a nominal voltage network close to 14V. The amplitude of the voltage signal may for example be between 0.2V and 1.5V, and preferably between 0.2V and 0.5V. The frequency of the periodic signals may for example be between 20 Hz and 100 Hz. The frequency of the periodic signals can be constant. According to another variant embodiment, it is possible to send a particular pattern of periodic signals, for example a pattern making it possible to obtain a noise induced in current close to that induced by a conventional thermal vehicle alternator. Intensity signal detection strategies already developed for such alternator vehicles can then be used. According to a particularly advantageous embodiment, the added voltage signal is a modification, of predefined sign, of the voltage level, and the intensity signal is a variation, of predefined sign, of the intensity level. It is a sudden change, of predefined sign, of the level of tension, and the signal of intensity is a variation, of predefined sign, of the level of intensity. The amplitude of the variation of the voltage level is preferably reduced in comparison with the nominal voltage of the converter-fed network and the battery. For example, an amplitude voltage step of between 0.2 V and 2 V can be applied, and preferably between 0.2 V and 1 V. According to one embodiment, the voltage signal is not added and the signal is not sought. when the absolute value of the intensity passing through the battery is below an intensity threshold. The intensity threshold is preferably constant. For example, it is possible to trigger the addition of the AC voltage component if the absolute value of the intensity crossing the battery remains below the intensity threshold for a duration greater than a time threshold, and to continue this addition as long as the intensity remains below the intensity threshold.

Selon une autre variante de réalisation, on peut diminuer la tension d'alimentation du circuit comprenant la batterie si la valeur absolue de l'intensité traversant la batterie est inférieure au seuil d'intensité, de manière à obliger la batterie, si elle est connectée à son réseau, à débiter un courant dans le réseau. La simple lecture du courant traversant cette batterie permet alors de détecter son éventuelle déconnexion Selon un mode de réalisation, après avoir ajouté le signal de tension sans détecter le signal correspondant d'intensité, on augmente l'amplitude du signal de tension et on effectue une nouvelle tentative de détection. On peut effectuer une seule augmentation de l'amplitude du signal de tension, ou prévoir plusieurs niveaux d'amplitude à tester les une après les autres. Le signal de tension peut être ajouté à une valeur de consigne pilotant la tension de sortie du convertisseur. On appelle ici la tension de sortie du convertisseur, la tension que le convertisseur délivre au réseau comprenant la batterie. Selon un autre mode de réalisation, le signal de tension peut être produit par un circuit oscillant dédié et être ajouté à la tension de sortie du convertisseur.According to another variant embodiment, the supply voltage of the circuit comprising the battery can be reduced if the absolute value of the intensity crossing the battery is below the intensity threshold, so as to oblige the battery, if it is connected. to its network, to charge a current in the network. The simple reading of the current passing through this battery then makes it possible to detect its possible disconnection. According to one embodiment, after adding the voltage signal without detecting the corresponding intensity signal, the amplitude of the voltage signal is increased and a measurement is made. new detection attempt. It is possible to make a single increase in the amplitude of the voltage signal, or to provide several amplitude levels to be tested one after the other. The voltage signal can be added to a setpoint controlling the output voltage of the converter. Here is called the output voltage of the converter, the voltage that the converter delivers to the network comprising the battery. According to another embodiment, the voltage signal can be produced by a dedicated oscillating circuit and be added to the output voltage of the converter.

L'invention propose également un véhicule automobile équipé de deux réseaux électriques ayant deux niveaux de tension différents et interconnectés par un convertisseur (DC/DC) de tension continue en tension continue. Le convertisseur est configuré pour recharger la batterie, et le véhicule comprend un estimateur de l'intensité de courant traversant la batterie. De manière préférentielle, l'estimateur est un capteur de courant branché directement entre la borne négative de la batterie et la masse -i.e. sans autre consommateur électrique ni point de connexion d'un consommateur électrique interposé entre la borne de la batterie et la masse du circuit-, ou branché directement entre la borne positive de la batterie et la masse. Le véhicule comprend des moyens pour ajouter un signal prédéfini de tension à une tension continue délivrée par le convertisseur à la batterie, et comprend des moyens de filtrage aptes à détecter dans le signal d'intensité mesuré par l'estimateur d'intensité, un signal de courant correspondant au signal de tension ajouté. Par signal correspondant d'intensité, on entend un signal d'intensité de courant normalement obtenu lors de l'émission du signal de tension, lorsque la batterie est correctement branchée au réseau. Typiquement si le signal de tension est périodique, le signal d'intensité peut être périodique de fréquence sensiblement identique. Si le signal de tension est un changement brusque de niveau de tension, le signal d'intensité peut être un décalage de la courbe d'intensité précédente, de signe prédéfini en fonction du signe du changement de niveau de tension. Le véhicule peut comprendre une unité de commande électronique configurée pour déclencher l'ajout du signal de tension quand la valeur absolue de l'intensité de courant traversant la batterie devient inférieure à un seuil d'intensité. De manière préférentielle, l'ajout du signal de tension est déclenché si la valeur absolue de l'intensité traversant la batterie reste inférieure à un seuil d'intensité le seuil d'intensité peut être par exemple compris entre 0.5A et 2A selon la précision du dispositif de mesure du courant - pendant une durée prédéfinie, par exemple pendant plus d'une seconde, ou pendant une durée comprise entre 1 et 5s. De manière avantageuse, l'unité de commande électronique est configurée pour émettre un message d'alerte si pendant une durée supérieure à un seuil de durée, le signal d'intensité n'est pas détecté alors que le signal de tension est ajouté à la tension de sortie continue du convertisseur. Un message d'alerte peut être par exemple affiché à l'adresse du conducteur, ou être émis par synthèse vocale. Le message d'alerte de l'unité de commande électronique peut provoquer la mise en place de mesures de sauvegarde permettant au véhicule d'arriver à bon port malgré la déconnexion de la batterie, par exemple une interdiction de la mise hors tension du réseau électrique alimentant le réseau de la batterie au travers du convertisseur. Les mesures de sauvegarde peuvent comprendre une élévation du régime de ralenti d'un moteur thermique. Les mesures de sauvegarde peuvent par exemple comprendre l'interdiction d'une procédure "stop and start" avec extinction automatique d'un moteur thermique lors des arrêts temporaires du véhicule si ce moteur thermique utilise un démarreur alimenté par la batterie.The invention also proposes a motor vehicle equipped with two electrical networks having two different voltage levels and interconnected by a DC voltage converter (DC / DC). The converter is configured to recharge the battery, and the vehicle includes an estimator of the current through the battery. Preferably, the estimator is a current sensor connected directly between the negative terminal of the battery and the ground-i.e. without any other electrical consumer or connection point of an electrical consumer interposed between the battery terminal and the ground of the circuit, or connected directly between the positive terminal of the battery and the ground. The vehicle comprises means for adding a predefined voltage signal to a DC voltage delivered by the converter to the battery, and comprises filtering means able to detect in the intensity signal measured by the intensity estimator, a signal current corresponding to the added voltage signal. By corresponding intensity signal is meant a current intensity signal normally obtained during the transmission of the voltage signal, when the battery is correctly connected to the network. Typically, if the voltage signal is periodic, the intensity signal can be of a substantially identical frequency. If the voltage signal is a sudden change in voltage level, the intensity signal may be an offset of the previous intensity curve, a predefined sign depending on the sign of the voltage level change. The vehicle may include an electronic control unit configured to trigger the addition of the voltage signal when the absolute value of the current through the battery becomes below an intensity threshold. Preferably, the addition of the voltage signal is triggered if the absolute value of the intensity crossing the battery remains below an intensity threshold the intensity threshold may for example be between 0.5A and 2A according to the accuracy of the current measuring device - for a predefined period, for example for more than one second, or for a period of between 1 and 5s. Advantageously, the electronic control unit is configured to emit an alert message if for a duration greater than a duration threshold, the intensity signal is not detected while the voltage signal is added to the signal. DC output voltage of the converter. An alert message may for example be displayed at the driver's address, or be sent by voice synthesis. The alert message of the electronic control unit can lead to the implementation of safeguarding measures allowing the vehicle to arrive safely despite disconnection of the battery, for example a prohibition of the power off of the electrical network feeding the battery network through the converter. Safeguarding measures may include raising the idle speed of a combustion engine. The safeguarding measures may for example include the prohibition of a "stop and start" procedure with automatic shutdown of a heat engine during temporary stops of the vehicle if the engine uses a starter powered by the battery.

