FR3005498A1 - DEVICE FOR CAPTURING, EXCHANGING AND THERMALLY STORING SOLAR ENERGY - Google Patents
DEVICE FOR CAPTURING, EXCHANGING AND THERMALLY STORING SOLAR ENERGY Download PDFInfo
- Publication number
- FR3005498A1 FR3005498A1 FR1301068A FR1301068A FR3005498A1 FR 3005498 A1 FR3005498 A1 FR 3005498A1 FR 1301068 A FR1301068 A FR 1301068A FR 1301068 A FR1301068 A FR 1301068A FR 3005498 A1 FR3005498 A1 FR 3005498A1
- Authority
- FR
- France
- Prior art keywords
- primary reservoir
- opening
- reservoir
- heat
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G9/00—Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
- A01G9/24—Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
- A01G9/243—Collecting solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S10/00—Solar heat collectors using working fluids
- F24S10/30—Solar heat collectors using working fluids with means for exchanging heat between two or more working fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S20/00—Solar heat collectors specially adapted for particular uses or environments
- F24S20/20—Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/79—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S60/00—Arrangements for storing heat collected by solar heat collectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S90/00—Solar heat systems not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S2023/88—Multi reflective traps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D2020/0065—Details, e.g. particular heat storage tanks, auxiliary members within tanks
- F28D2020/0082—Multiple tanks arrangements, e.g. adjacent tanks, tank in tank
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/25—Greenhouse technology, e.g. cooling systems therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/12—Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Environmental Sciences (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Dispositif (T) de capture, d'échange et de stockage thermique de l'énergie solaire comprenant un concentrateur du rayonnement solaire (1), un réservoir primaire (3) comprenant une ouverture transparente (9) vers l'extérieur et un échangeur thermique (7), ledit dispositif (T) étant caractérisé en ce que le réservoir primaire (3) contient un matériau solide semi-transparent (8) apte à s'échauffer sous l'effet de l'absorption du rayonnement solaire concentré (2) qui traverse la dite ouverture (9) et apte à maintenir l'énergie calorifique collectée et/ou à la redistribuer par l'intermédiaire de l'échangeur thermique (7).Device (T) for capturing, exchanging and storing solar energy, comprising a solar radiation concentrator (1), a primary reservoir (3) comprising a transparent opening (9) towards the outside and a heat exchanger (7), said device (T) being characterized in that the primary reservoir (3) contains a semi-transparent solid material (8) able to heat up under the effect of the absorption of concentrated solar radiation (2) which passes through said opening (9) and adapted to maintain the collected heat energy and / or to redistribute it through the heat exchanger (7).
Description
DISPOSITIF DE CAPTURE, D'ECHANGE ET DE STOCKAGE THERMIQUE DE L'ENERGIE SOLAIRE DOMAINE DE L'INVENTION La présente invention se rapporte au domaine des capteurs et échangeurs thermiques et plus particulièrement à ceux qui sont utilisés pour le stockage de l'énergie solaire.FIELD OF THE INVENTION The present invention relates to the field of heat sensors and heat exchangers and more particularly to those used for storing solar energy.
ETAT DE LA TECHNIQUE. Le stockage thermique de l'énergie solaire nécessite de convertir le rayonnement solaire en chaleur grâce à un capteur thermique qui absorbe cette énergie lumineuse et la transforme en calories. Le capteur thermique est souvent une surface noire qui s'échauffe proportionnellement à l'intensité lumineuse qu'elle reçoit, puis ces calories sont transportées jusqu'à un support de stockage. Le support de stockage peut être par exemple un volume l'eau, car l'eau à une forte capacité d'absorption thermique. Le transport des calories se fait généralement par un fluide caloporteur qui s'échauffe au contact du capteur thermique et qui cède ensuite ses calories au matériau de stockage. Afin d'améliorer ce principe de stockage thermique solaire on cherche principalement à améliorer cinq facteurs: 1 - les performances du capteur thermique, c'est-à-dire sa capacité à transformer l'énergie solaire en énergie calorifique, en essayant de diminuer au possible toutes les 25 déperditions. 2 - la qualité du transfert des calories du capteur thermique vers le volume de stockage, ce qui implique de réduire les pertes caloriques dues à ce transfert, ce qui est essentiellement une question d'isolation, mais aussi une question de transfert thermique entre le capteur et le fluide caloporteur et entre le fluide et le volume de stockage. Ces 30 interfaces thermiques sont ce que nous appellerons des échangeurs thermiques. 3 - la quantité de calories stockées par unité de volume, ce qui nécessite de choisir des matériaux très absorbants pour le volume de stockage, mais aussi des matériaux qui doivent résister à des températures élevées. 4 - les températures de stockage doivent être les plus importantes possibles, afin 1 de réduire le volume du réservoir et permettre des applications qui nécessitent de hautes températures. - le coût global du dispositif qui doit être le plus bas possible afin de rendre l'énergie solaire compétitive par rapport aux autres énergies disponibles. 5 Les dispositifs les plus performants connus utilisent généralement un rayonnement solaire concentré. Cette concentration solaire est produite grâce à un dispositif optique qui utilise des miroirs et/ou des lentilles. Le capteur thermique est généralement une surface métallique comme de l'acier ou du cuivre, éventuellement protégée par une vitre afin de limiter les déperditions des calories. Cette surface métallique peut prendre la forme d'une canalisation qui est en contact avec un fluide caloporteur en mouvement. Ce fluide est souvent de la vapeur d'eau à haute température, éventuellement sous pression. Il existe aussi des fluides à changement de phase, comme du sel fondu. Enfin le volume de stockage peut être composé de sel fondu, de béton, d'huile, de pierres naturelles,... ou de toute matière solide ou liquide ayant une forte capacité thermique.STATE OF THE ART. Thermal storage of solar energy requires converting solar radiation into heat through a thermal sensor that absorbs this light energy and transforms it into calories. The thermal sensor is often a black surface that heats up proportionally to the light intensity it receives, then these calories are transported to a storage medium. The storage medium may for example be a water volume because the water has a high heat absorption capacity. The transport of calories is usually done by a heat transfer fluid which heats up in contact with the thermal sensor and then gives up its calories to the storage material. In order to improve this principle of solar thermal storage, the main aim is to improve five factors: 1 - the performance of the thermal sensor, that is to say its capacity to transform solar energy into heat energy, while trying to reduce possible all 25 losses. 2 - the quality of heat transfer from the heat sensor to the storage volume, which implies reducing the heat losses due to this transfer, which is essentially a question of isolation, but also a question of heat transfer between the sensor and the heat transfer fluid and between the fluid and the storage volume. These 30 thermal interfaces are what we will call heat exchangers. 3 - the quantity of calories stored per unit of volume, which requires choosing highly absorbent materials for the storage volume, but also materials that must withstand high temperatures. 4 - the storage temperatures must be the largest possible, 1 to reduce the volume of the tank and allow applications that require high temperatures. - the overall cost of the device which must be as low as possible in order to make solar energy competitive with the other available energies. The most successful known devices generally use concentrated solar radiation. This solar concentration is produced by an optical device that uses mirrors and / or lenses. The thermal sensor is generally a metal surface such as steel or copper, possibly protected by a glass to limit heat loss. This metal surface may take the form of a pipe that is in contact with a heat transfer fluid in motion. This fluid is often water vapor at high temperature, possibly under pressure. There are also phase-change fluids, such as molten salt. Finally, the storage volume may be composed of molten salt, concrete, oil, natural stones, or any solid or liquid material having a high heat capacity.
