FR2997168A1 - THERMAL DISSIPATOR, HEATING MODULE THEREFOR AND CORRESPONDING ASSEMBLY METHOD - Google Patents

THERMAL DISSIPATOR, HEATING MODULE THEREFOR AND CORRESPONDING ASSEMBLY METHOD Download PDF

Info

Publication number
FR2997168A1
FR2997168A1 FR1259983A FR1259983A FR2997168A1 FR 2997168 A1 FR2997168 A1 FR 2997168A1 FR 1259983 A FR1259983 A FR 1259983A FR 1259983 A FR1259983 A FR 1259983A FR 2997168 A1 FR2997168 A1 FR 2997168A1
Authority
FR
France
Prior art keywords
heating
heat sink
housing
heating element
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1259983A
Other languages
French (fr)
Other versions
FR2997168B1 (en
Inventor
Frederic Pierron
Yannick Bernard
Jean-Baptiste Audoye
Laurent Tellier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR1259983A priority Critical patent/FR2997168B1/en
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Priority to PCT/EP2013/071777 priority patent/WO2014060546A1/en
Priority to JP2015537263A priority patent/JP6301938B2/en
Priority to CN201380062425.9A priority patent/CN104823004B/en
Priority to US14/435,811 priority patent/US20150300686A1/en
Priority to KR1020157012958A priority patent/KR20150074088A/en
Priority to EP13779572.0A priority patent/EP2909542B1/en
Publication of FR2997168A1 publication Critical patent/FR2997168A1/en
Application granted granted Critical
Publication of FR2997168B1 publication Critical patent/FR2997168B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0452Frame constructions
    • F24H3/0458One-piece frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles

Abstract

L'invention concerne un dissipateur thermique d'un module chauffant (3) pour un dispositif de chauffage électrique (1) d'un flux d'air, ledit module chauffant (3) comprenant au moins un élément chauffant (5) et ledit dissipateur thermique (7) étant configuré pour être traversé par le flux d'air et pour transmettre la chaleur de l'élément chauffant (5) au flux d'air à réchauffer. Selon l'invention, le dissipateur thermique (7) est un bloc unitaire présentant au moins un logement (9) de réception d'au moins un élément chauffant (5), le logement (9) présentant au moins une ouverture ménagée sur une face du dissipateur destinée à être en contact avec le flux d'air. L'invention concerne encore un module chauffant (3) comprenant au moins un élément chauffant (5) et un tel dissipateur thermique (7). L'invention concerne aussi un procédé d'assemblage d'un tel module chauffant (3).The invention relates to a heat sink of a heating module (3) for an electric heating device (1) for an air flow, said heating module (3) comprising at least one heating element (5) and said dissipator thermal (7) being configured to be traversed by the air flow and for transmitting the heat of the heating element (5) to the air flow to be heated. According to the invention, the heat sink (7) is a unitary block having at least one housing (9) for receiving at least one heating element (5), the housing (9) having at least one opening on one side dissipator intended to be in contact with the air flow. The invention further relates to a heating module (3) comprising at least one heating element (5) and such a heat sink (7). The invention also relates to a method of assembling such a heating module (3).

Description

- Dissipateur thermique, module chauffant associé et procédé d'assemblage correspondant L'invention concerne un dissipateur thermique d'un dispositif de chauffage électrique destiné à être traversé par un flux d'air à réchauffer. L'invention s'applique plus particulièrement aux appareils de chauffage et/ou climatisation pour véhicules automobiles. La présente invention concerne également le procédé d'assemblage d'un dispositif de chauffage électrique. De façon habituelle, le réchauffage de l'air destiné au chauffage de l'habitacle d'un véhicule automobile, ainsi qu'au désembuage et au dégivrage est assuré par passage d'un flux d'air à travers un échangeur thermique, plus précisément par un échange thermique entre le flux d'air et un liquide, en général le liquide de refroidissement du moteur. Cependant, ce mode de chauffage peut s'avérer inadapté ou insuffisant pour garantir un chauffage rapide et efficace de l'habitacle et ainsi peut gêner le confort thermique dans l'habitacle du véhicule. De ce fait, une voie d'amélioration du confort pour les passagers est de chauffer rapidement l'air de l'habitacle, surtout lors de la saison hivernale. Afin de répondre à ces exigences de confort, une solution connue consiste à 20 adjoindre à l'échangeur thermique un dispositif de chauffage électrique, autrement appelé radiateur électrique. Ce dispositif de chauffage électrique comporte des modules chauffants électriques disposés de manière à être exposés directement à l'air traversant le dispositif de chauffage électrique pour réaliser un appoint de chaleur quasiment immédiat. 25 Selon une solution connue, les modules chauffants sont réalisés sous la forme de des barreaux chauffants ; un barreau chauffant comprenant des éléments résistifs par exemple à coefficient de température positif (CTP), tels que des pierres CTP, des dissipateurs thermiques et des électrodes. On connaît par exemple, un module chauffant ou barreau chauffant comportant deux électrodes qui s'étendent longitudinalement, 30 chacune enserrant un dissipateur thermique formé par exemple d'un ruban métallique - plissé ou ondulé et venant en appui contre des éléments résistifs, tels que des pierres CTP. Les électrodes permettent de répartir le courant électrique, fourni par une source d'alimentation électrique, vers les éléments résistifs.The invention relates to a heatsink of an electric heating device intended to be traversed by a flow of air to be heated. The invention applies more particularly to heating and / or air conditioning apparatus for motor vehicles. The present invention also relates to the method of assembling an electric heater. Usually, the heating of the air for heating the passenger compartment of a motor vehicle, as well as demisting and defrosting is provided by passing an air flow through a heat exchanger, specifically by a heat exchange between the flow of air and a liquid, usually the engine coolant. However, this heating mode may be inadequate or insufficient to ensure a rapid and efficient heating of the passenger compartment and thus may hinder the thermal comfort in the passenger compartment of the vehicle. Therefore, a way of improving comfort for passengers is to quickly heat the air in the cabin, especially during the winter season. In order to meet these comfort requirements, a known solution is to add to the heat exchanger an electric heater, otherwise known as an electric heater. This electric heating device comprises electric heating modules arranged to be exposed directly to the air passing through the electric heating device to achieve an almost immediate extra heat. According to a known solution, the heating modules are in the form of heating bars; a heating bar comprising resistive elements for example with a positive temperature coefficient (PTC), such as PTC stones, heat sinks and electrodes. For example, a heating or heating bar module is known having two longitudinally extending electrodes, each enclosing a heat sink formed for example of a metal strip - pleated or corrugated and bearing against resistive elements, such as CTP stones. The electrodes distribute the electric current supplied by a power source to the resistive elements.