D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés sur lesquels : - la figure 1 est une représentation schématique d'un véhicule équipé d'un dispositif de détection selon l'invention, - la figure 2 est une représentation schématique du système électrique d'un véhicule équipé d'un dispositif de détection selon l'invention 1, et - la figure 3 est un exemple simplifié d'algorithme de fonctionnement d'un système de détection selon l'invention. Tel qu'illustré sur la figure 1, un véhicule selon l'invention comprend un premier réseau électrique 3 et un second réseau électrique 2, le premier réseau électrique 3 ou réseau haute tension fonctionnant à une tension sensiblement plus élevée, par exemple une tension au moins 1,5 fois plus élevée et de préférence sensiblement deux fois plus élevée que le second réseau 2 ou réseau « basse tension » 2. Dans l'exemple illustré, le véhicule 1 est un véhicule de type « hybride léger », c'est-à-dire qu'il comprend un moteur thermique 5 apte à faire avancer le véhicule et comprend au moins une machine électrique 6 qui est relié à certaines roues du véhicule de manière à pouvoir contribuer en tant que moteur électrique à fournir le couple moteur d'avancement du véhicule. La machine électrique 6 fonctionne également en tant que génératrice électrique, par exemple pour récupérer de l'énergie électrique pendant des phases de freinage dit récupératif ou pour jouer le rôle d'alternateur pour alimenter le réseau électrique 2 pour les besoins de gestion d'énergie ou de recharge de la batterie BT.Other objects, features and advantages of the invention will appear on reading the following description, given solely by way of nonlimiting example, and with reference to the appended drawings, in which: FIG. 1 is a diagrammatic representation of a vehicle equipped with a detection device according to the invention, - Figure 2 is a schematic representation of the electrical system of a vehicle equipped with a detection device according to the invention 1, and - Figure 3 is a simplified example of operating algorithm of a detection system according to the invention. As illustrated in FIG. 1, a vehicle according to the invention comprises a first electrical network 3 and a second electrical network 2, the first electrical network 3 or high voltage network operating at a substantially higher voltage, for example a voltage at less than 1.5 times higher and preferably substantially twice as high as the second network 2 or "low voltage" network 2. In the example illustrated, the vehicle 1 is a "light hybrid" type vehicle, it is that is to say that it comprises a heat engine 5 adapted to advance the vehicle and comprises at least one electric machine 6 which is connected to certain wheels of the vehicle so as to be able to contribute as an electric motor to supply the driving torque of the vehicle. progress of the vehicle. The electric machine 6 also functions as an electric generator, for example to recover electrical energy during so-called regenerative braking phases or to act as an alternator to supply the electrical network 2 for energy management purposes or charging the BT battery.