Les échangeurs thermiques fonctionnent principalement sur le principe de la conduction thermique entre les deux faces d'un élément, souvent une plaque très conductrice de chaleur. Schématiquement une des deux faces de la plaque est le capteur thermique qui s'échauffe sous le rayonnement solaire et l'autre face de la plaque est en contact avec l'écoulement d'un fluide qui se charge au passage des calories transmises par la plaque. Les performances de l'échangeur thermique dépendent principalement de la température d'échange, de la surface d'échange, et de la conduction thermique des matériaux. Par ailleurs pour augmenter la capacité de stockage thermique du système et aussi pour des applications qui nécessitent des températures importantes, il est nécessaire de stocker les calories dans des solides et non dans des liquides car les liquides passent assez rapidement en phase vapeur, et la vapeur n'est pas facile à stocker. Mais stocker de la chaleur dans un solide nécessite, soit d'utiliser un matériau de stockage qui possède à la fois une très bonne capacité de stockage et une bonne conductivité thermique, ce qui est le cas des métaux comme l'aluminium ou l'acier (mais ces matériaux coûtent cher), soit utiliser un matériau de stockage qui possède une très bonne capacité de stockage et une faible conductivité thermique, comme par exemple le béton, cette dernière caractéristique étant alors compensée par un circuit de chauffage composé d'une multitude de conduites faisant office d'échangeurs thermiques et disséminées dans tout le volume de stockage. Cette multitude d'échangeurs thermiques nécessaires au transfert thermique à l'intérieur du volume de stockage, qui est donc solide, fait augmenter alors nécessairement 3 00 5 4 9 8 3 le coût global du système. BUT DE L'INVENTION 5 Le but de l'invention est de décrire un capteur et échangeur thermique de l'énergie solaire, avec un stockage performant des calories dans un matériau solide qui résiste à de hautes températures et cela à moindre coût. Ceci visera à résoudre notamment le problème du coût de la multitude des échangeurs thermiques qui sont nécessaires à l'intérieur d'un volume de stockage lorsque celui-ci est solide. 10 RESUME DE L'INVENTION L'invention a pour objet un dispositif de capture, d'échange et de stockage thermique de l'énergie solaire comprenant : 15 - un réservoir primaire pourvue d'une ouverture transparente vers l'extérieur ; - un concentrateur apte à concentrer le rayonnement solaire vers l'ouverture du réservoir primaire et à échauffer le contenu dudit réservoir primaire; - un échangeur thermique apte à récupérer l'énergie thermique générée dans le réservoir primaire, ce dispositif étant caractérisé en ce que ledit réservoir primaire contient 20 un matériau solide semi-transparent apte à s'échauffer sous l'effet de l'absorption du rayonnement solaire concentré qui traverse ladite ouverture et apte à maintenir l'énergie calorifique collectée et/ou à la redistribuer par l'intermédiaire de l'échangeur thermique. De cette manière, grâce à la semi-transparence du matériau disposé dans le réservoir primaire, l'énergie lumineuse traverse le réservoir dans toute sa profondeur très 25 rapidement et échauffe tout le matériau solide, bien plus rapidement que dans le cas d'un échauffement par conduction thermique. Le rayonnement solaire concentré est par exemple un rayonnement solaire qui est concentré par une optique de type lentille de Fresnel, miroir parabolique, miroirs de Fresnel, ou une multitude d'héliostats. 30 Le réservoir primaire peut prendre n'importe quelle forme appropriée, mais de préférence il sera longiligne de sorte que la distance entre un point quelconque de son volume et sa surface soit la plus courte possible compte tenu des autres contraintes de conception. Cette distance, entre un point quelconque du réservoir primaire et sa surface, détermine en effet la capacité du système à échanger ses calories avec l'extérieur. 1 La paroi du réservoir primaire est faite de préférence avec un matériau très conducteur thermiquement, comme par exemple du cuivre, de l'acier ou de l'aluminium. Le réservoir est rempli d'un solide semi-transparent. Cette matière est de préférence du verre ou du verre pilé, qui possède une forte capacité thermique, c'est-à-dire qui est capable de stocker une grande quantité de calories, tout en résistant à des températures importantes, supérieures à 500 °C. Une option intéressante est d'inclure dans le verre des particules métalliques ou de carbone ou d'autres types de particules qui absorbent une partie du rayonnement solaire. Ces particules peuvent aussi être de taille nanométtique. Le rayonnement solaire se concentre sur l'ouverture du réservoir primaire et 10 pénètre à l'intérieur de la matière semi-transparente. Au fur et à mesure de la pénétration du rayonnement solaire dans le réservoir primaire, ce rayonnement va être progressivement absorbé par la matière semi-transparente. Cette matière semi-transparente va alors s'échauffer d'une manière rapide et d'une manière sensiblement homogène dans tout son volume. 15 L'énergie du rayonnement solaire va donc se transférer à la totalité de la matière semi-transparente avec une grande vitesse, puisque cette vitesse de propagation est celle de la lumière, alors que si la matière n'était pas transparente ce serait la vitesse de conduction thermique à l'intérieur du matériau qui serait prise en compte. Cette grande vitesse de transfert thermique à l'intérieur du réservoir primaire va permettre audit réservoir d'avoir 20 des formes telles qu'elles favorisent de grandes surfaces d'échange thermique avec l'extérieur tout en conservant un moindre volume global. Ce sera par l'exemple le cas d'un réservoir primaire en forme de parallélépipède rectangle, de cylindre ou de cône, quand une de leurs dimensions est beaucoup plus grande que les autres, en tous cas lorsqu'une des dimensions est au moins trois fois supérieure aux autres, ce qui permettra par exemple 25 de créer deux plaques parallèles faiblement espacées dans le cas d'un