FR3001765A1 - Triple-thermal engine i.e. two-stroke engine, for bus, has expansion cylinder including exhaust ports positioned on periphery at bottom dead center of piston, and top dead center positioned at opening of other ports of combustion cylinder - Google Patents

Triple-thermal engine i.e. two-stroke engine, for bus, has expansion cylinder including exhaust ports positioned on periphery at bottom dead center of piston, and top dead center positioned at opening of other ports of combustion cylinder Download PDF

Info

Publication number
FR3001765A1
FR3001765A1 FR1300256A FR1300256A FR3001765A1 FR 3001765 A1 FR3001765 A1 FR 3001765A1 FR 1300256 A FR1300256 A FR 1300256A FR 1300256 A FR1300256 A FR 1300256A FR 3001765 A1 FR3001765 A1 FR 3001765A1
Authority
FR
France
Prior art keywords
dead center
cylinder
expansion
piston
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1300256A
Other languages
French (fr)
Inventor
Andre Chaneac
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR1300256A priority Critical patent/FR3001765A1/en
Publication of FR3001765A1 publication Critical patent/FR3001765A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/06Engines with prolonged expansion in compound cylinders
    • F02B41/08Two-stroke compound engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • F01B2009/061Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces by cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/06Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the piston motion being transmitted by curved surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/026Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle three

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The engine has a combustion cylinder (1) including exhaust ports (2) at a bottom dead center of a piston (3) centered inside an expansion cylinder (9) for expansion of exhaust gases. A top dead center of the expansion cylinder is positioned at an opening of the exhaust ports. Other exhaust ports (11) of the expansion cylinder are positioned on a periphery at a bottom dead center of another circular piston (10) of the expansion cylinder. A cylinder head (7) is provided at a top of the combustion cylinder. The former piston is attached to a crank pin (15) of a crankshaft (5) with a rod (4).