Le moteur thermique peut typiquement être associé à un démarreur 8 apte à lancer mécaniquement la rotation du moteur thermique lorsque celui-ci est à l'arrêt, notamment pour les démarrages initiaux si le réseau électrique 3 (couple Batt HT 11 et machine électrique 6) ne dispose pas de la puissance nécessaire pour assurer le démarrage du moteur thermique 5 à froid. Le démarreur 8 est alimenté par exemple par le réseau basse tension 2. Selon d'autres variantes de réalisation, le moteur thermique 5 peut ne pas être associé à un démarreur 8 et être lancé directement par la machine électrique 6 connectée au réseau haute tension 3 et assurant d'autres fonctions citées précédemment. Le second réseau électrique 2 est relié à une masse basse tension 21 et alimenté par une première batterie basse tension 10. La batterie basse tension 10 peut par exemple avoir une tension de fonctionnement nominale comprise entre 12 et 13 volts. Le premier réseau électrique haute tension 3 comprend une batterie haute tension 11 et est relié à une masse haute tension 22 qui peut éventuellement être la même masse que la masse basse tension 21. En l'absence d'autres sources de courant, par exemple en l'absence de production de courant électrique par la machine électrique 6, le réseau haute tension 3 est alimenté par la batterie 11. Un convertisseur 4 de courant continu en courant continu (« convertisseur DC/DC ») est interposé entre le réseau basse tension 2 et le réseau haute tension 3, de manière à pouvoir envoyer un courant continu du réseau haute tension 3 vers le réseau basse tension 2. Le convertisseur 4 est piloté par une unité de commande électronique 12 elle-même alimentée en courant basse tension par le second réseau 2. Le convertisseur 4 peut comprendre un générateur de tension alternative 13 réalisée par une solution matérielle ou par une stratégie intégrée dans le logiciel de régulation qui permet de superposer à la tension continue envoyée vers le second réseau basse tension 2, une composante alternative d'amplitude inférieure à la tension moyenne continue envoyée vers le réseau 2. Pendant les phases où le convertisseur 4 n'envoie pas de courant vers le second réseau 2, celui-ci est alimenté uniquement par la batterie basse tension 10. Le second réseau basse tension 2 comprend typiquement des consommateurs basse tension tels que des interfaces homme-machine 23 permettant au conducteur de piloter le véhicule et d'accéder à diverses commandes du véhicule, comprend d'autres consommateurs contribuant au confort du conducteur et des passagers, ces consommateurs 14 pouvant par exemple comprendre, un système de chauffage, un système de sonorisation, et peut comprendre des systèmes de sécurité du véhicule tels que des systèmes de freinage ou de contrôle de trajectoire, d'assistance de direction ou de visibilité.The heat engine may typically be associated with a starter 8 capable of mechanically starting the rotation of the heat engine when it is stopped, particularly for initial starts if the electrical network 3 (Batt HT 11 and electric machine 6) does not have the power necessary to ensure the start of the cold engine 5. The starter 8 is powered for example by the low voltage network 2. According to other embodiments, the heat engine 5 may not be associated with a starter 8 and be launched directly by the electrical machine 6 connected to the high voltage network 3 and providing other functions mentioned above. The second electrical network 2 is connected to a low voltage mass 21 and powered by a first low voltage battery 10. The low voltage battery 10 may for example have a nominal operating voltage of between 12 and 13 volts. The first high voltage electrical network 3 comprises a high voltage battery 11 and is connected to a high voltage mass 22 which may possibly be the same mass as the low voltage mass 21. In the absence of other current sources, for example the absence of production of electric current by the electrical machine 6, the high voltage network 3 is powered by the battery 11. A DC DC converter 4 ("DC / DC converter") is interposed between the low voltage network 2 and the high voltage network 3, so as to be able to send a direct current from the high voltage network 3 to the low voltage network 2. The converter 4 is controlled by an electronic control unit 12 which itself is supplied with low voltage current by the second network 2. The converter 4 may comprise an alternating voltage generator 13 made by a hardware solution or by a strategy integrated into the control software. which enables the DC voltage sent to the second low voltage network 2 to be superimposed on an AC component whose amplitude is smaller than the average DC voltage sent to the network 2. During the phases in which the converter 4 does not send current to the second network 2, it is powered only by the low voltage battery 10. The second low voltage network 2 typically includes low voltage consumers such as human-machine interfaces 23 allowing the driver to drive the vehicle and access the various controls of the vehicle, includes other consumers contributing to the comfort of the driver and passengers, these consumers 14 may for example include, a heating system, a sound system, and may include vehicle safety systems such as systems braking or trajectory control, steering assistance or visibility.

La batterie basse tension 10 est connectée à un estimateur d'intensité 7, par exemple à un capteur de courant 7, vissé sur la borne négative de la batterie 10. La valeur d'intensité I mesurée par le capteur de courant 7 est transmise à l'unité de commande électronique 12.The low voltage battery 10 is connected to an intensity estimator 7, for example to a current sensor 7, screwed on the negative terminal of the battery 10. The intensity value I measured by the current sensor 7 is transmitted to the electronic control unit 12.

Sur le mode de réalisation illustré sur la figure 1, le convertisseur de tension 4 comporte un générateur de signal 13 apte à modifier la tension de sortie du convertisseur 4, autrement dit la tension que le convertisseur 4 applique entre les bornes par lesquelles il est connecté au second réseau basse tension 2. Le générateur de signal 13 peut par exemple être configuré pour pouvoir ajouter à la tension de sortie du convertisseur, un signal périodique, par exemple un signal alternatif, ou un autre type de signal tel qu'un décalage de la tension de sortie appliqué rapidement et pendant une durée prédéfinie.In the embodiment illustrated in FIG. 1, the voltage converter 4 comprises a signal generator 13 able to modify the output voltage of the converter 4, in other words the voltage that the converter 4 applies between the terminals through which it is connected. to the second low voltage network 2. The signal generator 13 may for example be configured to be able to add to the output voltage of the converter, a periodic signal, for example an alternating signal, or another type of signal such as an offset of the output voltage applied quickly and for a predefined time.