La fonction de dissipateur thermique réalisée par le ruban ondulé consiste à échanger avec le flux d'air la chaleur produite par les éléments résistifs à effet CTP, de façon à chauffer le flux d'air traversant le dissipateur thermique. Le dispositif de chauffage comporte généralement un cadre présentant des logements pour recevoir les modules chauffants comprenant les éléments résistifs, les 10 dissipateurs thermiques et les électrodes. De tels modules chauffants possèdent un inconvénient majeur : de par leur structure, ces modules chauffants sont coûteux. En effet, il comprennent au moins trois éléments : l'élément résistif, l'électrode et le dissipateur thermique, ainsi qu'un cadre support de tous ces éléments. Ces modules chauffants requièrent donc plusieurs 15 composants ou matériaux, ce qui implique un coût important. De plus, l'assemblage des éléments des modules chauffants ainsi que l'assemblage des modules chauffants dans le cadre peut s'avérer complexe. L'invention a donc pour objectif de pallier ces inconvénients de l'art antérieur en proposant un dispositif de chauffage électrique simplifié en réduisant le nombre 20 d'éléments afin d'abaisser le coût de fabrication du radiateur électrique. L'invention a également pour objectif de permettre une simplification, voire une automatisation du procédé d'assemblage d'un tel dispositif de chauffage électrique ou radiateur électrique. 25 La présente invention apporte une solution par l'intermédiaire d'un dissipateur thermique d'un module chauffant pour un dispositif de chauffage électrique d'un flux d'air, ledit module chauffant comprenant au moins un élément chauffant et ledit dissipateur thermique étant configuré pour être traversé par le flux d'air et pour transmettre la chaleur de l'élément chauffant au flux d'air à réchauffer, 30 caractérisé en ce que le dissipateur thermique est un bloc unitaire présentant au - moins un logement de réception d'au moins un élément chauffant, le logement présentant au moins une ouverture ménagée sur une face dudit dissipateur destinée à être en contact avec le flux d'air.The heat sink function performed by the corrugated ribbon is to exchange with the air flow the heat produced by the resistive elements CTP effect, so as to heat the flow of air passing through the heat sink. The heater generally includes a frame having housings for receiving the heater modules including the resistive elements, heat sinks, and electrodes. Such heating modules have a major disadvantage: by their structure, these heating modules are expensive. Indeed, it comprises at least three elements: the resistive element, the electrode and the heat sink, and a support frame of all these elements. These heating modules therefore require several components or materials, which implies a significant cost. In addition, the assembly of the elements of the heating modules and the assembly of the heating modules in the frame can be complex. The invention therefore aims to overcome these disadvantages of the prior art by providing a simplified electric heating device by reducing the number of elements to lower the cost of manufacturing the electric heater. The invention also aims to simplify or even automate the assembly process of such an electric heater or electric heater. The present invention provides a solution through a heat sink of a heating module for an electric heater of an air flow, said heating module comprising at least one heating element and said heat sink being configured to be traversed by the air flow and to transmit the heat of the heating element to the air stream to be heated, characterized in that the heat sink is a unitary block having at least one receiving housing of at least one minus one heating element, the housing having at least one opening on one side of said dissipator intended to be in contact with the air flow.

