FR3008409A1 - PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST - Google Patents

PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST Download PDF

Info

Publication number
FR3008409A1
FR3008409A1 FR1301696A FR1301696A FR3008409A1 FR 3008409 A1 FR3008409 A1 FR 3008409A1 FR 1301696 A FR1301696 A FR 1301696A FR 1301696 A FR1301696 A FR 1301696A FR 3008409 A1 FR3008409 A1 FR 3008409A1
Authority
FR
France
Prior art keywords
hmf
hydroxymethylfurfural
dmso
mol
fdc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1301696A
Other languages
French (fr)
Other versions
FR3008409B1 (en
Inventor
Caroline Laugel
Jean Lebras
Sinisa Marinkovic
Jacques Muzart
Boris Estrine
Norbert Hoffmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Agro Industrie Recherches et Developpements ARD
Original Assignee
Centre National de la Recherche Scientifique CNRS
Agro Industrie Recherches et Developpements ARD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Agro Industrie Recherches et Developpements ARD filed Critical Centre National de la Recherche Scientifique CNRS
Priority to FR1301696A priority Critical patent/FR3008409B1/en
Publication of FR3008409A1 publication Critical patent/FR3008409A1/en
Application granted granted Critical
Publication of FR3008409B1 publication Critical patent/FR3008409B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Furan Compounds (AREA)

Abstract

Procédé de préparation de furane 2,5-dicarboxaldéhyde qui consiste à mettre en réaction le HMF ou un dérivé halogéné du HMF dans un solvant de la famille des sulfoxydes à une température comprise entre 50 et 200°C pendant une durée comprise entre 1 et 36 heures.A process for the preparation of furan 2,5-dicarboxaldehyde which comprises reacting HMF or a halogenated derivative of HMF in a solvent of the family of sulfoxides at a temperature between 50 and 200 ° C for a period of time between 1 and 36 hours.

Description

Procédé de fabrication de furane 2,5-dicarboxaldéhyde à partir d'hydroxyméthylfurfural et de ses dérivés halogénés n'utilisant pas de catalyseur métallique L'hydroxyméthylfurfural (HMF) peut être synthétisé à partir de substances d'origine végétale contenant ou pouvant libérer des sucres tels que le glucose ou le fructose, par exemple l'inuline ou la cellulose., Le HMF constitue un produit de départ dans la synthèse de nombreux dérivés furaniques qui, à leur tour peuvent servir dans la production de polymères qui présentent des propriétés intéressantes. Parmi les nombreux dérivés du HMF, le furane 2,5-dicarboxaldéhyde (FDC) est un monomère qui peut faire l'objet de nombreuses applications. En particulier, il peut servir : pour la synthèse de certains polymères et de macrocycles, notamment dans le domaine pharmaceutique d'agent de réticulation dans la préparation de polymères spéciaux ; de liant dans les sables de fonderie ; pour la fabrication de la pellicule de séparation des solutions aqueuses des batteries alcalines ; d'agent d'inhibition de corrosion ; d'agent de traitement de surface de métaux tels que le cuivre, le nickel ; d'intermédiaire de synthèse d'autres composés furaniques symétriques ou dissymétriques tels que l'acide furane 2,5-dicarboxylique (FDA), le furane 2,5-diméthylamine. La fabrication du FDC est largement documentée mais n'est actuellement pas réalisée industriellement par absence de procédé économiquement viable. Les procédés connus de synthèse du FDC sont soit des réactions stoechiométriques, soit des réactions en catalyse homogène utilisant des métaux souvent toxiques. Les réactions d'oxydation du HMF en catalyse hétérogène posent a priori des difficultés dans la , mesure où le HMF n'est pas stable aux hautes températures (sa dégradation intervenant à partir de 100 °C) nécessaires à l'activation des catalyseurs solides d'oxydation.Process for manufacturing furan 2,5-dicarboxaldehyde from hydroxymethylfurfural and its halogenated derivatives not using a metal catalyst Hydroxymethylfurfural (HMF) can be synthesized from substances of vegetable origin containing or capable of releasing sugars such as glucose or fructose, for example inulin or cellulose. HMF is a starting material in the synthesis of many furan derivatives which, in turn, can be used in the production of polymers which have interesting properties. Among the many derivatives of HMF, furan 2,5-dicarboxaldehyde (FDC) is a monomer that can be the subject of many applications. In particular, it can be used: for the synthesis of certain polymers and macrocycles, especially in the pharmaceutical field of crosslinking agent in the preparation of special polymers; binder in foundry sands; for the manufacture of the separation film of aqueous solutions of alkaline batteries; corrosion inhibiting agent; metal surface treating agent such as copper, nickel; synthesis intermediate of other symmetrical or asymmetric furanic compounds such as furan 2,5-dicarboxylic acid (FDA), furan 2,5-dimethylamine. The manufacture of FDC is widely documented but is not currently carried out industrially by lack of economically viable process. The known processes for synthesizing FDC are either stoichiometric reactions or reactions in homogeneous catalysis using metals which are often toxic. The oxidation reactions of HMF in heterogeneous catalysis pose a priori difficulties in that HMF is not stable at high temperatures (its degradation occurring from 100 ° C) necessary for the activation of solid catalysts. 'oxidation.