parallélépipède rectangle. Ainsi le réservoir primaire selon l'invention permet des échanges thermiques rapides et performants grâce à des surfaces d'échange thermique importantes avec l'extérieur, tout en permettant une diffusion et un stockage rapide et homogène de l'énergie 30 solaire reçue. Le même résultat aurait pu être obtenu avec un réservoir primaire contenant un matériau non transparent comme de l'aluminium ou de acier car ces matériaux ont aussi une forte capacité de stockage thermique et une vitesse de transfert thermique assez rapide, bien que moindre par rapport à celle de la lumière, mais l'avantage du dispositif selon l'invention est qu'il est beaucoup moins coûteux puisque le verre, par exemple, est cinq fois 1 plus économique que ces métaux. Dans un mode de réalisation particulier du dispositif, la paroi intérieure du réservoir primaire est rendue réfléchissante afin de faciliter la pénétration du rayonnement solaire dans ledit réservoir. Une option intéressante afin de répartir au mieux l'intensité du rayonnement à l'intérieur du réservoir primaire est de rendre la surface intérieure dudit réservoir de moins en moins réfléchissante au fur et à mesure qu'on s'éloigne de l'ouverture du réservoir primaire. Ceci étant rendu possible par exemple en positionnant une multitude de zones réfléchissantes sur la paroi intérieure du réservoir primaire de sorte que la densité surfacique desdites zones réfléchissantes soit de plus en plus faible à mesure que l'on s'éloigne de l'ouverture. En contrepartie, on observera qu'une multitude de zones absorbantes de la paroi intérieure du réservoir primaire aura une densité surfacique de plus en plus importante au fur et à mesure que l'on s'éloignera de l'ouverture. Ainsi plus l'intensité du rayonnement solaire à l'intérieur du réservoir primaire sera faible et plus l'absorption de la paroi dudit réservoir sera grande, ce qui va sensiblement égaliser la répartition des calories le long du réservoir. Afin d'augmenter le volume de stockage thermique du dispositif, le réservoir primaire, excepté son ouverture, est entouré d'un réservoir thermique secondaire de grande capacité thermique, comme par exemple du plâtre, du béton ou de l'argile. Ce réservoir thermique secondaire étant éventuellement en contact avec la surface du réservoir primaire, il va progressivement s'échauffer lui-même. Afin de réduire les pertes calorifiques, les deux réservoirs peuvent être entourés d'un matériau très isolant comme un film d'air, du vide ou de la laine de verre. Afm de récupérer les calories stockées dans les deux réservoirs, un échangeur thermique à circulation de fluide est positionné dans l'un ou l'autre ou dans les deux réservoirs, et de préférence positionné proche de la surface du réservoir primaire. Cet échangeur thermique à circulation de fluide est par exemple un serpentin qui entoure le réservoir primaire et qui est parcouru par de l'air ou de l'eau ou de la vapeur d'eau. Dans un mode de réalisation particulier, le réservoir primaire contient un matériau semi-transparent dont la densité volumique est progressivement croissante au fur et à mesure qu'on s'éloigne de l'ouverture. Par exemple si le matériau semi-transparent est composé d'une multitude de morceaux de verre ou de billes en verre, la densité volumique moyenne des morceaux de verre ou des billes est progressivement croissante lorsqu'on s'éloigne de l'ouverture. Ce gradient de densité de matière semi-transparente a pour conséquence d'égaliser dans tout le volume du récipient primaire le pourcentage 1 d'absorption du rayonnement solaire. Cela est dû au fait qu'au fur et à mesure de la pénétration du rayonnement solaire dans le matériau semi-transparent, le rayonnement perd en intensité à cause de son absorption partielle, et que cette perte d'intensité est compensée par une densité de matière plus importante qui fait augmenter localement le pourcentage de l'absorption, donc la quantité de calories absorbées. Le produit de l'intensité lumineuse par le pourcentage de son absorption reste alors sensiblement constant le long du parcours du rayonnement solaire dans la matière du réservoir. Dans un autre mode de réalisation particulier, l'augmentation du gradient de densité à l'intérieur du réservoir primaire est réalisée par des billes dont le diamètre est 10 progressivement décroissant. Dans un autre mode de réalisation particulier, l'augmentation du gradient de densité à l'intérieur du réservoir primaire est réalisée par des plaques de verre de plus en plus rapprochées les unes des autres à mesure que l'on s'éloigne de l'ouverture du réservoir primaire. 15 Dans un autre mode de réalisation particulier, le réservoir primaire est en position verticale, son ouverture est située dans sa partie haute, et ledit réservoir primaire est enfoncé dans le sol qui fait alors office de réservoir secondaire. De préférence le sol sera constitué de matériaux à forte capacité thermique comme de l'argile ou du sable. Dans un autre mode de réalisation particulier, l'ouverture est recouverte 20 temporairement, par exemple la nuit ou lorsque le soleil est caché, par un couvercle sur lequel sont disposées des cellules thermoélectriques dont une des faces est en contact avec l'intérieur du réservoir primaire et l'autre face est en contact avec l'air ambiant, de sorte que les dites cellules thermoélectriques soient aptes à produire de l'électricité même en l'absence de soleil, grâce à la différence de température entre le réservoir primaire et l'air 25 extérieur. DECRIPTION DETAILLEE DE L'INVENTION L'invention est maintenant décrite plus en détails à l'aide de la description des figures 1 à 3 indexées. 