La figure 2 illustre schématiquement le fonctionnement d'un système de détection selon l'invention, permettant de détecter si la batterie basse tension 10 n'est plus connectée au réseau basse tension 2. On retrouve sur la figure 2 des éléments communs à la figure 1, les mêmes éléments étant désignés par les mêmes références. Sur la figure 2, seule une partie du réseau basse tension est représentée, ainsi que la sortie du convertisseur 4. Dans l'exemple illustré sur la figure 2, le convertisseur 4 est piloté par l'unité de commande électronique 12 par l'envoi d'une consigne Ucons pour délivrer une tension de sortie continue Us au réseau basse tension 2. Cette tension continue Us est envoyée vers une première entrée d'un sommateur 18, la seconde entrée d'un sommateur 18 recevant une tension Uvar délivrée par un générateur de tension alternative 16 externe au convertisseur 4. Le générateur de tension alternative 16 est par exemple alimenté par le convertisseur 4, ou est alimenté directement par la batterie 11. Le réseau basse tension 2 est ainsi alimenté, à la sortie du sommateur 18, par une tension UBT qui présente une composante continue, et une composante d'oscillation d'amplitude réduite par rapport à la valeur moyenne de la composante continue. L'amplitude choisie est cependant telle qu'elle permet de provoquer une variation sensiblement de même fréquence du courant I traversant la batterie basse tension 10, l'amplitude de cette oscillation d'intensité de courant étant détectable par le capteur de courant 7 selon la précision dont il dispose, par exemple une amplitude de l'ordre de lA ou une amplitude de quelques Ampères, par exemple comprise entre 1 à 3 A. L'unité de commande électronique 12 est configurée pour être capable de détecter cette composante alternative du courant I lorsque la batterie 10 est correctement connectée au réseau basse tension 2, notamment lorsque la borne positive 9 de la batterie est connectée à la sortie du convertisseur DC/DC et la borne négative de la batterie 10 est correctement connectée à la masse basse tension 21. Lorsque la batterie 10 est déconnectée du réseau 2 par l'une quelconque de ses bornes, elle n'est plus traversée par la composante de courant alternative correspondant au signal alternatif de tension délivré par le générateur de tension alternative 16. Le capteur de courant 7 peut par exemple être interposé entre la borne négative de la batterie 10 et la masse basse tension 21. Le capteur de courant pourrait, selon d'autres variantes de réalisation, être disposé directement sur la borne + de la batterie 10. Afin de ne pas trop perturber le fonctionnement des consommateurs basse tension, on peut envisager d'alimenter le réseau basse tension avec une tension continue venant du convertisseur 4, tant que le courant détecté par le capteur de courant 7 est supérieur en valeur absolue à une intensité seuil. Au-dessus de cette intensité seuil, en fonction du signe de l'intensité, on peut considérer que soit la batterie débite un courant vers les consommateurs 14, soit elle reçoit un courant de charge du convertisseur 4, et donc qu'elle est a priori connectée au réseau 2.FIG. 2 diagrammatically illustrates the operation of a detection system according to the invention, making it possible to detect whether the low-voltage battery 10 is no longer connected to the low-voltage network 2. FIG. 2 shows elements that are common to FIG. 1, the same elements being designated by the same references. In FIG. 2, only a part of the low voltage network is represented, as well as the output of the converter 4. In the example illustrated in FIG. 2, the converter 4 is driven by the electronic control unit 12 by the sending a setpoint Ucons for delivering a DC output voltage Us to the low voltage network 2. This DC voltage Us is sent to a first input of an adder 18, the second input of an adder 18 receiving a voltage Uvar delivered by a AC voltage generator 16 external to the converter 4. The AC voltage generator 16 is for example powered by the converter 4, or is powered directly by the battery 11. The low voltage network 2 is thus powered, at the output of the adder 18, by a voltage UBT which has a DC component, and an oscillation component of reduced amplitude with respect to the average value of the DC component. The amplitude chosen is however such that it makes it possible to cause a variation of substantially the same frequency of the current I flowing through the low voltage battery 10, the amplitude of this current intensity oscillation being detectable by the current sensor 7 according to FIG. precision it has, for example an amplitude of the order of 1A or an amplitude of a few Amperes, for example between 1 to 3 A. The electronic control unit 12 is configured to be able to detect this AC component of the current I when the battery 10 is correctly connected to the low voltage network 2, in particular when the positive terminal 9 of the battery is connected to the output of the DC / DC converter and the negative terminal of the battery 10 is correctly connected to the low voltage mass 21 When the battery 10 is disconnected from the network 2 by any of its terminals, it is no longer traversed by the corrective current component. corresponding to the alternating voltage signal delivered by the alternating voltage generator 16. The current sensor 7 may for example be interposed between the negative terminal of the battery 10 and the low-voltage mass 21. The current sensor could, according to others variants, be placed directly on the + terminal of the battery 10. In order not to disturb too much the operation of low voltage consumers, it is possible to supply the low voltage network with a DC voltage from the converter 4, as long as the current detected by the current sensor 7 is greater in absolute value than a threshold intensity. Above this threshold intensity, depending on the sign of the intensity, it can be considered that either the battery delivers a current to the consumers 14, or it receives a charging current of the converter 4, and therefore it is a priori connected to the network 2.