Il semble donc intéressant de réaliser la synthèse de FDC par oxydation du HMF sans avoir recours à un catalyseur métallique. Un tel procédé est décrit dans le brevet français FR2669636. Ce procédé réalise la transformation du HMF dans un mélange de solvants en présence d'un agent électrophile tel que l'anhydride acétique. Le mélange de solvants est composé d'un solvant de la famille des sulfoxydes tel que le diméthylsulfoxyde (DMSO) et d'un solvant tiers appartenant au groupe suivant : diéthylcétone, méthylisobutylcétone, dichlorométhane ou acétate d'éthyle. L'emploi du tiers solvant complique la mise en oeuvre du procédé notamment lors de la récupération du FDC. L'agent électrophile est utilisé à une quantité comprise entre 1 et 5 équivalents molaires par rapport au HMF et sa récupération n'a pas été prouvée ce qui rend le procédé non rentable sur le plan économique. La présente invention concerne donc un procédé perfectionné de fabrication de FDC à partir de HMF et n'ayant recours ni à un catalyseur métallique ni à un tiers solvant. Ce procédé n'emploie pas non plus d'agent électrophile en quantité stoechiométrique par rapport au HMF. L'invention permet ainsi de lever les différents défauts du procédé décrit dans le brevet FR2669636. Le procédé de l'invention est caractérisé en ce qu'il 25 consiste à oxyder le HMF ou au moins un de ses dérivés halogénés en FDC dans un solvant de la famille des sulfoxydes. Cette oxydation est réalisée à une température comprise entre 50 et 200 °C pendant une durée comprise entre 1 et 36 heures. 30 On entend par dérivé halogéné du HMF, un composé choisi parmi : le 5-chloro-methy1-2-furfural (Cl-HMF), le 5-bromomethy1-2-furfural (Br-HMF), le 5-iodo-methy1-2-furfural (IHMF), le 5-fluoro-methy1-2-furfural (F-HMF).It therefore seems interesting to carry out the synthesis of FDC by oxidation of HMF without resorting to a metal catalyst. Such a process is described in French patent FR2669636. This process converts HMF into a solvent mixture in the presence of an electrophilic agent such as acetic anhydride. The solvent mixture is composed of a solvent of the family of sulfoxides such as dimethylsulfoxide (DMSO) and a third solvent belonging to the following group: diethyl ketone, methyl isobutyl ketone, dichloromethane or ethyl acetate. The use of the solvent third complicates the implementation of the method especially during the recovery of the FDC. The electrophilic agent is used in an amount of between 1 and 5 molar equivalents relative to the HMF and its recovery has not been proven which renders the process economically unprofitable. The present invention therefore relates to an improved method of manufacturing FDC from HMF and using neither a metal catalyst nor a third solvent. This method also does not use an electrophilic agent in stoichiometric amount relative to the HMF. The invention thus makes it possible to remove the various defects of the process described in the patent FR2669636. The process of the invention is characterized in that it comprises the oxidation of HMF or at least one of its halogenated derivatives to FDC in a solvent of the family of sulfoxides. This oxidation is carried out at a temperature of between 50 and 200 ° C. for a duration of between 1 and 36 hours. Halogenated derivative of HMF is a compound selected from: 5-chloro-methyl-2-furfural (Cl-HMF), 5-bromomethyl-2-furfural (Br-HMF), 5-iodo-methy1 -2-furfural (IHMF), 5-fluoro-methyl-2-furfural (F-HMF).