Un tel dissipateur thermique formant un bloc unitaire peut avoir une fonction de support des éléments chauffants. Un seul bloc dissipateur thermique permet de transférer la chaleur produite par les éléments chauffants vers le flux d'air à réchauffer. Le même dissipateur thermique assure cette fonction de dissipation thermique pour l'ensemble des éléments chauffants, et non plus un dissipateur thermique pour chaque rangée d'éléments chauffants comme dans certaines solutions de l'art antérieur. Il n'est plus nécessaire non plus de prévoir un support des éléments chauffants et de dissipateurs thermiques. De plus, la conception du module chauffant est simplifiée. En particulier, les éléments chauffants, tels que des éléments résistifs de type à coefficient de température positif, et les électrodes associées, sont directement reçues dans un logement du dissipateur thermique. Il n'est pas nécessaire de prévoir pour chaque structure chauffante un dissipateur thermique enserré par les électrodes et venant en appui contre les éléments résistifs, le tout devant être inséré dans un logement d'un cadre support.Such a heat sink forming a unitary block may have a function of supporting the heating elements. A single heat sink block transfers the heat produced by the heating elements to the airflow to be heated. The same heat sink provides this heat dissipation function for all the heating elements, and no longer a heat sink for each row of heating elements as in some solutions of the prior art. Nor is it necessary to provide support for the heating elements and heat sinks. In addition, the design of the heating module is simplified. In particular, the heating elements, such as resistive elements of positive temperature coefficient type, and the associated electrodes, are directly received in a housing of the heat sink. It is not necessary to provide for each heating structure a heat sink clamped by the electrodes and bearing against the resistive elements, all to be inserted into a housing of a support frame.

Ledit dissipateur thermique peut en outre comporter une ou plusieurs caractéristiques suivantes, prises séparément ou en combinaison : ledit dissipateur est réalisé d'une seule pièce ; ce qui permet un gain en terme de fabrication et de coût, le dissipateur présente une face d'entrée du flux d'air et une face de sortie du flux d'air, et le logement présente au moins une ouverture ménagée sur la face de sortie du flux d'air dudit dissipateur ; le logement de réception présente une section transversale sensiblement en « U» ; l'élément chauffant est agencé en contact thermique et électrique avec le dissipateur et une électrode est disposée dans le logement en contact électrique avec l'élément chauffant ; - ledit dissipateur comprend en outre une couche d'isolant électrique disposée dans le logement et destinée à fermer mécaniquement le logement, la couche d'isolant électrique est par exemple une couche de silicone ; le silicone isolant électrique est un conducteur thermique ; ledit dissipateur comprend au moins une zone de dissipation thermique distincte du logement de réception ; la zone de dissipation thermique présente des persiennes ; la zone de dissipation thermique comporte des ailettes de dissipation ; ledit dissipateur présente une alternance de zones de dissipation thermique et de logements de réception d'au moins un élément chauffant ; ledit dissipateur est réalisé sous la forme d'une plaque support. L'invention concerne également un module chauffant d'un dispositif de chauffage électrique pour un appareil de chauffage et/ou climatisation pour véhicule automobile, comprenant au moins un élément chauffant et un dissipateur thermique configuré pour être traversé par le flux d'air et pour transmettre la chaleur de l'élément chauffant au flux d'air à réchauffer, caractérisé en ce que le dissipateur thermique est un bloc unitaire présentant au moins un logement de réception d'au moins un élément chauffant et formant un support dudit au moins un élément chauffant, le logement présentant au moins une ouverture ménagée sur une face dudit dissipateur destinée à être en contact avec le flux d'air. Ledit module chauffant peut en outre comporter une ou plusieurs caractéristiques suivantes, prises séparément ou en combinaison : l'élément chauffant est un élément résistif ; ledit module chauffant comprend au moins une électrode en contact avec l'élément chauffant ; le dissipateur thermique reçoit dans un logement de réception au moins un élément chauffant agencé entre le dissipateur thermique et une plaque d'électrode ; ledit module chauffant comporte au moins une structure chauffante comprenant un nombre prédéfini d'éléments chauffants et deux plaques d'électrode de part et d'autre - des éléments chauffants, et dans lequel une structure chauffante est reçue dans un logement de réception du dissipateur thermique. L'invention concerne encore un procédé d'assemblage d'un module chauffant tel 5 que défini précédemment, caractérisé en ce qu'il comprend les étapes suivantes : on réalise un dissipateur thermique sous la forme d'un bloc unitaire comprenant au moins un logement de réception d'au moins un élément chauffant et au moins une zone de dissipation thermique, le logement présentant au moins une ouverture ménagée sur une face dudit dissipateur destinée à être en contact avec un flux d'air 10 traversant ledit dissipateur, et on agence au moins un élément chauffant dans un logement de réception associé du dissipateur thermique. Ledit procédé peut en outre comporter une ou plusieurs caractéristiques suivantes, prises séparément ou en combinaison : 15 le dissipateur thermique est réalisé d'une seule pièce à partir d'un matériau métallique, par emboutissage ou moulage ; on réalise des persiennes par pliage sur la zone de dissipation thermique ; on agence une plaque d'électrode sur ledit au moins un élément chauffant agencé dans un logement de réception du dissipateur thermique ; 20 on agence une couche d'isolant électrique sur la plaque d'électrode et ledit au moins un élément chauffant agencés dans un logement de réception du dissipateur thermique, telle qu'une couche de silicone ; la couche de silicone assure donc à la fois une fonction d'isolant électrique et de maintien mécanique tout en contrôlant la dissipation thermique ; 25 la couche d'isolant électrique est agencée sur une face de sortie du flux d'air dudit dissipateur ; ledit procédé comprend une étape préliminaire à l'étape d'agencement d'au moins un élément chauffant dans le logement de réception associé du dissipateur thermique, dans laquelle on dispose de la colle dans ledit au moins un logement du dissipateur 30 thermique ; - on réalise des ailettes de dissipation d'une seule pièce avec ledit dissipateur par moulage ; on assemble des ailettes de dissipation sur la zone de dissipation thermique, par brasage ou collage ; ledit procédé comprend les étapes suivantes : on assemble deux plaques d'électrodes de part et d'autre d'un nombre prédéterminé d'éléments chauffants, de manière à former une structure chauffante, et on insère la structure chauffante dans un logement associé du dissipateur thermique.Said heat sink may further comprise one or more of the following characteristics, taken separately or in combination: said dissipator is made in one piece; which allows a gain in terms of manufacture and cost, the dissipator has an inlet face of the air flow and an outlet face of the air flow, and the housing has at least one opening formed on the face of output of the air flow of said dissipator; the receiving housing has a substantially U-shaped cross-section; the heating element is arranged in thermal and electrical contact with the dissipator and an electrode is disposed in the housing in electrical contact with the heating element; said dissipator further comprises a layer of electrical insulation disposed in the housing and intended to mechanically close the housing, the electrical insulation layer is for example a silicone layer; the electrical insulating silicone is a thermal conductor; said dissipator comprises at least one heat dissipation zone distinct from the receiving housing; the heat dissipation zone has louvers; the heat dissipation zone comprises dissipating fins; said dissipator has an alternation of heat dissipation zones and receiving housing of at least one heating element; said dissipator is in the form of a support plate. The invention also relates to a heating module of an electric heating device for a heating and / or air conditioning device for a motor vehicle, comprising at least one heating element and a heat sink configured to be traversed by the air flow and for transmitting the heat of the heating element to the airflow to be heated, characterized in that the heat sink is a unitary block having at least one housing for receiving at least one heating element and forming a support for said at least one element heating, the housing having at least one opening on one side of said dissipator intended to be in contact with the air flow. Said heating module may further comprise one or more of the following characteristics, taken separately or in combination: the heating element is a resistive element; said heating module comprises at least one electrode in contact with the heating element; the heat sink receives in a receiving housing at least one heating element arranged between the heat sink and an electrode plate; said heating module comprises at least one heating structure comprising a predefined number of heating elements and two electrode plates on either side - heating elements, and in which a heating structure is received in a receiving housing of the heat sink . The invention also relates to a method of assembling a heating module as defined above, characterized in that it comprises the following steps: a heat sink is produced in the form of a unitary block comprising at least one housing receiving at least one heating element and at least one heat dissipation zone, the housing having at least one opening provided on a face of said dissipator intended to be in contact with an air flow 10 passing through said dissipator, and it is arranged at least one heating element in an associated receiving housing of the heat sink. Said method may further comprise one or more of the following features, taken separately or in combination: the heat sink is made in one piece from a metallic material, by stamping or molding; blinds are made by folding on the heat dissipation zone; arranging an electrode plate on said at least one heating element arranged in a receiving housing of the heat sink; Arranging an electrical insulator layer on the electrode plate and said at least one heating element arranged in a receiving housing of the heat sink, such as a silicone layer; the silicone layer thus provides both a function of electrical insulator and mechanical support while controlling the heat dissipation; The electrical insulating layer is arranged on an outlet face of the air flow of said dissipator; said method comprises a preliminary step in the step of arranging at least one heating element in the associated receiving housing of the heat sink, wherein glue is disposed in said at least one housing of the heat sink; - Dissipation fins are formed in one piece with said dissipator by molding; dissipation fins are assembled on the heat dissipation zone, by brazing or gluing; said method comprises the following steps: assembling two electrode plates on either side of a predetermined number of heating elements, so as to form a heating structure, and inserting the heating structure in an associated housing of the dissipator thermal.