En dessous de cette intensité seuil, on peut considérer que soit le convertisseur DC/DC délivre l'alimentation électrique de l'ensemble des consommateurs du réseau 2 sans recharger la batterie 10 soit la batterie n'est pas correctement connectée au réseau 2. En-dessous de cette intensité seuil, l'unité de commande électronique 12 peut donc déclencher la génération du signal alternatif Uvar et simultanément effectuer un filtrage du signal d'intensité I arrivant du capteur de courant 7 pour y rechercher une composante alternative de courant correspondant au signal alternatif de tension Uvar. Selon certaines variantes de réalisation, on peut additionner dans un premier temps une première amplitude du signal alternatif de tension Uvar, et si cette amplitude ne permet pas d'obtenir une détection d'un signal correspondant d'intensité, augmenter, à une ou plusieurs reprises, l'amplitude du signal Uvar tout en continuant à rechercher le signal correspondant au niveau de l'intensité mesurée - par l'ampèremètre 7. Quand l'amplitude du signai 1."),'' atteint une certaine valeur et que l'on ne'-détecte toujours pas de signal variable d'intensité, l'unité de commande électronique 12 peut par exemple déclencher une alerte envoyée à l'attention du conducteur pour l'avertir d'une mauvaise connexion de la batterie, et peut également déclencher un mode de fonctionnement de secours dans lequel on garde le convertisseur 4 actif jusqu'à l'extinction eoniplète des commandes du véhicule afin d'éviter que le véhicule ne reste immobilisé ay an t d'arriver à destination. Dans certains modes de réalisation, le signai de tension peut être piloté par la même unité de commande électronique que celle qui est connectée au capteur de courant 7, de manière: à pouvoir piloter l'amplitude des signaux de tension a.vec une rétroaction à partir des oscillations d'intensité de courant éventuellement provequées, et éviter une divergence de ces oscillations d'intensité de courant. La figure, 3 est une représentation simplifiée, sous forme d'algorithme 20, d'un mode de fonetiormement de l'unité de commande électronique 12 lui permettant d'estimer si la batterie 10 est effectivement bien connectée au réseau 2. Tel qu'illustré sur l'algorithme 20 de la figure 3, l'unité de commande électronique 12 effectue régulièrement un test 26 pour vérifier si la valeur absolue de l'intensité traversant la batterie est supérieure à une valeur seuil Innie Tant que cette valeur : absolue reste supérieure au seuil d intensité lee,' l'unité de commande électronique continue surveiller la valeur absolue de l'intensité, et ne déclenche pas génération du signal alternatif de tension en sortie du convertisseur DC:/DC' 4. Lorsque la valeur absolne de:l'intensité devient inférieure ou étude au seuil d'intensité 1,,,' c'est-à-diree:lorsque le test 26 est négatif, on passe à une étape 27. L'unité de commande électronique analyse alors le signal du .eaptenrHdeCourant:7 pOur y rechercher signal d'intensité correspondant à nrédéfinf généré soit . directement par le convertisseur soit par un. dispositif dont la tension s'ajoute a la tension 'ale sertie DC/DC. Si le signal d'intensité de courant est détecté, ici un signal ie I alternatif », de commande électronique revient à l'étape 26 et continue. de surveiller la valeur absolue de l'intensité de courant traversant la batterie. Si le signal d'intensité de courant n'est pas détecté, l'unité de commande électronique peut passer à une étape 25 où elle alerte le conducteur que la batterie est débranchée, et où elle déclenche au besoin des mesures de sauvegarde, pour permettre au véhicule de rouler jusqu'il ce que le conducteur demande explicitement l'arrêt du véhicule, se considérant comme-arrivé à destination. Selon d'autres variantes de réalisation. si l'unité de commande électronique, lors du test 27, ne détecte pas le signal recherché d'intensité de courant, elle peut passer à une étape 28 où elle commande une augmentation d'amplitude du signal de tension en sortie du DC/DC. L'unité de commande peut ensuite vérifier, par exemple à une étape 24, si l'amplitude du -si.grial de tension a atteint un seuil au-delà duquel on ne souhaite plus aller. Si l'amplitude maximale admissible de signal est atteinte et que te signal d'intensité n'a toujours pas été détecté, on passe à l'alerte 23 avertissant le conducteur que la batterie est débranchée. Sinon, une fois l'amplitude du signal de tension augmentée, on revient à l'étape 27 de recherche du signal d'intensité pour tester si cette fois un signal d'intensité de courant est devenu déteetable. L'invention ne se limite pas aux exemples de réalisation décrits et peut se décliner en de nombreuses variantes. Les deux réseaux :ntereonnectes par le convertisseur DCIDC peuvent fonctionner à des tensions nominales proches voirc des nominales sensiblement égales. On peut envisager d'émettre le signal prédéfini de, tension en 30 permanence, superposé à la tension continue du convertisseur DC/DC. On peut envisager de n'émettre le signal prédéfini de tension que par intervalles de temps, quand la valeur ab,solue de l'intensité traversant la batterie passe en dessous d'un certain seuil. 10 1.5 20 25 Selon une autre variante de réalisation, on peut émettre en continu une faible composante alternative, et ensuite augmenter l'amplitude de cette composante si un signal correspondant d'intensité n'est pas détectable. On peut envisager de rechercher en continu une composante alternative d'intensité ou ne rechercher un signal spécifique d'intensité de courant que quand la valeur absolue moyenne de l'intensité devient inférieure à un certain seuil. Le signal de tension ajouté à la tension continue de sortie du convertisseur peut être un signal périodique, un signal de fréquence constante ou un signal complexe choisi pour reproduire certaines caractéristiques du bruit en courant habituellement généré par un alternateur. Le signal de tension Uvar peut être un signal périodique non alternatif, voire un incrément de tension appliqué sous forme de créneau, c'est-à-dire comprenant un front montant, pour tenter de détecter un incrément d'intensité de courant de signe correspondant. Le signal d'intensité de courant recherché sera alors non alternatif, et on recherchera alors par exemple une modification de la valeur absolue de l'intensité du courant. Autrement dit, on augmente ou on réduit, de préférence aussi vite que possible (tout en limitant l'impact de cette modification de tension sur les consommateurs du réseau 2) la tension délivrée par le convertisseur 4 en appliquant un front de tension montant ou un front descendant, pour établir cette valeur de tension à une nouvelle valeur constante. Cette modification rapide de tension délivrée par le convertisseur sera de préférence pilotée par l'électronique de contrôle 12 par une modification de la tension de consigne. Une solution alternative acceptable peut être d'intégrer cette modification de tension de sortie convertisseur en interne du convertisseur DC/DC. L'avantage de ce dernier type de signal est qu'il peut permettre la mise en ouvre d'une stratégie de détection de déconnexion simplifiée en ce qu'elle ne consiste qu'à détecter qu'un courant non nul, la batterie 10 devant par réaction à cette évolution de tension de sortie du convertisseur 10 soit se décharger afin d'assurer la continuité d'alimentation du réseau 2, soit se