30 La figure 1 est un schéma de principe en coupe du dispositif La figure 2 est un schéma en coupe d'un exemple particulier de réalisation dans lequel le réservoir primaire présente un gradient de densité. La figure 3 est un schéma en coupe d'un exemple particulier de mise en oeuvre du dispositif selon l'invention, qui utilise le sol comme réservoir de stockage thermique 1 supplémentaire pour une application agricole. En référence à la figure 1 le dispositif (T) de capture, d'échange et de stockage thermique de l'énergie solaire selon l'invention comprend un réservoir primaire (3) constitué d'un matériau solide semi-transparent (8) comme par exemple des morceaux ou des billes de verre. Il reçoit par l'intermédiaire d'une ouverture (9) aménagée dans le réservoir primaire (3), le rayonnement solaire concentré (2). Le rayonnement solaire est concentré par des procédés optiques (1) connus, comme par exemple des lentilles de Fresnel, des miroirs concaves ou une multitude d'héliostats. Le rayonnement solaire concentré (2) introduit dans le réservoir primaire (3) se disperse (6) dans toute la matière solide semi-transparente (8) en étant progressivement absorbé au fur et à mesure de sa propagation dans ledit solide (8). Les parois (4) du réservoir primaire (3) sont en partie réfléchissantes afin de faciliter la propagation du rayonnement solaire (6) dans tout le volume du réservoir (3). Le réservoir (3) s'échauffe alors par l'absorption et la transformation en calories du rayonnement solaire (6). La température du solide (8) peut s'élever à plusieurs centaines de degrés Celsius et le solide (8) peut soit rester solide, soit devenir mou ou liquide tout en conservant sa transparence partielle. Afin d'augmenter le volume de stockage des calories, le réservoir primaire (3) en entouré d'un réservoir secondaire (5) qui s'échauffe au contact de la paroi (4) du réservoir primaire (3). Le réservoir secondaire (5) est constitué de préférence d'un matériau solide à forte capacité thermique comme par exemple du béton, du plâtre ou de l'argile. Pour limiter les déperditions de chaleur, les deux réservoirs (3,5) peuvent aussi être isolés thermiquement de l'extérieur par une enveloppe isolante (non illustrée) comme de la laine de verre, un film d'air ou un espace de vide. Pour récupérer les calories stockées, un échangeur thermique (7) parcouru par un fluide (non illustré) est placé dans le réservoir primaire (3) et/ou dans le réservoir secondaire (5) ou encore de préférence entre les deux réservoirs (3,5). La figure 2 illustre un cas particulier dans lequel le réservoir primaire (3) est composé d'un matériau semi-transparent (10) dont la densité volumique est progressivement croissante au fur et à mesure que l'on s'éloigne de l'ouverture (9) du réservoir primaire. Par exemple le réservoir primaire (3) est rempli d'une multitude de plaques de verre (10) disposées parallèlement les unes aux autres et dont les épaisseurs sont progressivement croissantes et/ou dont les distances qui les séparent sont progressivement décroissantes vers le fond du réservoir primaire (9). Ainsi la densité 1 volumique du verre à l'intérieur du réservoir primaire (3) est progressivement croissante au fur et à mesure que l'on s'éloigne de l'ouverture (9), ce qui permet d'obtenir une quantité d'absorption calorifique, et donc une température, sensiblement égale dans tout le volume du réservoir (3).Heat exchangers work mainly on the principle of thermal conduction between the two faces of an element, often a very conductive plate of heat. Schematically one of the two faces of the plate is the thermal sensor which heats up under the solar radiation and the other face of the plate is in contact with the flow of a fluid which is charged with the passage of the calories transmitted by the plate . The performance of the heat exchanger mainly depends on the exchange temperature, the exchange surface, and the thermal conduction of the materials. Furthermore, to increase the thermal storage capacity of the system and also for applications that require high temperatures, it is necessary to store the calories in solids and not in liquids because the liquids pass rather quickly in the vapor phase, and the steam is not easy to store. But storing heat in a solid requires either a storage material that has both a good storage capacity and a good thermal conductivity, which is the case of metals such as aluminum or steel (but these materials are expensive), or use a storage material that has a very good storage capacity and low thermal conductivity, such as concrete, the latter characteristic being then compensated by a heating circuit consisting of a multitude of pipes acting as heat exchangers and disseminated throughout the storage volume. This multitude of heat exchangers necessary for heat transfer inside the storage volume, which is therefore solid, necessarily increases the overall cost of the system. OBJECT OF THE INVENTION The object of the invention is to describe a sensor and heat exchanger of solar energy, with efficient storage of calories in a solid material that withstands high temperatures and at a lower cost. This will aim at solving the problem of the cost of the multitude of heat exchangers that are necessary inside a storage volume when it is solid. SUMMARY OF THE INVENTION The invention relates to a device for capturing, exchanging and storing solar energy, comprising: a primary reservoir provided with an opening transparent to the outside; a concentrator able to concentrate the solar radiation towards the opening of the primary reservoir and to heat the contents of said primary reservoir; a heat exchanger able to recover the thermal energy generated in the primary reservoir, this device being characterized in that said primary reservoir contains a semi-transparent solid material able to heat up under the effect of the absorption of the radiation concentrated solar system which passes through said opening and adapted to maintain the heat energy collected and / or to redistribute it through the heat exchanger. In this way, thanks to the semitransparency of the material disposed in the primary reservoir, the light energy passes through the reservoir in all its depth very rapidly and heats up all the solid material, much faster than in the case of heating. by thermal conduction. The concentrated solar radiation is for example a solar radiation which is concentrated by Fresnel lens type optics, parabolic mirrors, Fresnel