Description

- 1 - Les ingénieurs motoristes ont amélioré les rendements des moteurs thermiques et s'approchent du rendement théorique maximum dû à la conception mécanique des moteurs. lis ont donc cherché à récupérer de l'énergie sous toutes ses formes et l'on peut citer le système Start/Stop qui équipe de nombreux véhicules en arrêtant le moteur 5 à l'arrêt et le remet en route pour repartir. Il en est de même pour la récupération de l'énergie cinétique au moment du freinage des véhicules et déjà de nombreux cars ou bus disposent de cet équipement. Une autre source de récupération d'énergie se situe au niveau des gaz d'échappement et les ingénieurs ont équipé les moteurs de turbocompresseurs de plus en plus perfectionnés en améliorant la suralimentation, c'est ainsi 10 que les turbocompresseurs comportent aujourd'hui des turbines à géométrie variable. Une autre possibilité de récupération d'énergie consiste à augmenter la détente des gaz d'échappement. C'est ce que propose Monsieur Gorhard Schmit pour un moteur à quatre temps qu'il appelle « cinq temps ». Nos études nous ont conduit à étudier un moteur deux temps pour lequel nous 15 avons cherché à améliorer la détente des gaz d'échappement, c'est ainsi que nous avons appelé ce moteur deux temps : « moteur trois temps ». Notre demande de brevet concerne donc les moteurs deux temps qui disposent d'une culasse munie de soupapes d'admission et de lumières d'échappement situées au point mort bas du piston. 20 Dans ce brevet, on positionne un cylindre de grand diamètre centré autour du cylindre de combustion de façon à ce que l'ouverture des lumières d'échappement du cylindre de combustion soient placées au point mort haut du cylindre de détente, de façon à ce que dés l'ouverture des lumières du cylindre de combustion la pression des gaz d'échappement entraine la détente du piston du cylindre de détente qui comporte à 25 son point mort bas des lumières d'échappement positionnées sur la périphérie du cylindre de détente. Suivant une autre caractéristique de l'invention, le cylindre de combustion comporte des soupapes d'admission d'air comprimé en provenance d'un réservoir d'air sous pression et le cylindre de détente comporte d'une part des soupape d'admission 30 d'air en provenance du réservoir d'air sous pression pour obtenir un balayage des gaz d'échappement du cylindre de détente et d'autre part des soupapes d'échappement pour alimenter le réservoir de pression d'air quand le piston remonte dans le cylindre de détente et que les lumières d'échappement du cylindre de combustion sont fermées. Suivant une autre caractéristique de l'invention, les moteurs thermiques trois temps 35 disposent d'un vilebrequin percé au centre longitudinal d'un canal d'arrivée d'huile sous pression pour graisser la bielle du piston du cylindre de combustion et les deux bielles du - 2 - piston de détente situées de part et d'autre de la bielle du cylindre de combustion, ce vilebrequin comportant deux paliers situés entre la came du cylindre de détente et la came du cylindre de combustion. Suivant une autre caractéristique de l'invention, les moteurs thermiques trois temps 5 comportent au moins un réservoir d'air sous pression qui d'une part reçoit de l'air sous pression en provenance du cylindre de détente au moment de sa remontée vers son point mort haut et d'autre part alimente les soupapes d'admission d'air des cylindres de combustion et des cylindres de détente. Suivant une autre caractéristique de l'invention, les moteurs thermiques trois temps 10 disposent d'un turbocompresseur entrainé par les gaz d'échappement du cylindre de détente comprimant soit de l'air soit un mélange d'air et de gaz d'échappement pour alimenter soit les soupapes d'admission du cylindre de combustion et du cylindre de détente soit le réservoir d'air sous pression. La manière de réaliser l'invention ainsi que les avantages qui en découlent 15 ressortiront de la description du mode de réalisation donnée à titre indicatif mais non limitatif à l'appui des figures dans lesquelles : - La figure 1 représente en coupe verticale les cylindres de combustion et de détente - La figure 2 représente un diagramme des différentes phases des pistons 20 concernant l'ouverture et la fermeture des lumières des cylindres de combustion et de détente - La figure 3 représente en coupe perpendiculaire le vilebrequin et ses cames excentrées des cylindres de combustion et de détente. La figure 1 représente en coupe verticale les cylindres de combustion et de 25 détente. Nous trouvons le cylindre de combustion (1), les lumières d'échappement (2), le piston (3) et sa bielle (4), le vilebrequin (5) percé en son centre longitudinalement par un canal (6) d'amenée d'huile sous pression, sa culasse (7) avec ses soupapes (8) d'admission d'air. Nous trouvons aussi le cylindre de détente (9) avec son piston circulaire (10), ses lumières d'échappement (11), sa bielle (12) sa culasse (13) où sont 30 fixées les soupapes (14), qui est positionné à la limite supérieure des lumières d'échappement (2) du cylindre de combustion. Le vilebrequin (5) dispose comme maneton de bielle des cames rondes excentrées ; pour le cylindre de combustion (1) la came (15), pour le cylindre de détente (9) les cames (16) et (17) situées de part et d'autre de la came de combustion (15). Deux paliers (18) et (19) du vilebrequin (5) sont 35 placés entre les cames de détente (16) et (17) et la came de combustion (15). Un réservoir de pression d'air (20) alimente d'une part les soupapes (8) du cylindre de - 3 - combustion (1) et d'autre part les soupapes (Vir) d'admission d'air frais pour le balayage des gaz de combustion, le réservoir (20) étant alimenté par les soupapes (22) lors de la compression du cylindre de détente (9) et par un turbo compresseur (23) entraîné par les gaz d'échappement dans le cylindre de détente (9).- 1 - Engineers have improved the efficiency of the engines and are approaching the maximum theoretical efficiency due to the mechanical design of the engines. They have therefore sought to recover energy in all its forms and we can cite the Start / Stop system which equips many vehicles by stopping the engine 5 at a standstill and put it back on the road to start again. It is the same for the recovery of kinetic energy when braking vehicles and already many buses or buses have this equipment. Another source of energy recovery is in the exhaust and engineers have equipped the turbocharger engines more and more sophisticated by improving turbocharging, so that turbochargers today include turbines with variable geometry. Another possibility of energy recovery is to increase the expansion of the exhaust gas. This is what Mr Gorhard Schmit proposes for a four-stroke engine he calls "five times". Our studies led us to study a two-stroke engine for which we sought to improve exhaust gas expansion, which is what we called this two-stroke engine: "three-stroke engine". Our patent application therefore concerns two-stroke engines that have a cylinder head equipped with intake valves and exhaust ports located at the bottom dead center of the piston. In this patent, a cylinder of large diameter is positioned centered around the combustion cylinder so that the opening of the exhaust ports of the combustion cylinder are placed at the top dead center of the expansion cylinder, so that that as soon as the combustion cylinder lights open, the pressure of the exhaust gas causes the expansion of the piston of the expansion cylinder which comprises at its bottom dead point exhaust ports positioned on the periphery of the expansion cylinder. According to another characteristic of the invention, the combustion cylinder comprises valves for admitting compressed air from a pressurized air tank and the expansion cylinder comprises, on the one hand, intake valves air from the pressurized air tank to obtain a scan of the exhaust gas of the expansion cylinder and on the other hand exhaust valves to supply the air pressure reservoir when the piston back into the cylinder and that the exhaust ports of the combustion cylinder are closed. According to another characteristic of the invention, the three-stroke thermal engines 35 have a crankshaft pierced at the longitudinal center of a pressurized oil inlet channel for greasing the piston rod of the combustion cylinder and the two connecting rods. of the expansion piston located on either side of the connecting rod of the combustion cylinder, this crankshaft having two bearings located between the cam of the expansion cylinder and the cam of the combustion cylinder. According to another characteristic of the invention, the three-cycle thermal engines comprise at least one pressurized air tank which on the one hand receives pressurized air from the expansion cylinder at the moment of its ascent to its top dead center and on the other hand feeds the air intake valves of combustion cylinders and expansion cylinders. According to another characteristic of the invention, the three-cycle thermal engines 10 have a turbocharger driven by the exhaust gases of the expansion cylinder compressing either air or a mixture of air and exhaust gas for supply either the intake valves of the combustion cylinder and the expansion cylinder or the pressurized air tank. The manner of carrying out the invention as well as the advantages derived therefrom will emerge from the description of the embodiment given by way of non-limiting indication in support of the figures in which: FIG. 1 represents in vertical section the cylinders of FIG. 2 represents a diagram of the different phases of the pistons 20 concerning the opening and closing of the combustion and expansion cylinder ports. FIG. 3 is a cross-sectional view of the crankshaft and its eccentric cams of the cylinders. combustion and relaxation. Figure 1 shows in vertical section the combustion and expansion cylinders. We find the combustion cylinder (1), the exhaust ports (2), the piston (3) and its rod (4), the crankshaft (5) pierced at its center longitudinally by a channel (6) feed pressurized oil, its cylinder head (7) with its valves (8) of air intake. We also find the expansion cylinder (9) with its circular piston (10), its exhaust ports (11), its connecting rod (12) its cylinder head (13) where are fixed the valves (14), which is positioned at the upper limit of the exhaust ports (2) of the combustion cylinder. The crankshaft (5) has as a crankpin eccentric round cams; for the combustion cylinder (1) the cam (15), for the expansion cylinder (9) the cams (16) and (17) located on either side of the combustion cam (15). Two bearings (18) and (19) of the crankshaft (5) are located between the expansion cams (16) and (17) and the combustion cam (15). An air pressure reservoir (20) feeds on the one hand the valves (8) of the combustion cylinder (1) and on the other hand the valves (Vir) of fresh air intake for the sweeping combustion gases, the reservoir (20) being supplied by the valves (22) during the compression of the expansion cylinder (9) and by a turbo compressor (23) driven by the exhaust gases in the expansion cylinder ( 9).