charger, selon l'évolution de tension choisie. Il peut également minimiser les perturbations provoquées au niveau des consommateurs électriques du réseau basse tension 2 si l'amplitude de la modification de tension de sortie du convertisseur peut rester faible tout en étant suffisante pour détecter la réaction de la batterie.Below this threshold intensity, it can be considered that either the DC / DC converter delivers the power supply to all the consumers of the network 2 without recharging the battery 10 or the battery is not properly connected to the network 2. In below this threshold intensity, the electronic control unit 12 can therefore trigger the generation of the alternating signal Uvar and at the same time perform a filtering of the intensity signal I arriving from the current sensor 7 in order to look for an AC current component corresponding to the Alternating voltage signal Uvar. According to some embodiments, a first amplitude of the alternating voltage signal Uvar can be added in a first step, and if this amplitude does not make it possible to obtain a detection of a corresponding signal of intensity, increase to one or more the amplitude of the signal Uvar while continuing to search for the signal corresponding to the level of the measured intensity - by the ammeter 7. When the amplitude of the signal 1. "), '' reaches a certain value and the a variable intensity signal is still not detected, the electronic control unit 12 may, for example, trigger an alert sent to the driver's attention to warn him of a bad connection of the battery, and may It also triggers an emergency operating mode in which the active converter 4 is kept until the vehicle controls are switched off in order to prevent the vehicle from being immobilized before reaching its destination. In some embodiments, the voltage signal may be driven by the same electronic control unit as that connected to the current sensor 7, so as to: control the amplitude of the voltage signals with feedback to from the oscillations of intensity of current possibly proven, and to avoid a divergence of these oscillations of intensity of current. FIG. 3 is a simplified representation, in the form of an algorithm 20, of a mode of activation of the electronic control unit 12 enabling it to estimate whether the battery 10 is indeed connected to the network 2. illustrated on the algorithm 20 of FIG. 3, the electronic control unit 12 regularly carries out a test 26 to check whether the absolute value of the intensity crossing the battery is greater than an Innie threshold value As long as this absolute value remains above the current threshold, the electronic continuous control unit monitors the absolute value of the current, and does not trigger the generation of the DC voltage output signal of the DC converter: / DC '4. When the absolute value of the intensity becomes lower or study intensity threshold 1 ,,, 'ie: when the test 26 is negative, we go to a step 27. The electronic control unit then analyzes the signal of .eaptenrH current: 7 to search for intensity signal corresponding to nredefinf generated either. directly by the converter either by one. device whose voltage is added to the DC / DC set voltage. If the current intensity signal is detected, here an electronic reciprocating signal returns to step 26 and continues. to monitor the absolute value of the intensity of current flowing through the battery. If the current intensity signal is not detected, the electronic control unit may proceed to a step 25 where it alerts the driver that the battery is disconnected, and where it triggers backup measures if necessary, to enable the vehicle to drive until the driver explicitly asks for the stop of the vehicle, considering himself as arrived at destination. According to other embodiments. if the electronic control unit, during the test 27, does not detect the desired current intensity signal, it can go to a step 28 where it controls an amplitude increase of the voltage signal at the output of the DC / DC . The control unit can then check, for example in a step 24, if the amplitude of the voltage -igrial has reached a threshold beyond which one no longer wishes to go. If the maximum allowable signal amplitude is reached and the intensity signal has still not been detected, it goes to alert 23 warning the driver that the battery is disconnected. Otherwise, once the amplitude of the voltage signal is increased, it returns to step 27 of intensity signal search to test whether this time a current signal has become detachable. The invention is not limited to the embodiments described and can be declined in many variants. The two networks: interconnected by the DCIDC converter can operate at nominal voltages close to or substantially equal nominal. It is conceivable to emit the predefined voltage signal continuously, superimposed on the DC voltage of the DC / DC converter. It is conceivable to emit the predefined voltage signal only in intervals of time, when the value ab, solue of the intensity crossing the battery passes below a certain threshold. According to another variant embodiment, a low AC component can be continuously emitted, and then the amplitude of this component can be increased if a corresponding intensity signal is not detectable. It is conceivable to continuously search for an alternating current component or to search for a specific current intensity signal only when the average absolute value of the intensity falls below a certain threshold. The voltage signal added to the DC output voltage of the converter may be a periodic signal, a constant frequency signal or a complex signal chosen to reproduce certain characteristics of the current noise usually generated by an alternator. The voltage signal Uvar may be a non-reciprocal periodic signal, or even a voltage increment applied in the form of a slot, that is to say comprising a rising edge, in an attempt to detect a corresponding sign current intensity increment. . The desired current intensity signal will then be non-reciprocating, and then, for example, a change in the absolute value of the intensity of the current will be sought. In other words, the voltage delivered by the converter 4 is increased or reduced, preferably as quickly as possible (while limiting the impact of this voltage change on the consumers of the network 2) by applying a rising voltage front or a falling edge, to set this voltage value to a new constant value. This rapid change of voltage delivered by the converter will preferably be controlled by the control electronics 12 by a modification of the target voltage. An acceptable alternative solution may be to integrate this converter output voltage change internally of the DC / DC converter. The advantage of this last type of signal is that it can allow the implementation of a simplified disconnection detection strategy in that it consists only in detecting that a non-zero current, the battery 10 before by reaction to this output voltage evolution of the converter 10 is discharged in order to ensure the supply continuity of the network 2, or load, according to the selected voltage evolution. It can also minimize the disturbances caused to the electrical consumers of the low voltage network 2 if the amplitude of the output voltage change of the converter can remain low while being sufficient to detect the reaction of the battery.