mirrors, or a multitude of heliostats. The primary reservoir may take any suitable shape, but preferably it will be elongate so that the distance between any point of its volume and its surface is as short as possible taking into account other design constraints. This distance, between any point of the primary reservoir and its surface, in fact determines the capacity of the system to exchange its calories with the outside. The wall of the primary reservoir is preferably made of a highly thermally conductive material, such as for example copper, steel or aluminum. The tank is filled with a semi-transparent solid. This material is preferably glass or crushed glass, which has a high heat capacity, that is to say which is capable of storing a large amount of calories, while withstanding high temperatures, greater than 500 ° C. . An interesting option is to include in the glass metal or carbon particles or other types of particles that absorb some of the solar radiation. These particles can also be of nanometrical size. The solar radiation focuses on the opening of the primary reservoir and penetrates inside the semitransparent material. As sunlight penetrates into the primary reservoir, this radiation will be gradually absorbed by the semi-transparent material. This semi-transparent material will then warm up quickly and in a substantially homogeneous manner throughout its volume. The energy of the solar radiation will thus be transferred to the whole of the semi-transparent material with a high speed, since this speed of propagation is that of the light, whereas if the material were not transparent it would be the speed thermal conduction inside the material that would be taken into account. This high rate of heat transfer inside the primary reservoir will allow said reservoir to have such shapes that they promote large areas of heat exchange with the outside while maintaining a lower overall volume. For example, this will be the case of a primary tank in the form of a rectangular parallelepiped, a cylinder or a cone, when one of their dimensions is much larger than the others, in any case when one of the dimensions is at least three. This will allow, for example, to create two parallel plates that are slightly spaced apart in the case of a rectangular parallelepiped. Thus, the primary reservoir according to the invention allows rapid and efficient heat exchange thanks to the large heat exchange surfaces with the outside, while allowing a diffusion and a fast and homogeneous storage of the received solar energy. The same result could have been obtained with a primary tank containing a non-transparent material such as aluminum or steel because these materials also have a high thermal storage capacity and a relatively fast heat transfer rate, although less than that of light, but the advantage of the device according to the invention is that it is much less expensive since glass, for example, is five times more economical than these metals. In a particular embodiment of the device, the inner wall of the primary reservoir is made reflective in order to facilitate the penetration of solar radiation into said reservoir. An interesting option for optimally distributing the intensity of the radiation inside the primary tank is to make the inner surface of said tank less and less reflective as one moves away from the opening of the tank primary. This being made possible for example by positioning a multitude of reflective zones on the inner wall of the primary reservoir so that the surface density of said reflective zones is smaller and smaller as one moves away from the opening. In return, it will be observed that a multitude of absorbing zones of the inner wall of the primary reservoir will have an increasing surface density as one moves away from the opening. Thus, the lower the intensity of the solar radiation inside the primary reservoir and the greater the absorption of the wall of said reservoir, which will substantially equalize the distribution of calories along the reservoir. In order to increase the thermal storage volume of the device, the primary reservoir, except for its opening, is surrounded by a secondary thermal reservoir of high thermal capacity, such as for example plaster, concrete or clay. This secondary thermal reservoir possibly being in contact with the surface of the primary reservoir, it will gradually heat up itself. To reduce heat losses, both tanks can be surrounded by a highly insulating material such as air film, vacuum or glass wool. In order to recover the calories stored in the two reservoirs, a fluid circulation heat exchanger is positioned in one or the other or in both reservoirs, and preferably positioned near the surface of the primary reservoir. This fluid-circulating heat exchanger is for example a coil that surrounds the primary tank and is traversed by air or water or steam. In a particular embodiment, the primary reservoir contains a semi-transparent material whose volume density is gradually increasing as one moves away from the opening. For example, if the semi-transparent material is composed of a multitude of pieces of glass or glass beads, the average density of the glass pieces or beads is progressively increasing as one moves away from the opening. This gradient of semi-transparent material density has the effect of equalizing throughout the volume of the primary container the percentage 1 of absorption of solar radiation. This is because as solar radiation penetrates the semitransparent material, the radiation loses intensity due to its partial absorption, and this loss of intensity is compensated by a density of more important matter that locally increases the percentage of absorption, so the amount of calories absorbed. The product of the luminous intensity by the percentage of its absorption then remains substantially constant along the path of solar radiation in the material of the reservoir. In another particular embodiment, the increase of the density gradient inside the primary reservoir is carried out by balls whose