La figure 2 représente les différentes phases des pistons. La droite AB représente la course des pistons et le point E l'ouverture et la fermeture des lumières des deux pistons. Si nous choisissons par exemple une ouverture à 700 avant le point mort bas des pistons et en tenant compte que le piston de combustion entame l'ouverture des lumières quand le piston de détente se trouve au point mort haut, on constate que l'angle AOC représentant le décalage entre la came de combustion et celle de détente est de 1100. Après la rotation du vilebrequin de 140°, le cylindre de combustion ferme ses lumières alors que le piston de détente à déjà ouvert les siennes depuis 30°, ce qui permet aux gaz d'échappement du cylindre de combustion de s'évacuer d'autant plus si la soupape d'admission d'air frais dans le cylindre de combustion est encore ouverte.Figure 2 shows the different phases of the pistons. The line AB represents the stroke of the pistons and the point E the opening and closing of the lights of the two pistons. If we choose for example an opening at 700 before the bottom dead center of the pistons and taking into account that the combustion piston starts the opening of the lights when the trigger piston is at the top dead center, we see that the angle AOC representing the offset between the combustion cam and the expansion cam is 1100. After the rotation of the crankshaft 140 °, the combustion cylinder closes its lights while the expansion piston has already opened theirs since 30 °, allowing the exhaust gases of the combustion cylinder to evacuate even more if the fresh air intake valve in the combustion cylinder is still open.