Le système de détection d'une mauvaise connexion de batterie selon l'invention permet d'avertir le conducteur si la batterie est mal connectée et permet également de mettre en place des procédures de sauvegarde du fonctionnement du véhicule pour lui permettre d'arriver à bon port sans utiliser la batterie basse tension.10The system for detecting a bad battery connection according to the invention makes it possible to warn the driver if the battery is incorrectly connected and also makes it possible to set up procedures for safeguarding the operation of the vehicle so that it can arrive at good port without using low voltage battery.

Claims (10)

REVENDICATIONS1. Procédé de détection d'une déconnexion de batterie électrique (10) dans un système équipé de deux réseaux électriques (2, 3) interconnectés par un convertisseur (DC/DC) de tension continue en tension continue (4), la batterie (10) appartenant à l'un des deux réseaux (2), et le convertisseur (4) étant configuré pour recharger la batterie (10), caractérisé en ce que l'on ajoute un signal de tension prédéfini (Uvar) à une composante de tension continue (Us) délivrée par le convertisseur (4) au réseau (2) comprenant la batterie (10), et en ce que l'on mesure un courant (I) traversant la batterie (10) en y recherchant un signal d'intensité de courant (Ialternatif) correspondant au signal de tension ajouté (Uvar), pour vérifier que la batterie (10) est bien connectée au réseau (2).REVENDICATIONS1. Method for detecting an electric battery disconnection (10) in a system equipped with two electrical networks (2, 3) interconnected by a dc voltage converter (DC / DC) (4), the battery (10) belonging to one of the two networks (2), and the converter (4) being configured to recharge the battery (10), characterized in that a predefined voltage signal (Uvar) is added to a DC voltage component (Us) delivered by the converter (4) to the network (2) comprising the battery (10), and in that a current (I) passing through the battery (10) is measured by searching for a signal intensity of current (Ialternative) corresponding to the added voltage signal (Uvar), to verify that the battery (10) is connected to the network (2). 2. Procédé de détection selon la revendication 1, dans lequel le signal de tension (Uvar) ajouté et le signal d'intensité recherché (Ialternatif) comportent des signaux périodiques.2. The detection method according to claim 1, wherein the added voltage signal (Uvar) and the desired intensity signal (Ialternative) comprise periodic signals. 3. Procédé de détection selon la revendication 1, dans lequel le signal de tension ajouté est une modification, de signe prédéfini, du niveau de tension, et le signal d'intensité est une variation, de signe prédéfini, du niveau d'intensité.The detection method according to claim 1, wherein the added voltage signal is a predefined sign change in the voltage level, and the intensity signal is a predefined sign variation of the intensity level. 4. Procédé de détection selon l'une des revendications 1 à 3, dans lequel on n'ajoute le signal de tension (Uvar) et on ne recherche le signal de courant (Ialternatif), que lorsque la valeur absolue de l'intensité (I) traversant la batterie (10) est inférieure à un seuil d'intensité (Imin).4. Detection method according to one of claims 1 to 3, wherein the voltage signal (Uvar) is not added and the current signal (Ialternative) is sought only when the absolute value of the intensity ( I) passing through the battery (10) is below an intensity threshold (Imin). 5. Procédé de détection selon l'une quelconque des revendications précédentes, dans lequel, après avoir ajouté le signal de tension (Uvar) sans détecter le signal correspondant d'intensité (Ialternatif), on augmente l'amplitude du signal de tension et on effectue une nouvelle tentative de détection du signal d'intensité de courant.5. Detection method according to any one of the preceding claims, wherein, after adding the voltage signal (Uvar) without detecting the corresponding intensity signal (Ialternatif), the amplitude of the voltage signal is increased and makes a new attempt to detect the current intensity signal. 6. Procédé de détection selon l'une quelconque des revendications précédentes, dans lequel le signal de tension est obtenu en ajoutant un signal à une valeur de consigne pilotant la tension de sortie du convertisseur (4).6. Detection method according to any one of the preceding claims, wherein the voltage signal is obtained by adding a signal to a set value controlling the output voltage of the converter (4). 7. Procédé de détection selon l'une quelconque des revendications 1 à 5, dans lequel le signal de tension (Uvar) est produit par un circuit oscillant dédié (16) et est ajouté à la tension de sortie (Us) du convertisseur (4).The detection method according to any one of claims 1 to 5, wherein the voltage signal (Uvar) is produced by a dedicated oscillating circuit (16) and is added to the output voltage (Us) of the converter (4). ). 8. Véhicule automobile (1) équipé de deux réseaux électriques (2, 3) interconnectés par un convertisseur (DC/DC) de tension continue en tension continue (4), le convertisseur (4) étant configuré pour recharger la batterie (10), le véhicule comprenant un estimateur (7) de l'intensité de courant (I) traversant la batterie (10), caractérisé en ce que le véhicule comprend des moyens pour ajouter un signal prédéfini de tension à une tension continue délivré par le convertisseur (4) à la batterie (10), et des moyens de filtrage aptes à détecter dans le signal d'intensité (I) mesuré par l'estimateur d'intensité (7), un signal d'intensité de courant (lalternatif) correspondant au signal de tension ajouté (Uvar).8. Motor vehicle (1) equipped with two electrical networks (2, 3) interconnected by a DC voltage DC converter (4), the converter (4) being configured to recharge the battery (10) , the vehicle comprising an estimator (7) of the current intensity (I) passing through the battery (10), characterized in that the vehicle comprises means for adding a predefined voltage signal to a DC voltage delivered by the converter ( 4) to the battery (10), and filter means adapted to detect in the intensity signal (I) measured by the intensity estimator (7), a current intensity signal (lalternative) corresponding to the added voltage signal (Uvar). 9. Véhicule selon la revendication 8, comprenant une unité de commande électronique (12) configurée pour déclencher l'ajout du signal de tension (Uvar) quand la valeur absolue de l'intensité (I) de courant traversant la batterie (10) devient inférieure à un seuil d'intensité (Imin).Vehicle according to claim 8, comprising an electronic control unit (12) configured to trigger the addition of the voltage signal (Uvar) when the absolute value of the intensity (I) of current flowing through the battery (10) becomes less than an intensity threshold (Imin). 10. Véhicule selon l'un des revendications 8 ou 9, dans lequel l'unité de commande électronique (12) est configurée pour émettre un message d'alerte si pendant une durée supérieure à un seuil de durée, le signal d'intensité (Ialternatif) n'est pas détecté alors que le signal de tension (Uvar) est ajouté à la tension de sortie continue (Us) du convertisseur.Vehicle according to one of Claims 8 or 9, in which the electronic control unit (12) is configured to emit an alert message if, for a duration greater than a duration threshold, the intensity signal ( Alternative) is not detected while the voltage signal (Uvar) is added to the DC output voltage (Us) of the converter.
FR1358125A 2013-08-22 2013-08-22 METHOD FOR DETECTING A POWER BATTERY DISCONNECTION IN A MOTOR VEHICLE Active FR3009869B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR1358125A FR3009869B1 (en) 2013-08-22 2013-08-22 METHOD FOR DETECTING A POWER BATTERY DISCONNECTION IN A MOTOR VEHICLE
EP14752901.0A EP3036549A1 (en) 2013-08-22 2014-06-25 Method for detecting a disconnection of a power supply battery of a motor vehicle
CN201480051241.7A CN105556320B (en) 2013-08-22 2014-06-25 Method for detecting the disconnection of the supplying cell of motor vehicles
JP2016535513A JP6306185B2 (en) 2013-08-22 2014-06-25 Method for detecting disconnection of power supply battery of automatic vehicle
PCT/FR2014/051586 WO2015025089A1 (en) 2013-08-22 2014-06-25 Method for detecting a disconnection of a power supply battery of a motor vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1358125A FR3009869B1 (en) 2013-08-22 2013-08-22 METHOD FOR DETECTING A POWER BATTERY DISCONNECTION IN A MOTOR VEHICLE

Publications (2)

Publication Number Publication Date
FR3009869A1 true FR3009869A1 (en) 2015-02-27
FR3009869B1 FR3009869B1 (en) 2016-10-21

Family

ID=49949779

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1358125A Active FR3009869B1 (en) 2013-08-22 2013-08-22 METHOD FOR DETECTING A POWER BATTERY DISCONNECTION IN A MOTOR VEHICLE

Country Status (5)

Country Link
EP (1) EP3036549A1 (en)
JP (1) JP6306185B2 (en)
CN (1) CN105556320B (en)
FR (1) FR3009869B1 (en)
WO (1) WO2015025089A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043622A1 (en) 2020-08-25 2022-03-03 Psa Automobiles Sa Vehicle secured against the risk of loss of a service battery

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015008445A1 (en) * 2015-06-30 2017-01-05 Audi Ag Method and operation of an electrical system of a motor vehicle and motor vehicle
DE102016216845A1 (en) * 2016-09-06 2018-03-08 Robert Bosch Gmbh Device and method for detecting a missing electrical connection of an energy storage device with a power supply system, in particular an electrical system of a motor vehicle
FR3057672B1 (en) * 2016-10-19 2020-05-01 Renault S.A.S. CONFIRMATION OF THE 12-VOLT BATTERY DISCONNECTION DIAGNOSIS OF AN ON-BOARD NETWORK WITH PILOT ALTERNATOR
JP6610504B2 (en) * 2016-10-31 2019-11-27 トヨタ自動車株式会社 Power supply system
TWI613117B (en) * 2017-01-17 2018-02-01 三陽工業股份有限公司 Judgment method of power saving
FR3073684B1 (en) * 2017-11-16 2021-03-12 Valeo Equip Electr Moteur ELECTRIC MACHINE FOR A MOTOR VEHICLE INCLUDING A CURRENT SENSOR
FR3085486B1 (en) 2018-08-29 2021-01-15 Renault Sas METHOD AND SYSTEM FOR DETECTION OF A SHORT-CIRCUIT OR OF AN OPEN CIRCUIT OF A 12V BATTERY DURING A RUNNING PHASE OF A MOTOR VEHICLE
JP2022503711A (en) * 2018-09-13 2022-01-12 メタ システム エス.ピー.エー. A system for checking the electrical insulation of converters for electric vehicles
FR3093187B1 (en) * 2019-02-21 2021-02-19 Psa Automobiles Sa Diagnostic method of a battery of a motor vehicle
JP2021078295A (en) * 2019-11-12 2021-05-20 株式会社東芝 Charging device, battery diagnostic system, and charging method
DE102021131645A1 (en) * 2021-12-01 2023-06-01 Audi Aktiengesellschaft Method for evaluating an electrical connection of an electrical energy store with an on-board network, and electronic battery evaluation system and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448778B1 (en) * 2001-01-29 2002-09-10 Honda Of America Mfg., Inc. Automated verification of proper connectivity of components to a wiring harness during assembly of article of manufacture
US20050075806A1 (en) * 2003-10-01 2005-04-07 General Electric Company Method and system for testing battery connectivity
WO2011114032A1 (en) * 2010-03-19 2011-09-22 Peugeot Citroën Automobiles SA Device for detecting the disconnection of a battery from a power supply network
DE102011087678A1 (en) * 2011-12-02 2013-06-06 Conti Temic Microelectronic Gmbh Device for detecting the state of a battery to be tested