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, et des dessins annexés parmi lesquels : la figure 1 est une vue partielle schématique d'un module chauffant d'un dispositif de chauffage pour véhicule automobile, selon un premier mode de réalisation de la présente invention, la figure 2 est une vue de côté du module chauffant de la figure 1, la figure 3 est une vue en perspective du module chauffant de la figure 1, la figure 4a est une vue en coupe transversale d'un dissipateur thermique du module chauffant représenté en figure 1, la figure 4b est une vue en coupe transversale du dissipateur thermique de la figure 4a lors d'une étape de dépôt de colle dans des logements du dissipateur thermique, la figure 4c est une vue en coupe transversale du dissipateur thermique de la figure 4b lors d'une étape de positionnement d'éléments chauffants dans les logements du dissipateur thermique, la figure 4d est une vue en coupe transversale du dissipateur thermique de la figure 4c lors d'une étape de positionnement d'électrodes dans les logements du dissipateur thermique, la figure 4e est une vue de la figure 4d lors d'une étape de pressage, la figure 4f est une vue en coupe transversale du dissipateur thermique de la figure 4e lors d'une étape de dépôt d'une couche de maintien sur les éléments reçus dans les - logements du dissipateur thermique, la figure 5 est une vue schématique d'un module chauffant selon un deuxième mode de réalisation de la présente invention, la figure 6 est une vue en coupe de côté du module chauffant de la figure 5, la figure 7 est une vue schématique d'un module chauffant selon un troisième mode de réalisation de la présente invention, la figure 8 est une vue en coupe de côté d'un dissipateur thermique du module chauffant de la figure 7, la figure 9 représente de façon schématique une structure chauffante du module chauffant de la figure 7, la figure 10a est une vue de face schématique représentant un dissipateur thermique du module chauffant de la figure 7 selon le troisième mode de réalisation, et la figure 10b est une vue schématique du module chauffant selon le troisième mode de réalisation lors d'une étape d'insertion de structures chauffantes dans des logements du dissipateur thermique de la figure 10a. Dans ces figures, les éléments identiques portent les mêmes références. Les éléments des figures 5 et 6 correspondant à un deuxième mode de réalisation des éléments des figures 1 à 4f, portent les mêmes références précédées de la centaine 1.Other features and advantages of the invention will appear more clearly on reading the following description, given by way of illustrative and non-limiting example, and the appended drawings in which: FIG. 1 is a schematic partial view of a heating module of a heating device for a motor vehicle, according to a first embodiment of the present invention, FIG. 2 is a side view of the heating module of FIG. 1, FIG. 3 is a perspective view of the heating module. FIG. 4a is a cross-sectional view of a heat sink of the heating module shown in FIG. 1, FIG. 4b is a cross-sectional view of the heat sink of FIG. 4a during a deposition step. of glue in heatsink housings, FIG. 4c is a cross-sectional view of the heatsink of FIG. 4b during a step of positioning heating heaters. In the heatsink housing, FIG. 4d is a cross-sectional view of the heatsink of FIG. 4c during an electrode positioning step in the heatsink housing, FIG. 4e is a view of FIG. 4d. during a pressing step, FIG. 4f is a cross-sectional view of the heat sink of FIG. 4e during a step of depositing a holding layer on the elements received in the heat sink housings; FIG. 5 is a schematic view of a heating module according to a second embodiment of the present invention, FIG. 6 is a side sectional view of the heating module of FIG. 5, FIG. 7 is a schematic view of a According to a third embodiment of the present invention, FIG. 8 is a side sectional view of a heat sink of the heating module of FIG. 7, FIG. FIG. 10a is a schematic front view showing a heat sink of the heating module of FIG. 7 according to the third embodiment, and FIG. 10b is a schematic view of the heating module according to FIG. the third embodiment in a step of inserting heating structures in the heat sink housing of Figure 10a. In these figures, identical elements bear the same references. The elements of Figures 5 and 6 corresponding to a second embodiment of the elements of Figures 1 to 4f, bear the same references preceded by the hundred 1.