Pour augmenter l'angle AOC on peut décaler légèrement le point A en Al vers le point C, ce qui ne perturbera que très peu la détente des gaz d'échappement F en FI mais on facilite l'évacuation des gaz d'échappement. La figure 3 représente en coupe perpendiculaire le vilebrequin et ses cames excentrées des cylindres de combustion et de détente. Nous trouvons le vilebrequin (5) le canal d'amenée d'huile sous pression (6) la came excentrée du cylindre de combustion et la came (16) et (17) du cylindre de détente l'angle MON montrant le décalage entre la came de combustion et les cames de détente. Le fonctionnement du moteur trois temps est le suivant : Le cylindre de combustion est conforme au fonctionnement d'un moteur deux temps, les gaz d'échappement passant par ses lumières débouchent dans un autre cylindre entourant le cylindre de combustion, de cylindrée beaucoup plus grande en favorisant la détente des gaz de combustion. La commande d'ouverture et de fermeture des soupapes sera électronique pour être très rapide. Les soupapes d'admission d'air ou de mélange air gaz d'échappement seront ouvertes vers le point mort bas du cylindre de combustion alors que le piston de détente aura parcouru prés de la moitié de sa course, elles resteront ouvertes jusqu'en D à la fermeture des lumières de combustion. Pour le cylindre de détente, les soupapes d'admission d'air seront ouvertes vers le points mort bas et fermées un peu après la fermeture des lumières pour suralimenter le cylindre de détente et les soupapes d'échappement seront ouvertes un peu avant le point mort haut afin de comprimer l'air du cylindre de détente pour l'introduire dans le réservoir de pression. - 4 - Les gaz d'échappement du cylindre de détente alimentent un turbocompresseur (25) qui alimente en air ou mélange air et gaz d'échappement soit certaines soupapes d'admission du cylindre de combustion et du cylindre de détente soit le réservoir d'air sous pression.In order to increase the angle AOC, it is possible to shift slightly the point A in Al towards the point C, which will disturb only very little the expansion of the exhaust gases F in F1 but it facilitates the evacuation of the exhaust gases. Figure 3 shows in perpendicular section the crankshaft and eccentric cams of the combustion and expansion cylinders. We find the crankshaft (5) the pressurized oil supply channel (6) the eccentric cam of the combustion cylinder and the cam (16) and (17) of the expansion cylinder the angle MON showing the offset between the combustion cam and the cams of relaxation. The operation of the three-stroke engine is as follows: The combustion cylinder is in accordance with the operation of a two-stroke engine, the exhaust gases passing through its ports open into another cylinder surrounding the combustion cylinder, of much larger displacement. by promoting the relaxation of the combustion gases. The valve opening and closing control will be electronic to be very fast. The air intake or exhaust gas air intake valves will be open to the bottom dead center of the combustion cylinder while the expansion piston will have traveled nearly half of its travel, they will remain open until when closing the combustion lights. For the relief cylinder, the air intake valves will be opened to the bottom dead center and closed a little after the closing of the lights to supercharge the relief cylinder and the exhaust valves will be opened a little before the neutral position. high to compress the air of the expansion cylinder to introduce it into the pressure tank. The exhaust gas of the expansion cylinder feeds a turbocompressor (25) which supplies air or mixture of air and exhaust gas with certain intake valves of the combustion cylinder and the expansion cylinder or the fuel tank. pressurized air.