diameter is progressively decreasing. In another particular embodiment, the increase of the density gradient inside the primary reservoir is achieved by glass plates that are closer and closer together as one moves away from the opening of the primary tank. In another particular embodiment, the primary reservoir is in a vertical position, its opening is located in its upper part, and said primary reservoir is driven into the ground which then acts as a secondary reservoir. Preferably the soil will be made of materials with high heat capacity such as clay or sand. In another particular embodiment, the opening is temporarily covered, for example at night or when the sun is hidden, by a cover on which thermoelectric cells are disposed, one of the faces of which is in contact with the inside of the reservoir. the other side is in contact with the ambient air, so that the said thermoelectric cells are able to produce electricity even in the absence of sun, thanks to the temperature difference between the primary reservoir and the outside air. DETAILED DESCRIPTION OF THE INVENTION The invention is now described in more detail with the help of the description of the indexed FIGS. 1 to 3. FIG. 1 is a cross-sectional diagram of the device. FIG. 2 is a sectional diagram of a particular embodiment in which the primary reservoir has a density gradient. Figure 3 is a sectional diagram of a particular embodiment of the device according to the invention, which uses the soil as additional thermal storage tank 1 for agricultural application. With reference to FIG. 1, the device (T) for capturing, exchanging and storing solar energy according to the invention comprises a primary reservoir (3) consisting of a semi-transparent solid material (8) such as for example pieces or glass beads. It receives through an opening (9) formed in the primary reservoir (3), the concentrated solar radiation (2). The solar radiation is concentrated by known optical methods (1), such as for example Fresnel lenses, concave mirrors or a multitude of heliostats. The concentrated solar radiation (2) introduced into the primary reservoir (3) disperses (6) in all the semi-transparent solid material (8) by being progressively absorbed as it is propagated in said solid (8). The walls (4) of the primary reservoir (3) are partially reflective to facilitate the propagation of solar radiation (6) throughout the volume of the tank (3). The reservoir (3) then heats up by absorbing and transforming the solar radiation into calories (6). The temperature of the solid (8) can be several hundred degrees Celsius and the solid (8) can remain solid, or become soft or liquid while maintaining its partial transparency. In order to increase the calorie storage volume, the primary reservoir (3) surrounded by a secondary reservoir (5) which heats in contact with the wall (4) of the primary reservoir (3). The secondary tank (5) is preferably made of a solid material with a high heat capacity such as concrete, plaster or clay. To limit heat loss, the two tanks (3,5) can also be thermally insulated from the outside by an insulating envelope (not shown) such as glass wool, an air film or a vacuum space. To recover the stored calories, a heat exchanger (7) traversed by a fluid (not shown) is placed in the primary reservoir (3) and / or in the secondary reservoir (5) or preferably between the two reservoirs (3, 5). FIG. 2 illustrates a particular case in which the primary reservoir (3) is composed of a semitransparent material (10) whose volume density is progressively increasing as one moves away from the opening (9) of the primary reservoir. For example, the primary reservoir (3) is filled with a multitude of glass plates (10) arranged parallel to one another and whose thicknesses are progressively increasing and / or whose distances between them are gradually decreasing towards the bottom of the primary tank (9). Thus the volume density 1 of the glass inside the primary reservoir (3) is progressively increasing as one moves away from the opening (9), which makes it possible to obtain a quantity of heat absorption, and therefore a temperature, substantially equal throughout the volume of the tank (3).
EXEMPLE DE REALISATION La figure 3 illustre un exemple de réalisation pour le réchauffement d'une serre agricole: un dispositif (T) de capture, d'échange et de stockage thermique de l'énergie solaire est composé d'un réservoir primaire (3) cylindrique de 40 cm de diamètre et de 200 cm de profondeur, rempli de billes de verre dont le diamètre est progressivement décroissant au fur et à mesure qu'on s'éloigne de la fenêtre (9) de réception du rayonnement solaire concentré (2). Le diamètre des billes varie de 3 cm à 1 cm. Le réservoir primaire (3) est en acier de 1 mm d'épaisseur et sa paroi intérieure est polie pour être réfléchissante. Le réservoir primaire (3) est encerclé par un serpentin tubulaire (7) en cuivre de 20 mm de diamètre qui est soudé à la paroi dudit réservoir primaire (3). Le réservoir primaire (3) et le dit serpentin (7) sont entourés et en contact avec un réservoir secondaire (5) cylindrique de 2m de hauteur et de 80 cm de diamètre qui est composé de plâtre.EXEMPLARY EMBODIMENT FIG. 3 illustrates an exemplary embodiment for the heating of an agricultural greenhouse: a device (T) for capturing, exchanging and storing solar energy is composed of a primary reservoir (3) cylindrical 40 cm in diameter and 200 cm deep, filled with glass beads whose diameter is gradually decreasing as one moves away from the window (9) for receiving concentrated solar radiation (2) . The diameter of the beads varies from 3 cm to 1 cm. The primary tank (3) is made of steel 1 mm thick and its inner wall is polished to be reflective. The primary reservoir (3) is encircled by a copper tubular coil (7) 20 mm in diameter which is welded to the wall of said primary reservoir (3). The primary reservoir (3) and said coil (7) are surrounded and in contact with a cylindrical secondary reservoir (5) 2m high and 80 cm in diameter which is composed of plaster.