Les éléments des figures 7 à 10b correspondant à un troisième mode de réalisation des éléments des figures 1 à 4f, portent les mêmes références précédées de la centaine 2. Dans un appareil de chauffage et/ou climatisation de véhicule automobile, le réchauffage de l'air, peut être assuré par un échangeur thermique, utilisant par exemple le liquide de refroidissement du moteur comme liquide caloporteur et/ou par un dispositif de chauffage électrique 1, autrement appelé radiateur électrique, représenté de façon schématique et partielle sur la figure 1. Un tel dispositif de chauffage électrique 1 est agencé de façon à être traversé par 30 le flux d'air à réchauffer. - Le dispositif de chauffage 1 comporte un module chauffant 3 ou plusieurs modules chauffants 3 identiques ou différents. Le dispositif de chauffage électrique 1 de la présente demande, traversé par un flux d'air, comprend donc au moins un module chauffant 3 selon l'un des modes de réalisation décrits par la suite.The elements of FIGS. 7 to 10b corresponding to a third embodiment of the elements of FIGS. 1 to 4f, bear the same references preceded by the one hundred. In a heating and / or air-conditioning apparatus of a motor vehicle, the heating of the air, can be provided by a heat exchanger, using for example the engine coolant as heat transfer liquid and / or by an electric heater 1, otherwise called electric heater, shown schematically and partially in Figure 1. A such an electric heater 1 is arranged to be traversed by the flow of air to be heated. - The heating device 1 comprises a heating module 3 or more heating modules 3 identical or different. The electric heating device 1 of the present application, traversed by a flow of air, therefore comprises at least one heating module 3 according to one of the embodiments described below.