Ce procédé permet d'obtenir des rendements en FDC allant jusqu'à 100 % sans avoir recours à un catalyseur métallique ou et un agent électrophile. Selon un mode de mise oeuvre préféré du procédé, 5 l'oxydation est réalisée dans le DMSO comme solvant. De préférence, le HMF ou au moins un de ses dérivés halogénés sera alors préalablement solubilisé dans le DMSO à une concentration comprise entre 0,009 et 2,62 mol/l. Il est également possible de préparer le HMF par une des nombreuses 10 méthodes de l'état de l'art permettant de déshydrater des sucres dans le DMSO, notamment celles décrites dans le brevet FR2669636. Selon un mode de mise oeuvre préféré du procédé, 15 l'oxydation est réalisée en présence de 1 à 50 % molaire par rapport au HMF ou à son dérivé halogéné, d'au moins un catalyseur choisi parmi les acides minéraux ou les sels d'halogénure. Selon un mode de mise oeuvre préféré du procédé, on 20 utilise entre 10 et 30 % molaire par rapport au HMF ou son dérivé halogéné d'au moins un catalyseur choisi parmi l'acide sulfurique, l'acide bromhydrique, ou le bromure de sodium. Selon un mode de mise oeuvre préféré du procédé, on 25 réalise la transformation du HMF ou dérivé halogéné à une température comprise entre 125 et 175 °C pendant une durée comprise entre 6 et 24 heures. Le FDC obtenu en fin de procédé pourra être récupéré après distillation sous pression réduite du DMSO 30 éventuellement après filtration ou neutralisation du catalyseur. On pourra également utiliser le FDC récupéré ou en solution dans le DMSO pour réaliser son oxydation en acide furane 2,5 dicarboxylique (FDCA). Afin d'illustrer le procédé correspondant à la présente 35 invention, les exemples suivants sont rapportés.This process provides FDC yields of up to 100% without the use of a metal catalyst or an electrophilic agent. According to a preferred embodiment of the process, the oxidation is carried out in DMSO as a solvent. Preferably, the HMF or at least one of its halogenated derivatives will then be solubilized beforehand in DMSO at a concentration of between 0.009 and 2.62 mol / l. It is also possible to prepare HMF by one of the many state-of-the-art methods for dehydrating sugars in DMSO, including those described in FR2669636. According to a preferred mode of implementation of the process, the oxidation is carried out in the presence of 1 to 50 mol% relative to the HMF or its halogenated derivative, of at least one catalyst chosen from mineral acids or salts thereof. halide. According to a preferred embodiment of the process, between 10 and 30 mol% relative to the HMF or its halogenated derivative of at least one catalyst chosen from sulfuric acid, hydrobromic acid or sodium bromide is used. . According to a preferred embodiment of the process, the HMF or halogenated derivative is converted at a temperature of between 125 and 175 ° C. for a period of between 6 and 24 hours. The FDC obtained at the end of the process can be recovered after distillation under reduced pressure of the DMSO 30 optionally after filtration or neutralization of the catalyst. It will also be possible to use the FDC recovered or in solution in DMSO to carry out its oxidation to 2,5-dicarboxylic furan acid (FDCA). In order to illustrate the process of the present invention, the following examples are reported.