Les deux réservoirs (3,5) sont positionnés verticalement et enterrés sous la surface du sol (12) de sorte que seule la fenêtre (9) soit visible en surface. Le rayonnement solaire (2) est concentré sur la fenêtre (9) grâce au couplage d'un héliostat (16) dont le miroir rectangulaire fait 2 x 3 m et d'un miroir parabolique (1) circulaire de 2 m de diamètre. La fenêtre (9) reçoit une irradiation solaire d'une puissance de 4 kW par fort ensoleillement pendant une moyenne de 4 heures par jour, soit une accumulation de chaleur dans les deux réservoirs équivalent à environ 16 KWh par jour. Le serpentin (7) est parcouru par un liquide caloporteur qui est un mélange d'eau et de glycol et qui assure la fonction d'échangeur thermique entre le dispositif de stockage (T) et une serre agricole (14) éloignée de 10 mètres. Le sol de la serre agricole (14) est parcouru par un circuit de tuyaux (17) qui sont enterrés à 50 cm de profondeur et qui sont reliés au serpentin (7) du dispositif de stockage thermique (T) afin de réchauffer le sol de la serre agricole (14). Un système automatique (11) muni d'une pompe à circulation calcule le débit optimum du liquide caloporteur dans les tuyaux (17) afin de réguler la température du sol de la serre (14), en général à une température supérieure à 6°C afin d'éviter le gel des racines et des plantes (13). La régulation se fait soit le jour lorsque l'intensité du rayonnement solaire (15) n'est pas suffisante pour maintenir cette température dans la serre (14), soit la nuit, donc en l'absence de soleil, par l'intermédiaire du seul dispositif (T) de stockage thermique solaire.The two tanks (3,5) are positioned vertically and buried under the ground surface (12) so that only the window (9) is visible on the surface. The solar radiation (2) is concentrated on the window (9) by coupling a heliostat (16) whose rectangular mirror is 2 x 3 m and a parabolic mirror (1) circular 2 m in diameter. The window (9) receives a solar irradiation of a power of 4 kW in strong sunlight for an average of 4 hours per day, a heat accumulation in the two tanks equivalent to about 16 KWh per day. The coil (7) is traversed by a coolant which is a mixture of water and glycol and which acts as a heat exchanger between the storage device (T) and a greenhouse (14) 10 meters away. The floor of the agricultural greenhouse (14) is traversed by a pipe circuit (17) which is buried at a depth of 50 cm and which is connected to the coil (7) of the thermal storage device (T) in order to heat the soil of the agricultural greenhouse (14). An automatic system (11) equipped with a circulation pump calculates the optimum flow rate of the coolant in the pipes (17) in order to regulate the soil temperature of the greenhouse (14), generally at a temperature above 6 ° C. to prevent freezing of roots and plants (13). The regulation is done either during the day when the intensity of solar radiation (15) is not sufficient to maintain this temperature in the greenhouse (14), or at night, so in the absence of sun, through the only device (T) for solar thermal storage.
AVANTAGES DE L'INVENTION En définitive l'invention répond bien au but fixé en permettant le stockage performant de l'énergie solaire dans un matériau solide qui résiste bien à de hautes températures et cela à moindre coût.BENEFITS OF THE INVENTION Ultimately the invention meets the goal set by enabling the efficient storage of solar energy in a solid material that is resistant to high temperatures and at a lower cost.
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1301068A FR3005498B1 (en) | 2013-05-08 | 2013-05-08 | DEVICE FOR CAPTURING, EXCHANGING AND THERMALLY STORING SOLAR ENERGY |
PCT/FR2014/000101 WO2014181047A1 (en) | 2013-05-08 | 2014-05-08 | Device for collecting, exchanging, and thermally storing solar energy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1301068A FR3005498B1 (en) | 2013-05-08 | 2013-05-08 | DEVICE FOR CAPTURING, EXCHANGING AND THERMALLY STORING SOLAR ENERGY |
Publications (2)
Publication Number | Publication Date |
---|---|
FR3005498A1 true FR3005498A1 (en) | 2014-11-14 |
FR3005498B1 FR3005498B1 (en) | 2016-09-16 |
Family
ID=49231538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1301068A Expired - Fee Related FR3005498B1 (en) | 2013-05-08 | 2013-05-08 | DEVICE FOR CAPTURING, EXCHANGING AND THERMALLY STORING SOLAR ENERGY |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3005498B1 (en) |
WO (1) | WO2014181047A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140245661A1 (en) * | 2011-08-19 | 2014-09-04 | Saumweber Holdings Limited | Method and system for utilizing heat in a plant or animal growing device, and greenhouse |
WO2022038487A1 (en) * | 2020-08-19 | 2022-02-24 | King Abdullah University Of Science And Technology | A solar-powered, temperature cascading system for electricity generation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4402306A (en) * | 1980-03-27 | 1983-09-06 | Mcelroy Jr Robert C | Thermal energy storage methods and processes |
US4449515A (en) * | 1979-07-16 | 1984-05-22 | Seige Corporation | Apparatus for collecting, intensifying and storing solar energy |
FR2537248A1 (en) * | 1982-11-27 | 1984-06-08 | Univ Ben Gurion | Construction panel for heat storage by change of phase, and method for regulating the light and temperature by day and the temperature by night, particularly in a greenhouse |
US5047654A (en) * | 1990-02-05 | 1991-09-10 | Edwin Newman | Solar powered electricity mine system |
WO2008154455A2 (en) * | 2007-06-06 | 2008-12-18 | Ausra, Inc. | Granular thermal energy storage mediums and devices for thermal energy storage systems |
WO2010099509A2 (en) * | 2009-02-28 | 2010-09-02 | Martin Mittelmark | System and method for using recyclables for thermal storage |
WO2011027309A2 (en) * | 2009-09-04 | 2011-03-10 | Andrea De Riccardis | Thermal energy storage system by direct solar radiation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4251291A (en) * | 1979-02-01 | 1981-02-17 | Gomez Ernesto E | Thermoelectric generator with latent heat storage |