Quel que soit le mode de réalisation décrit par la suite, le module chauffant 3 comprend au moins un élément chauffant 5 et un dissipateur thermique 7, 107, 207. Plus précisément, un module chauffant 3 peut comporter au moins un élément résistif 5 de type à coefficient de température positif (CTP). Les éléments résistifs sont par exemple réalisés sous la forme de pierres CTP. L'élément résistif 5 peut être de forme parallélépipédique. De par sa forme, cet élément résistif 5 comprend deux grandes faces d'extrémité 5a, 5b opposées. Et, le module chauffant 3 comporte un dissipateur thermique 7, 107, 207 commun pour l'ensemble des éléments résistifs 5. Le dissipateur thermique 7, 107, 207 permet de transmettre la chaleur des éléments chauffants 5 au flux d'air à réchauffer qui 15 traverse le module chauffant 3. Ce dissipateur thermique 7, 107, 207 est réalisé en un matériau métallique thermiquement conducteur. De plus, le matériau est électriquement conducteur. Ce matériau peut être en aluminium. En outre, le dissipateur thermique 7, 107, 207 forme un support pour le ou les 20 éléments chauffants 5, et l'ensemble des éléments du module chauffant 3 comme cela sera détaillé par la suite. Pour ce faire, le dissipateur thermique 7, 107, 207 est réalisé sous la forme d'un bloc unitaire qui présente au moins un logement de réception 9, 209 d'au moins un élément chauffant 5. 25 Selon un premier mode de réalisation illustré sur les figures 1 à 4f, le module chauffant 3 comporte plusieurs rangées d'éléments résistifs 5, à titre d'exemple illustratif trois rangées de trois pierres CTP 5, et un dissipateur thermique 7 réalisé d'une seule pièce. Le dissipateur thermique 7 est par exemple réalisé sous la forme d'une plaque 30 support déformée dans laquelle les déformations forment au moins un logement de - réception des éléments résistifs, par exemple par emboutissage ou moulage. La plaque support formée par le dissipateur thermique 7 présente une forme générale sensiblement parallélépipédique. La longueur L et la largeur 1 sont définies de façon schématique sur la figure 1.Whatever the embodiment described below, the heating module 3 comprises at least one heating element 5 and a heat sink 7, 107, 207. More specifically, a heating module 3 may comprise at least one resistive element 5 of the type positive temperature coefficient (PTC). The resistive elements are for example made in the form of PTC stones. The resistive element 5 may be of parallelepipedal shape. By its shape, this resistive element 5 comprises two large end faces 5a, 5b opposite. And, the heating module 3 comprises a common heat sink 7, 107, 207 for all the resistive elements 5. The heat sink 7, 107, 207 makes it possible to transmit the heat of the heating elements 5 to the flow of air to be heated which 15 passes through the heating module 3. This heat sink 7, 107, 207 is made of a thermally conductive metal material. In addition, the material is electrically conductive. This material can be aluminum. In addition, the heat sink 7, 107, 207 forms a support for the heating element (s) 5, and all the elements of the heating module 3 as will be detailed later. To do this, the heat sink 7, 107, 207 is in the form of a unitary block which has at least one receiving housing 9, 209 of at least one heating element 5. According to a first illustrated embodiment in FIGS. 1 to 4f, the heating module 3 comprises several rows of resistive elements 5, by way of illustrative example three rows of three PTC stones 5, and a heat sink 7 made in one piece. The heat sink 7 is for example made in the form of a deformed support plate in which the deformations form at least one housing for receiving the resistive elements, for example by stamping or molding. The support plate formed by the heat sink 7 has a generally parallelepipedal general shape. The length L and the width 1 are defined schematically in FIG.

Le flux d'air à réchauffer traverse le module chauffant 3 selon une direction sensiblement perpendiculaire au plan P général défini par le dissipateur thermique 7. Ce dissipateur thermique 7 présente deux faces opposées d'entrée et de sortie d'air, selon la direction d'écoulement du flux d'air à réchauffer. Le dissipateur thermique 7 est apte à recevoir au moins un élément chauffant 5, ici un élément résistif sous la forme de pierre CTP 5. Le dissipateur thermique 7 présente à cet effet au moins un logement de réception 9 d'un ou plusieurs éléments résistifs 5 et au moins une zone de dissipation thermique 11 pour dissiper la chaleur produite par les éléments résistifs 5 vers le flux d'air traversant le dissipateur thermique 7.The flow of air to be heated passes through the heating module 3 in a direction substantially perpendicular to the general plane P defined by the heat sink 7. This heat sink 7 has two opposite faces of inlet and outlet air, in the direction of flow of the air flow to be heated. The heat sink 7 is adapted to receive at least one heating element 5, here a resistive element in the form of PTC stone 5. The heat sink 7 has for this purpose at least one receiving housing 9 of one or more resistive elements 5 and at least one heat dissipation zone 11 for dissipating the heat produced by the resistive elements 5 towards the flow of air passing through the heat sink 7.

Selon l'exemple illustré, le dissipateur 7 est apte à recevoir trois éléments résistifs 5 dans un logement de réception 9 et présente trois logements de réception 9. Chaque logement 9 est donc dimensionné de manière à recevoir au moins un élément résistif 5 dans son entier, ici trois éléments résistifs 5 en entier. Les éléments résistifs 5 sont agencés dans les logements 9 de manière à être 20 exposés directement au flux d'air traversant le dissipateur thermique 7. Les logements 9 présentent au moins une ouverture ménagée sur une face du dissipateur 7 destinée à être en contact avec le flux d'air traversant le dissipateur 7. En particulier, l'ouverture est ménagée sur la face de sortie de flux d'air du dissipateur 7. 25 Le logement 9 est donc semi-ouvert ce qui permet de faciliter l'assemblage des éléments du module chauffant 3 au dissipateur 7, comme cela sera décrit par la suite. Un logement de réception 9 est selon le premier mode de réalisation illustré réalisé avec une section transversale sensiblement en «U », comme cela est mieux visible sur la figure 2. Ce logement 9 s'étend et est continu dans le sens de la longueur L 30 de la plaque support formée par le dissipateur thermique 7. De ce fait, un logement 9 et - le ou les éléments résistifs 5 reçus dans le logement 9 s'étendent sensiblement perpendiculairement à la direction du flux d'air. De plus, un logement 9 présente une surface pleine c'est-à-dire non ajourée, de sorte qu'il n'est pas traversé par le flux d'air à réchauffer.According to the illustrated example, the dissipator 7 is able to receive three resistive elements 5 in a receiving housing 9 and has three receiving housings 9. Each housing 9 is therefore dimensioned so as to receive at least one resistive element 5 in its entirety here, three resistive elements 5 in their entirety. The resistive elements 5 are arranged in the recesses 9 so as to be exposed directly to the air flow passing through the heat sink 7. The recesses 9 have at least one opening on one side of the dissipator 7 intended to be in contact with the In particular, the opening is provided on the airflow outlet face of the dissipator 7. The housing 9 is thus semi-open, which makes it easier to assemble the elements. from the heating module 3 to the dissipator 7, as will be described later. A receiving housing 9 is according to the first illustrated embodiment made with a substantially U-shaped cross-section, as is best seen in FIG. 2. This housing 9 extends and is continuous in the lengthwise direction. 30 of the support plate formed by the heat sink 7. As a result, a housing 9 and - the resistive element (s) 5 received in the housing 9 extend substantially perpendicular to the direction of the air flow. In addition, a housing 9 has a solid surface that is to say not perforated, so that it is not crossed by the air flow to be heated.