Bien entendu, une mise au point très fine des ouvertures et fermetures des soupapes sera nécessaire qui pourront entrainer certaines modification de paramètres sans pour cela sortir du cadre de l'invention.Of course, a very fine focus of the openings and closings of the valves will be necessary which may cause some changes in parameters without departing from the scope of the invention.

FR1300256A 2013-02-07 2013-02-07 Triple-thermal engine i.e. two-stroke engine, for bus, has expansion cylinder including exhaust ports positioned on periphery at bottom dead center of piston, and top dead center positioned at opening of other ports of combustion cylinder Withdrawn FR3001765A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1300256A FR3001765A1 (en) 2013-02-07 2013-02-07 Triple-thermal engine i.e. two-stroke engine, for bus, has expansion cylinder including exhaust ports positioned on periphery at bottom dead center of piston, and top dead center positioned at opening of other ports of combustion cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1300256A FR3001765A1 (en) 2013-02-07 2013-02-07 Triple-thermal engine i.e. two-stroke engine, for bus, has expansion cylinder including exhaust ports positioned on periphery at bottom dead center of piston, and top dead center positioned at opening of other ports of combustion cylinder

Publications (1)

Publication Number Publication Date
FR3001765A1 true FR3001765A1 (en) 2014-08-08

Family

ID=48692547

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1300256A Withdrawn FR3001765A1 (en) 2013-02-07 2013-02-07 Triple-thermal engine i.e. two-stroke engine, for bus, has expansion cylinder including exhaust ports positioned on periphery at bottom dead center of piston, and top dead center positioned at opening of other ports of combustion cylinder

Country Status (1)

Country Link
FR (1) FR3001765A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE546460C (en) * 1930-02-11 1932-03-12 Carl H Knudsen Double-acting two-stroke internal combustion engine
US3766894A (en) * 1971-03-22 1973-10-23 L Mize Two cycle internal combustion engine with sequential opening and closing of exhaust and intake ports
DE3725623A1 (en) * 1987-08-03 1989-02-16 Klaue Hermann Two=stroke IC engine, for vehicles - has part cylinder on either side of engine cylinder, for precompression and second expansion
EP0376909A1 (en) * 1988-12-30 1990-07-04 Gerhard Schmitz Internal-combustion engine
FR2972023A1 (en) * 2011-02-28 2012-08-31 Andre Chaneac Dual supercharger for two-stroke engine, has low pressure pipe for removing waste gases while high pressure pipe supercharging engine, and independent circuits provided with air inlet valves that are electronically controlled

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE546460C (en) * 1930-02-11 1932-03-12 Carl H Knudsen Double-acting two-stroke internal combustion engine
US3766894A (en) * 1971-03-22 1973-10-23 L Mize Two cycle internal combustion engine with sequential opening and closing of exhaust and intake ports
DE3725623A1 (en) * 1987-08-03 1989-02-16 Klaue Hermann Two=stroke IC engine, for vehicles - has part cylinder on either side of engine cylinder, for precompression and second expansion
EP0376909A1 (en) * 1988-12-30 1990-07-04 Gerhard Schmitz Internal-combustion engine
FR2972023A1 (en) * 2011-02-28 2012-08-31 Andre Chaneac Dual supercharger for two-stroke engine, has low pressure pipe for removing waste gases while high pressure pipe supercharging engine, and independent circuits provided with air inlet valves that are electronically controlled