Exemple 1 : Procédé de préparation du FDC à partir du HMF sans catalyseur On prépare une solution de HMF dans le DMSO (0,5 mol/1 de HMF). Apres dissolution totale du HMF, le milieu réactionnel est mis sous agitation à une température de 150 00 pendant 18 h.Example 1 Method for Preparing FDC from HMF Without Catalyst A solution of HMF in DMSO (0.5 mol / l of HMF) is prepared. After total dissolution of the HMF, the reaction medium is stirred at a temperature of 150 ° C. for 18 h.

Le rendement en FDC, mesuré par CPG est de 40 %. Exemple 2 : Procédé de préparation du FDC à partir du RMF On prépare une solution de HMF dans un solvant organique (0,50 mol/1 de HMF dans le DMSO, 0,50 mol/1 de HMF dans le DMF, 0,20 mol/1 de HMF dans le diphénylsulfoxyde, 0,30 mol/1 de HMF dans le méthylphénylsulfoxyde, 0,37 mol/1 de HMF dans le sulfolane). Apres dissolution totale du HMF, le catalyseur (30 % molaire par rapport au HMF) est ajouté au mélange. Le milieu réactionnel est mis sous agitation à une température de 150 °C pendant 18 h. Le rendement en FDC est mesuré par CPG ou par RMN après 25 addition d'eau et extraction à l'acétate d'éthyle. Les résultats sont regroupés au tableau suivant : 30 35 Entrée Catalyseur Solvant Rendement FDC (%) 1 H2SO4 DMSO 64 2 APTS DMSO 39 3 HC1 DMSO 38 4 HI DMSO 63 5 HBr DMSO 100 6 NaI DMSO 7 7 NaC1 DMSO 10 8 NH4Br DMSO 71 9 LiBr DMSO 76 10 NaBr DMSO 100 11 NaBr/H2504 DMSO 100 12 NaBr DMF 10 13 NaBr diphényl 24 sulfoxyde 14 NaBr Me-phényl 29 sulfoxyde 15 NaBr Sulfolane 16 APTS: acide para-toluène sulfonique DMF: Diméthylformamide Me-phényl sulfoxyde: méthyl phényl sulfoxyde Exemple 3 : Procédé de préparation du FDC à partir d'un dérivé halogéné du }IMF On prépare une solution de dérivé du HMF dans du DMSO (0,5 mol/1 de Br-HMF dans le DMSO, 0,5 mol/1 de Cl-HMF dans le DMSO, 0,5 mol/1 de I-HMF dans le DMSO). Apres dissolution totale le milieu réactionnel est mis sous agitation à une température de 150 °C pendant 18 h. Le rendement en FDC est mesuré par CPG ou par RMN après 35 addition d'eau et extraction à l'acétate d'éthyle.The FDC yield measured by GC is 40%. Example 2 Method for Preparing FDC from RMF A solution of HMF in an organic solvent (0.50 mol / l of HMF in DMSO, 0.50 mol / l of HMF in DMF, 0.20 mol / l of HMF in diphenylsulfoxide, 0.30 mol / l of HMF in methylphenylsulfoxide, 0.37 mol / l of HMF in sulfolane). After total dissolution of the HMF, the catalyst (30 mol% relative to the HMF) is added to the mixture. The reaction medium is stirred at a temperature of 150 ° C. for 18 h. FDC yield is measured by GPC or NMR after water addition and ethyl acetate extraction. The results are summarized in the following table: Catalyst entry Solvent Yield FDC (%) 1 H2SO4 DMSO 64 2 APTS DMSO 39 3 HC1 DMSO 38 4 HI DMSO 63 5 HBr DMSO 100 6 NaI DMSO 7 7 NaCl DMSO 10 8 NH4Br DMSO 71 LiBr DMSO 76 NaBr DMSO 100 11 NaBr / H2504 DMSO 100 12 NaBr DMF 10 13 NaBr Diphenyl Sulfoxide 14 NaBr Me-phenyl Sulfoxide NaBr Sulfolane 16 APTS: para-toluene sulfonic acid DMF: Dimethylformamide Me-phenyl sulfoxide: methyl phenyl sulfoxide Example 3: Process for preparing FDC from a halogenated derivative of MFI A solution of HMF derivative in DMSO (0.5 mol / l of Br-HMF in DMSO, 0.5 mol / 1 Cl-HMF in DMSO, 0.5 mol / l I-HMF in DMSO). After complete dissolution, the reaction mixture is stirred at a temperature of 150 ° C. for 18 h. The FDC yield is measured by GPC or NMR after water addition and ethyl acetate extraction.