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745149B2 (en) * 1989-04-25 1998-04-28 松下電工株式会社 Signal line disconnection detection method and disconnection detection system using this method
JP4538990B2 (en) * 2001-06-12 2010-09-08 株式会社豊田自動織機 Voltage control device
JP2005354825A (en) * 2004-06-11 2005-12-22 Nissan Motor Co Ltd Soc processor for hybrid vehicle
JP5071516B2 (en) * 2010-04-22 2012-11-14 株式会社デンソー Power converter
JP2012242330A (en) * 2011-05-23 2012-12-10 Omron Automotive Electronics Co Ltd Electric leakage detection device
KR101262973B1 (en) * 2011-05-24 2013-05-08 기아자동차주식회사 System for cotroling emergency travel of hybrid electric vehicle and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448778B1 (en) * 2001-01-29 2002-09-10 Honda Of America Mfg., Inc. Automated verification of proper connectivity of components to a wiring harness during assembly of article of manufacture
US20050075806A1 (en) * 2003-10-01 2005-04-07 General Electric Company Method and system for testing battery connectivity
WO2011114032A1 (en) * 2010-03-19 2011-09-22 Peugeot Citroën Automobiles SA Device for detecting the disconnection of a battery from a power supply network
DE102011087678A1 (en) * 2011-12-02 2013-06-06 Conti Temic Microelectronic Gmbh Device for detecting the state of a battery to be tested

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022043622A1 (en) 2020-08-25 2022-03-03 Psa Automobiles Sa Vehicle secured against the risk of loss of a service battery
FR3113640A1 (en) 2020-08-25 2022-03-04 Psa Automobiles Sa VEHICLE SAFE AGAINST THE RISK OF LOSS OF A SERVITUDE BATTERY.

Also Published As

Publication number Publication date
CN105556320A (en) 2016-05-04
JP6306185B2 (en) 2018-04-04
JP2016528870A (en) 2016-09-15
EP3036549A1 (en) 2016-06-29
CN105556320B (en) 2019-08-30
FR3009869B1 (en) 2016-10-21
WO2015025089A1 (en) 2015-02-26

Similar Documents

Publication Publication Date Title
FR3009869A1 (en) METHOD FOR DETECTING A POWER BATTERY DISCONNECTION IN A MOTOR VEHICLE
EP2715909B1 (en) Method of recharging a pair of vehicle batteries of different nominal voltages, and associated system
EP2788221B1 (en) Method for managing an alternator combined with at least one power battery and driven by a heat engine
FR2918027A1 (en) METHOD FOR CONTROLLING MICRO-HYBRID SYSTEM FOR VEHICLE, AND ENERGY STORAGE UNIT AND HYBRID SYSTEM FOR IMPLEMENTING SAID SYSTEM
WO2019122696A1 (en) Method for controlling a dc-dc converter in a motor vehicle electrical system
EP2561595B1 (en) Method of controlling the regulation of a motor vehicle alternator, and corresponding devices
FR2996703A1 (en) METHOD FOR RECOVERING ELECTRIC ENERGY WITH VOLTAGE SMOOTHING ON AN INBOARD ELECTRICAL NETWORK
FR3023658B1 (en) ROTATING ELECTRIC MACHINE AND ENGINE STARTING SYSTEM
EP3313687B1 (en) Method for battery temperature management of a hybrid vehicle
FR2992487A1 (en) Method for managing electrical supply network of e.g. electric car, involves determining charge state of house battery, and modifying voltage setpoint of output of voltage converter according to charge state of battery
EP2476001A1 (en) Method for determining an operating state of electrical power storage means consisting of at least one ultracapacitor
WO2012049387A1 (en) Method of recharging a supercapacitor module for a motor vehicle, and corresponding motor vehicle
EP2656494A1 (en) Device and method for dc/dc conversion in the onboard network of a vehicle
EP2589131B1 (en) Power supply for an on-board electrical network of an automotive vehicle
FR3104264A1 (en) DIAGNOSIS OF A LOW VOLTAGE BATTERY IN AN ELECTRIC VEHICLE
EP3802230B1 (en) Management of the power supply to an on-board electrical network of a hybrid motor vehicle
FR2960298A1 (en) Method for detecting connection defect of battery sensor in vehicle, involves comparing current information with current thresholds, and delivering alert information when current information is lower than current thresholds, respectively
EP2292459B1 (en) Method for charging an auxiliary power-storage module
FR2965309A1 (en) METHOD FOR MANAGING THE AUTOMATIC STOP AND RESTART OF A MOTOR VEHICLE THERMAL MOTOR AND CORRESPONDING MOTOR VEHICLE
FR2938987A1 (en) METHOD FOR LIMITING MAXIMUM EXCITATION CURRENT IN AN ALTERNOMETERARY SYSTEM
FR2811944A1 (en) ELECTRONIC TORQUE TRANSMISSION DEVICE WITHOUT POWER BATTERY
WO2020157394A1 (en) Method for controlling a generator coupled with a one-way clutch of a motor vehicle
FR3104515A1 (en) METHOD OF CONTROL OF AN ELECTRIC MACHINE OF A HYBRID VEHICLE
FR2991520A1 (en) DEVICE FOR AUXILIARY CONTROL OF ELECTRONIC SWITCHES OF A VOLTAGE CONVERTER
FR3052190A1 (en) METHOD FOR AUTHORIZING THE STOPPING OF THE THERMAL MOTOR OF A MOTOR VEHICLE

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

CA Change of address

Effective date: 20221121

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12