Un logement 9 est prévu pour la fixation d'un ou plusieurs éléments résistifs 5. La fixation peut par exemple se faire par collage, à l'aide d'une colle 10 (cf figure 2) telle qu'une colle silicone. Le ou les éléments résistifs 5 sont agencés en contact électrique et thermique avec le dissipateur thermique 7. Ce dernier est relié à la masse. Plus précisément, un 10 élément résistif 5 est agencé dans un logement 9 associé avec une première face d'extrémité 5a en contact électrique et thermique avec le dissipateur thermique 7. Par ailleurs, le dissipateur thermique 7 forme support pour les différents éléments du module chauffant 3. 15 Ainsi, selon ce premier mode de réalisation, un logement de réception 9 est également apte à recevoir une électrode 12. Cette électrode 12 est réalisée sous la forme d'une plaque s'étendant longitudinalement dans le sens de la longueur L du dissipateur thermique 7. À une extrémité de l'électrode 12, la plaque d'électrode présente un terminal 12a 20 de connexion à une source d'alimentation électrique (non représentée). Le terminal de connexion 12a forme une saillie par rapport au dissipateur thermique 7, dans le sens de la longueur L. L'électrode 12 est agencée sur le ou les éléments résistifs 5 reçus dans le logement de réception 9 associé. Selon l'exemple illustré, une électrode 12 est agencée 25 sur trois pierres CTP 5 dans un logement associé 9. Comme dit précédemment, un élément résistif 5 présente deux grandes faces opposées 5a, 51), avec une grande face 5a en contact électrique et thermique avec le dissipateur thermique 7, et l'autre grande face 51) d'un élément résistif 5 en contact électrique avec la plaque d'électrode 12. Ainsi, un élément résistif 5 est agencé entre 30 d'une part le dissipateur thermique 7 et d'autre part une plaque d'électrode 12 associée. - Enfin, on peut prévoir une couche supplémentaire 13, notamment un dépôt de silicone, sur les éléments reçus dans un logement de réception 9 du dissipateur thermique 7. Cette couche supplémentaire 13 est prévue pour le maintien du contact entre la plaque d'électrode 12 et le ou les éléments résistifs 5 reçus dans le logement 9 associé ainsi que pour la protection des ces éléments. On garantit ainsi une certaine fiabilité et robustesse du module chauffant 3. Cette couche supplémentaire 13 est une couche d'isolant électrique, telle qu'une couche de silicone. Le silicone isolant électrique est conducteur thermique, de façon à participer au transfert thermique entre les éléments chauffants 5 et le flux d'air traversant le module chauffant 3.A housing 9 is provided for fixing one or more resistive elements 5. The attachment may for example be done by gluing, using an adhesive 10 (see Figure 2) such as a silicone adhesive. The resistive element or elements 5 are arranged in electrical and thermal contact with the heat sink 7. The latter is connected to ground. More specifically, a resistive element 5 is arranged in a housing 9 associated with a first end face 5a in electrical and thermal contact with the heat sink 7. Moreover, the heat sink 7 forms a support for the various elements of the heating module 3. Thus, according to this first embodiment, a receiving housing 9 is also adapted to receive an electrode 12. This electrode 12 is made in the form of a plate extending longitudinally along the length L heat sink 7. At one end of the electrode 12, the electrode plate has a terminal 12a 20 for connection to a power source (not shown). The connection terminal 12a protrudes from the heat sink 7, in the direction of the length L. The electrode 12 is arranged on the resistive element or elements 5 received in the associated receiving housing 9. According to the illustrated example, an electrode 12 is arranged on three PTC stones 5 in an associated housing 9. As previously mentioned, a resistive element 5 has two large opposite faces 5a, 51), with a large face 5a in electrical contact and thermal with the heat sink 7, and the other large face 51) of a resistive element 5 in electrical contact with the electrode plate 12. Thus, a resistive element 5 is arranged between 30 on the one hand the heat sink 7 and on the other hand an associated electrode plate 12. Finally, an additional layer 13, in particular a silicone deposit, may be provided on the elements received in a receiving housing 9 of the heat sink 7. This additional layer 13 is provided for maintaining the contact between the electrode plate 12. and the resistive element (s) 5 received in the associated housing 9 as well as for the protection of these elements. This guarantees a certain reliability and robustness of the heating module 3. This additional layer 13 is an electrical insulating layer, such as a silicone layer. The electrical insulating silicone is thermal conductor, so as to participate in the heat transfer between the heating elements 5 and the flow of air passing through the heating module 3.