Entrée Dérivé Rendement FDC (%) 1 Br-HMF 57 2 Cl-HMF 81 3 I-HMF 62 Br-HMF : 5-bromométhylfurfural Cl-HMF : 5-chlorométhylfurfural I-HMF : 5-iodométhylfurfural Exemple 4 : Procédé de préparation du FDC one pot à partir du Fructose. On prépare une solution de fructose dans le DMSO (0,5 mol/1 de fructose). Apres dissolution totale du fructose, le mélange est chauffé à 150 °C. La température est maintenue pendant 5 h. Le mélange est refroidie à TA. Lorsqu'il est présent, le catalyseur est ajouté (30 % molaire par rapport au Fructose). Le milieu réactionnel est mis sous agitation à 150°C pendant 18 heures. Le rendement en FDC est mesuré par CPG ou par RMN après addition d'eau et extraction à l'acétate d'éthyle.Derived Entry Yield FDC (%) 1 Br-HMF 57 2 Cl-HMF 81 3 I-HMF 62 Br-HMF: 5-bromomethylfurfural Cl-HMF: 5-chloromethylfurfural I-HMF: 5-iodomethylfurfural Example 4: Preparation process FDC one pot from Fructose. A solution of fructose in DMSO (0.5 mol / l fructose) is prepared. After complete dissolution of the fructose, the mixture is heated to 150 ° C. The temperature is maintained for 5 hours. The mixture is cooled to RT. When present, the catalyst is added (30 mol% relative to Fructose). The reaction medium is stirred at 150 ° C. for 18 hours. The yield of FDC is measured by GPC or NMR after addition of water and extraction with ethyl acetate.

Entrée Catalyseur Rendement FDC (%) 1 12 2 KBr 57 3 FeBr2 68 4 CuBr2 54 5 NaBr 60 6 HBr 68 Exemple 5 : Procédé de préparation du FDC one pot à partir du Fructose On prépare une solution de fructose dans le DMSO (0,5 mol/1 5 de fructose). Apres dissolution totale du fructose, le catalyseur (30 % molaire de NaBr par rapport au fructose) est ajouté et le mélange est chauffé à 150 °C pendant 24 h. Le rendement en FDC (68%) est mesuré par CPG.Catalyst input Yield FDC (%) 1 12 2 KBr 57 3 FeBr2 68 4 CuBr2 54 5 NaBr 60 6 HBr 68 Example 5: Process for preparing the one-pot FDC from Fructose A solution of fructose in DMSO (0, 5 mol / 1 of fructose). After complete dissolution of the fructose, the catalyst (30 mol% of NaBr relative to fructose) is added and the mixture is heated at 150 ° C. for 24 hours. The FDC yield (68%) is measured by GIC.

10 Exemple 6 : Procédé de préparation du FDA à partir du FDC On prépare une solution aqueuse ou organique (DMSO) 15 contenant du FDC (0,40 mol/1 de FDC dans l'eau, 0,20 mol/1 de FDC dans le DMSO). On ajoute 2,5 équivalents molaires d'acétate de sodium puis 7,5 équivalents molaires de peroxyde d'hydrogène. La solution est maintenue à 60 °C pendant 18 h.Example 6: Process for preparing FDA from FDC An aqueous or organic solution (DMSO) containing FDC (0.40 mol / l of FDC in water, 0.20 mol / l of FDC in DMSO). 2.5 molar equivalents of sodium acetate and 7.5 molar equivalents of hydrogen peroxide are added. The solution is kept at 60 ° C for 18 h.