Similar Documents

Publication Publication Date Title
EP2083155B1 (en) Method for scanning residual combustion gas with double intake valve lift of a supercharged direct-injection internal combustion engine, in particular a diesel engine
FR2955358A1 (en) METHOD FOR SCANNING RESIDUAL BURN GASES OF A MULTI-CYLINDER MOTOR WITH SUPERIOR DIRECT INJECTION INTERNAL COMBUSTION ENGINE OPERATING AT PARTIAL LOADS
JP7437557B2 (en) Marine internal combustion engine
CN105020079A (en) Large low-speed two-stroke turbocharged spontaneous internal combustion engine having an air start system
FR2972023A1 (en) Dual supercharger for two-stroke engine, has low pressure pipe for removing waste gases while high pressure pipe supercharging engine, and independent circuits provided with air inlet valves that are electronically controlled
FR3001765A1 (en) Triple-thermal engine i.e. two-stroke engine, for bus, has expansion cylinder including exhaust ports positioned on periphery at bottom dead center of piston, and top dead center positioned at opening of other ports of combustion cylinder
EP1544434B1 (en) Method for controlling turbo-charged internal-combustion engine
FR3064676A1 (en) COMPRESSION AIR INJECTION INTERNAL COMBUSTION ENGINE
FR2868481A1 (en) METHOD FOR CONTROLLING THE RECIRCULATION OF EXHAUST GASES OF AN INTERNAL COMBUSTION-BASED SUPERVISOR ENGINE AND ENGINE USING SUCH A METHOD
CN107250506B (en) Engine starting device, starting method, and ship provided with starting device
FR2885177A1 (en) Internal combustion engine e.g. diesel engine, has air intake circuit allowing air into combustion cylinders, where part of air flow is aspirated by recirculation cylinder via conduit placed downstream of recirculation cylinder
FR2955357A1 (en) METHOD FOR SCANNING RESIDUAL BURN GASES OF A SUPERIOR INTERNAL COMBUSTION MULTI-CYLINDER ENGINE WITH DIRECT INJECTION
EP1489280B1 (en) Engine and operating method for a supercharged four stroke engine
FR2980523A1 (en) METHOD AND DEVICE FOR SUPPLYING AIR FROM A PNEUMATIC-THERMAL HYBRID ENGINE
WO2012085450A1 (en) Method for controlling at least one inlet valve of a combustion engine operating on a four-stroke cycle
FR3085440A1 (en) METHOD FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE WITH DUAL INTAKE
WO2012114006A1 (en) Method and device for supplying air to a pneumatic-combustion engine
FR3085439A1 (en) DEVICE AND SYSTEM FOR CONTROLLING AN INTERNAL COMBUSTION ENGINE WITH DUAL INTAKE AND SCANNING
EP2687699A1 (en) Combustion engine of a motor vehicle with improved supply of compressed air tank
FR3033595A1 (en) TWO-STROKE COMPRESSED NON-POLLUTING ENGINE
FR2841294A1 (en) Control method for motor vehicle supercharged fuel injection internal combustion engine involves two staged air and fuel air feed into combustion chamber
FR2895027A1 (en) Internal combustion engine e.g. turbocharged spark ignition internal combustion engine, has blow line opening directly or indirectly in cylinders, upstream of their connection with exhaust line to inject compressed delivery air in cylinders
FR3005689A1 (en) DOUBLE POWER SUPPLY FOR A THREE-STROKE ENGINE COMPRISING TWO TANKS, ONE AT LOW PRESSURE AND THE OTHER AT HIGH PRESSURE
FR2991719A1 (en) METHOD FOR SCANNING REDISOUS BURN GASES BY DOUBLE LIFTING OF VALVES FOR A TWO-STROKE ENGINE, IN PARTICULAR OF A DIESEL TYPE
FR2830900A1 (en) Equipment for doubling power of four stroke engine, comprises inlet valves which are located at base and side of cylinders and are driven by separate camshafts also exhaust driven fuel compressor

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

ST Notification of lapse

Effective date: 20231005