DE102006023616A1 (en) * | 2006-05-19 | 2007-11-22 | Pilz, Ulrich, Dr.-Ing. | Arrangement and method for generating energy from solar radiation |
DE202010002310U1 (en) * | 2010-02-13 | 2011-08-26 | Julius Ecke | Plant for the conversion of solar radiation into electrical energy using thermoelectric converters |
-
2013
- 2013-05-08 FR FR1301068A patent/FR3005498B1/en not_active Expired - Fee Related
-
2014
- 2014-05-08 WO PCT/FR2014/000101 patent/WO2014181047A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4449515A (en) * | 1979-07-16 | 1984-05-22 | Seige Corporation | Apparatus for collecting, intensifying and storing solar energy |
US4402306A (en) * | 1980-03-27 | 1983-09-06 | Mcelroy Jr Robert C | Thermal energy storage methods and processes |
FR2537248A1 (en) * | 1982-11-27 | 1984-06-08 | Univ Ben Gurion | Construction panel for heat storage by change of phase, and method for regulating the light and temperature by day and the temperature by night, particularly in a greenhouse |
US5047654A (en) * | 1990-02-05 | 1991-09-10 | Edwin Newman | Solar powered electricity mine system |
WO2008154455A2 (en) * | 2007-06-06 | 2008-12-18 | Ausra, Inc. | Granular thermal energy storage mediums and devices for thermal energy storage systems |
WO2010099509A2 (en) * | 2009-02-28 | 2010-09-02 | Martin Mittelmark | System and method for using recyclables for thermal storage |
WO2011027309A2 (en) * | 2009-09-04 | 2011-03-10 | Andrea De Riccardis | Thermal energy storage system by direct solar radiation |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140245661A1 (en) * | 2011-08-19 | 2014-09-04 | Saumweber Holdings Limited | Method and system for utilizing heat in a plant or animal growing device, and greenhouse |
US20170051924A1 (en) * | 2011-08-19 | 2017-02-23 | Sundrop Farms Holdings Limited | Method and system for utilizing heat in a plant or animal growing device, and greenhouse |
US9609811B2 (en) * | 2011-08-19 | 2017-04-04 | Sundrop Farms Holdings Limited | Method and system for utilizing heat in a plant or animal growing device, and greenhouse |
WO2022038487A1 (en) * | 2020-08-19 | 2022-02-24 | King Abdullah University Of Science And Technology | A solar-powered, temperature cascading system for electricity generation |
US12071938B2 (en) | 2020-08-19 | 2024-08-27 | King Abdullah University Of Science And Technology | Solar-powered, temperature cascading system for electricity generation |
Also Published As
Publication number | Publication date |
---|---|
WO2014181047A1 (en) | 2014-11-13 |
FR3005498B1 (en) | 2016-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1826505B1 (en) | Solar collector with concentration | |
WO2014181047A1 (en) | Device for collecting, exchanging, and thermally storing solar energy | |
FR2524124A1 (en) | CALORIFIC STORAGE AND RETURN PROCESS, AND DEVICE FOR IMPLEMENTING IT, CONSTITUTING A BUILDING ELEMENT | |
EP3274639B1 (en) | Solar device for autonomeous production of cold by adsorption | |
FR2468077A1 (en) | Solar water heater tank - has hemispherical absorber acting as storage vessel with matt black surface | |
FR3046838A1 (en) | OPTIMIZED ASSEMBLY HEAT PUMP HEAT EXCHANGER AND THERMAL ENERGY STORAGE DEVICE BY PHASE CHANGE MATERIAL COMPRISING SAID EXCHANGER. | |
FR2575811A1 (en) | Collector/storage assembly for heating water by solar energy | |
FR2999830B1 (en) | ELEMENT FOR THE TREATMENT OF IMPROVED SOLAR RADIATION AND A SOLAR FOLLOWER AND A SOLAR POWER PLANT EQUIPPED WITH SUCH ELEMENT | |
FR2536156A1 (en) | CIRCULATING GAS CIRCULATING ENERGY SENSOR COMPRISING AN EXCHANGER USING THE SAME | |
FR3054650A1 (en) | HEAT EXCHANGER, IN PARTICULAR FOR THE THERMAL REGULATION OF AN ENERGY RESERVE UNIT, AND TOGETHER FORM OF THE EXCHANGER AND THE UNIT. | |
FR3007894A1 (en) | SOLAR MODULE WITH REGULATION OF SIMPLIFIED HUMIDITY LEVEL | |
FR2978815A1 (en) | PHOTOVOLTAIC MODULE WITH THERMAL EXCHANGER | |
FR2994371A1 (en) | Thermal regulation device for agricultural greenhouse, has heat storage tank sensor to be exposed to solar radiation, and including water and phase change material in encapsulated form, and metal bar arranged vertically inside sensor | |
FR2945857A1 (en) | Device for transmitting heat energy to gaseous or liquid fluid in e.g. solar thermal station, has frame supporting mobile structure for aligning structure so as to maintain solar light in common optical plane of mirrors | |
BE1020701A3 (en) | COUPLING OF TURBOPOMPE FOR FILLED SALTS. | |
CA1153259A (en) | Frost detecting device for the protection of solar collectors | |
EP2480839B1 (en) | Geothermal heat exchange device including an enclosure to be buried in the subsurface of the earth and for containing a geothermal heat exchanger | |
FR3038376A1 (en) | PHASE CHANGE MATERIAL ENERGY STORAGE DEVICE AND STORAGE METHOD THEREOF | |
FR2942310A1 (en) | Thermal energy accumulator for e.g. solar-water heater, has material formed by mixture of waxes that are miscible, so that material has point whose temperature is comprised between temperature of other points | |
FR2913487A1 (en) | IMPROVEMENT IN GAS / SOIL OR LIQUID / SOIL EXCHANGERS AND HEATING / AIR CONDITIONING FACILITIES USING SUCH EXCHANGERS. | |
FR3055407A1 (en) | LIQUID STORAGE DEVICE FOR DELIVERING SANITARY HOT WATER | |
CH712934A2 (en) | Urban heat exchange network. | |
FR2615569A1 (en) | SOLAR AUTONOMOUS ATMOSPHERIC PUMP | |
EP2366963A1 (en) | Concentrating solar collector | |
EP3832225A1 (en) | Solar thermal collector, solar thermal panel and method for heating a building with integrated heat storage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 3 |
|
TP | Transmission of property |
Owner name: SUNPARTNER TECHNOLOGIES, FR Effective date: 20160217 |
|
PLFP | Fee payment |
Year of fee payment: 4 |
|
CA | Change of address |
Effective date: 20161011 |
|
PLFP | Fee payment |
Year of fee payment: 5 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
ST | Notification of lapse |
Effective date: 20210105 |