20 Le rendement en FDA est déterminé après addition d'eau acide et extraction par l'acétate d'éthyle. Entrée solvant Rendement FDA (%) 25 1 eau 75 2 DMSO 68 30 35The yield of FDA is determined after addition of acidic water and extraction with ethyl acetate. Solvent inlet Yield FDA (%) 25 1 water 75 2 DMSO 68 30 35

Claims (6)

REVENDICATIONS1. Procédé de préparation de furane 2,5- dicarboxaldéhyde caractérisé en ce qu'il consiste à mettre en réaction l'hydroxyméthylfurfural ou au moins un de ses dérivés halogénés dans un solvant de la famille des sulfoxydes à une température comprise entre 50 et 200 °C pendant une durée comprise entre 1 et 36 heures.REVENDICATIONS1. A process for the preparation of furan 2,5-dicarboxaldehyde, characterized in that it consists in reacting hydroxymethylfurfural or at least one of its halogenated derivatives in a solvent of the family of sulphoxides at a temperature of between 50 and 200 ° C. for a period of between 1 and 36 hours. 2. Procédé selon la revendication 1, caractérisé en ce que les dérivés halogénés du HMF sont choisis parmi : le 5-chloro-methy1-2-furfural, le 5-bromo-methy1-2-furfural, le 15 5-iodo-methy1-2-furfural, le 5-fluoro-methy1-2-furfural.2. Method according to claim 1, characterized in that the halogenated derivatives of HMF are chosen from: 5-chloro-methyl-2-furfural, 5-bromo-methyl-2-furfural, 5-iodo-methy1 -2-furfural, 5-fluoro-methyl-2-furfural. 3. Procédé selon les revendications 1 et 2, caractérisé en ce que l'on utilise l'hydroxyméthylfurfural ou au moins un de ses dérivés halogénés préalablement 20 solubilisé dans le diméthylsulfoxyde (DMSO) à une concentration molaire comprise entre 0,009 et 2,62 mol/l.3. Method according to claims 1 and 2, characterized in that the hydroxymethylfurfural or at least one of its halogenated derivatives previously solubilized in dimethylsulfoxide (DMSO) is used at a molar concentration of between 0.009 and 2.62 mol. / l. 4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'on utilise 1 à 50 % molaire 25 par rapport à l'hydroxyméthylfurfural ou à son dérivé halogéné, d'au moins un catalyseur choisi parmi les acides minéraux ou les sels d'halogénure.4. Method according to any one of claims 1 to 3, characterized in that 1 to 50 mol% is used relative to the hydroxymethylfurfural or its halogenated derivative, at least one catalyst selected from the acids minerals or halide salts. 5. Procédé selon la revendication 4 caractérisé en ce 30 que l'on utilise 10 à 30 % molaire par rapport à l'hydroxyméthylfurfural ou à son dérivé halogéné, d'au moins un catalyseur choisi parmi l'acide sulfurique, l'acide bromhydrique, ou le bromure de sodium.5. Process according to claim 4, characterized in that 10 to 30 mol% relative to the hydroxymethylfurfural or to its halogenated derivative, of at least one catalyst chosen from sulfuric acid and hydrobromic acid, are used. , or sodium bromide. 6. Procédé selon l'une quelconque des revendications 1 à 5 caractérisé en ce que l'on réalise la transformation de l'hydroxyméthylfurfural ou d'au moins un de ses dérivés halogénés, à une température comprise entre 125 et 175 °C 5 pendant une durée comprise entre 6 et 24 heures.6. Process according to any one of Claims 1 to 5, characterized in that the conversion of hydroxymethylfurfural or of at least one of its halogenated derivatives is carried out at a temperature of between 125 and 175 ° C. a duration of between 6 and 24 hours.
FR1301696A 2013-07-15 2013-07-15 PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST Active FR3008409B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1301696A FR3008409B1 (en) 2013-07-15 2013-07-15 PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1301696A FR3008409B1 (en) 2013-07-15 2013-07-15 PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST

Publications (2)

Publication Number Publication Date
FR3008409A1 true FR3008409A1 (en) 2015-01-16
FR3008409B1 FR3008409B1 (en) 2016-02-12

Family

ID=49151015

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1301696A Active FR3008409B1 (en) 2013-07-15 2013-07-15 PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST

Country Status (1)

Country Link
FR (1) FR3008409B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019149853A1 (en) 2018-01-31 2019-08-08 Avantium Knowledge Centre B.V. A process for the conversion of a solid lignocellulosic material
WO2019149843A1 (en) 2018-01-31 2019-08-08 Avantium Knowledge Centre B.V. Process for the conversion of a solid lignocellulosic material
US10392358B2 (en) 2015-09-17 2019-08-27 Micromidas, Inc. Oxidation chemistry on furan aldehydes
WO2021251633A1 (en) * 2020-06-12 2021-12-16 코오롱인더스트리 주식회사 Method and system for manufacturing dicarboxylic acid aromatic heterocyclic compound
WO2023008611A1 (en) * 2021-07-28 2023-02-02 코오롱인더스트리 주식회사 Dicarboxyl acid aromatic heterocyclic compound and method for preparing same
WO2023008610A1 (en) * 2021-07-28 2023-02-02 코오롱인더스트리 주식회사 Catalyst for making dicarboxyl acid aromatic heterocyclic compound, and method for preparing dicarboxyl acid aromatic heterocyclic compound
CN116606267A (en) * 2023-05-23 2023-08-18 中国科学院大连化学物理研究所 Method for preparing 2, 5-furan dicarboxaldehyde from 5-hydroxymethyl furfural

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669636A1 (en) * 1990-11-22 1992-05-29 Furchim Process for the manufacture of furan-2,5-dicarboxaldehyde
WO2003024947A1 (en) * 2001-09-17 2003-03-27 E.I. Du Pont De Nemours And Company Process for preparing 2,5-diformylfuran from carbohydrates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2669636A1 (en) * 1990-11-22 1992-05-29 Furchim Process for the manufacture of furan-2,5-dicarboxaldehyde
WO2003024947A1 (en) * 2001-09-17 2003-03-27 E.I. Du Pont De Nemours And Company Process for preparing 2,5-diformylfuran from carbohydrates

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COTTIER L ET AL: "ULTRASONICALLY ACCELERATED SYNTHESES OF FURAN-2,5-DICARBALDEHYDE FROM 5-HYDROXYMETHYL-2-FURFURAL", ORGANIC PREPARATIONS AND PROCEDURES INTERNATIONAL: THE NEW JOURNAL FOR ORGANIC SYNTHESIS, ORGANIC PREPARATION AND PROCEDURES CO., NEWTON HIGHLANDS, MA, US, vol. 27, no. 5, 1 January 1995 (1995-01-01), pages 564 - 566, XP009002073, ISSN: 0030-4948 *
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 12 May 1984 (1984-05-12), MORIKAWA, SHUNICHI: "Synthesis of 2,5-furandicarboxaldehyde from 5-hydroxymethylfurfural", XP002721275, retrieved from STN Database accession no. 92:198181 *
NOGUCHI KENKYUSHO JIHO, vol. 22, 1979, pages 20 - 27 *
ZHEN-ZHEN YANG ET AL.: "A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2", GREEN CHEMISTRY, vol. 14, 2012, pages 2986 - 2989, XP002721274 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10392358B2 (en) 2015-09-17 2019-08-27 Micromidas, Inc. Oxidation chemistry on furan aldehydes
WO2019149853A1 (en) 2018-01-31 2019-08-08 Avantium Knowledge Centre B.V. A process for the conversion of a solid lignocellulosic material
WO2019149843A1 (en) 2018-01-31 2019-08-08 Avantium Knowledge Centre B.V. Process for the conversion of a solid lignocellulosic material
US11332454B2 (en) 2018-01-31 2022-05-17 Furanix Technologies B.V. Process for the conversion of a solid lignocellulosic material
US11578046B2 (en) 2018-01-31 2023-02-14 Furanix Technologies B.V. Process for the conversion of a solid lignocellulosic material
WO2021251633A1 (en) * 2020-06-12 2021-12-16 코오롱인더스트리 주식회사 Method and system for manufacturing dicarboxylic acid aromatic heterocyclic compound
WO2023008611A1 (en) * 2021-07-28 2023-02-02 코오롱인더스트리 주식회사 Dicarboxyl acid aromatic heterocyclic compound and method for preparing same
WO2023008610A1 (en) * 2021-07-28 2023-02-02 코오롱인더스트리 주식회사 Catalyst for making dicarboxyl acid aromatic heterocyclic compound, and method for preparing dicarboxyl acid aromatic heterocyclic compound
CN116606267A (en) * 2023-05-23 2023-08-18 中国科学院大连化学物理研究所 Method for preparing 2, 5-furan dicarboxaldehyde from 5-hydroxymethyl furfural

Also Published As

Publication number Publication date
FR3008409B1 (en) 2016-02-12

Similar Documents

Publication Publication Date Title
FR3008409A1 (en) PROCESS FOR THE PRODUCTION OF 2,5-DICARBOXALDEHYDE FURANE FROM HYDROXYMETHYLFURFURAL AND HALOGENATED DERIVATIVES NOT USING METAL CATALYST
CA2805574C (en) Process for the synthesis of 2,5-furandicarboxylic acid
EP2042497B1 (en) Method for producing strontium ranelate and its hydrates
EP2709994B1 (en) Process for the preparation of 5-hydroxymethylfurfural
CA2858187A1 (en) Improved method for selectively oxidizing 5-hydroxymethyl furaldehyde
WO2021219457A1 (en) Method for oxidizing 5-hydroxymethylfurfural
WO2013079819A1 (en) Method for preparing 5-hydroxymethylfurfural from ketose sugars obtained by isomerisation of aldose sugars
WO2017076625A1 (en) Method for producing 5-hydroxymethylfurfural in the presence of a lewis acid catalyst and/or a heterogeneous base catalyst and a homogeneous organic brønsted acid catalyst in the presence of at least one aprotic polar solvent
FR2919607A1 (en) PROCESS FOR THE CATALYTIC CONVERSION OF 2-HYDROXY-4-METHYLTHIOBUTANENITRILE (HMTBN) TO 2-HYDROXY-4-METHYLTHIOBUTANAMIDE (HMTBM)
EP0043620B1 (en) Process for preparing beta-hydroxybutyric acid
CA2791010A1 (en) Method for preparing carboxylic acids by oxidative cleavage of a vicinal diol
WO2012034905A1 (en) Process for producing dioxolane
US20100081845A1 (en) Process for Production of Optically Active Benzylamine Derivatives
FR3071495B1 (en) NEW PROCESS FOR THE PRODUCTION OF RESORCINOL
JP6638934B2 (en) Method for producing furfural or furfural derivative
WO2014053312A1 (en) Method for processing fluoric acid
JP5892879B2 (en) 2-Adamantanone production method
JPH03101672A (en) Preparation of 2,5-furandicarboxyaldehyde
FR2805258A1 (en) Production of alkali metal perfluoroalkanesulfinate salts useful as pharmaceutical and agrochemical intermediates comprises reacting a perfluoroalkanesulfonyl fluoride with an alkali metal sulfite

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 3

PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12