Comme mentionné précédemment, le dissipateur thermique 7 comprend également au moins une zone de dissipation thermique 11. La zone de dissipation thermique 11 est destinée à échanger de la chaleur avec le flux d'air traversant le module chauffant 3 et par conséquent traversant le dissipateur thermique 7. On entend par échanger de la chaleur avec le flux d'air le fait que le flux d'air traverse de part en part la zone de dissipation thermique 11 selon une direction sensiblement perpendiculaire au plan P défini par le dissipateur thermique 7 et ainsi augmente sa température au contact de cette zone de dissipation thermique 11. Cette zone de dissipation thermique 11 présente une pluralité de persiennes 15, 20 mieux visibles sur les figures 2 et 3. Ces persiennes 15 sont par exemple réalisées par découpe et pliage. Les persiennes 15 présentent une section transversale sensiblement en « U » et comportent chacune une grande face 15a sensiblement rectangulaire définissant la longueur de la persienne 15 et deux petites faces latérales 15b, 15c à une paroi plane 17 25 de la zone de dissipation thermique 11. Les persiennes 15 sont contenues dans un plan sensiblement parallèle au plan P. On prévoit notamment des persiennes 15 espacées sur toute la zone de dissipation thermique 11 dans le sens de la longueur L du dissipateur thermique 7. Autrement dit, les persiennes 15 se succèdent dans le sens de la longueur L du dissipateur thermique 7. 30 Une zone de dissipation thermique 11 est donc distincte du logement de - réception 9. On entend par « distincte » le fait qu'un logement de réception 9 et une zone de dissipation thermique 11 soient de structures différentes. En effet, un logement 9 présente une surface pleine non ajourée et ainsi n'est pas traversé de part en part par le flux d'air à réchauffer, tandis que la zone de dissipation thermique 11 est ajourée et est ainsi traversée de part en part par le flux d'air à réchauffer. La distinction entre un logement 9 et une zone de dissipation thermique 11 provient également du fait de leur fonctions différentes. En effet, un logement 9 est le site de fixation d'un ou des éléments résistifs 5 sur le dissipateur thermique 7 et permet de conduire la chaleur produite par les éléments résistifs 5 vers la zone de dissipation thermique 11, la zone de dissipation thermique 11 permet quant à elle de dissiper la chaleur produite par les éléments résistifs 5 vers le flux d'air traversant la zone de dissipation thermique 11.As mentioned above, the heat sink 7 also comprises at least one heat dissipation zone 11. The heat dissipation zone 11 is intended to exchange heat with the air flow passing through the heating module 3 and therefore passing through the heat sink 7. It is meant by exchanging heat with the air flow that the flow of air passes right through the heat dissipation zone 11 in a direction substantially perpendicular to the plane P defined by the heat sink 7 and thus increases its temperature in contact with this heat dissipation zone 11. This heat dissipation zone 11 has a plurality of louvers 15, 20 better visible in Figures 2 and 3. These louvers 15 are for example made by cutting and folding. The louvers 15 have a substantially "U" -shaped cross section and each comprise a large substantially rectangular face 15a defining the length of the louver 15 and two small lateral faces 15b, 15c to a flat wall 17 of the heat dissipation zone 11. The louvers 15 are contained in a plane substantially parallel to the plane P. In particular, there are provided louvers spaced apart over the entire heat dissipation zone 11 in the direction of the length L of the heat sink 7. In other words, the louvers 15 succeed one another in the direction of the length L of the heat sink 7. A heat dissipation zone 11 is therefore distinct from the receiving housing 9. The term "distinct" means that a receiving housing 9 and a heat dissipation zone 11 are of different structures. Indeed, a housing 9 has a solid surface not perforated and thus is not traversed right through by the air flow to be heated, while the heat dissipation zone 11 is perforated and is traversed from one side to the other by the flow of air to be heated. The distinction between a housing 9 and a heat dissipation zone 11 is also due to their different functions. Indeed, a housing 9 is the site of attachment of one or more resistive elements 5 on the heat sink 7 and allows to conduct the heat produced by the resistive elements 5 to the heat dissipation zone 11, the heat dissipation zone 11 allows for its part to dissipate the heat produced by the resistive elements 5 towards the flow of air passing through the heat dissipation zone 11.

Par ailleurs, le dissipateur thermique 7 peut comprendre une pluralité de logements 9 et de zones dissipatrices 11. Plus précisément, le dissipateur thermique 7 peut comprendre une alternance de logements 9 et de zones dissipatrices 11. Selon l'exemple illustré, le dissipateur thermique 7 comporte trois logements 9 et quatre zones dissipatrices 11 disposés en alternance. Cette alternance se fait selon la largeur 1 du dissipateur thermique 7. De cette manière, un logement 9 est adjacent à deux zones de dissipation thermique 11 destinées à échanger de la chaleur avec un flux d'air traversant le dissipateur thermique 7. Les logements 9 et les zones de dissipation thermique 11 du dissipateur thermique 7 sont contenues dans le même plan P.Moreover, the heat sink 7 may comprise a plurality of housings 9 and dissipating zones 11. More specifically, the heat sink 7 may comprise an alternation of housings 9 and dissipating zones 11. According to the illustrated example, the heat sink 7 has three housings 9 and four dissipating zones 11 arranged alternately. This alternation is done according to the width 1 of the heat sink 7. In this way, a housing 9 is adjacent to two heat dissipation zones 11 intended to exchange heat with a flow of air passing through the heat sink 7. The housings 9 and the heat dissipation zones 11 of the heat sink 7 are contained in the same plane P.

Un tel dissipateur 7 formant support des éléments du module chauffant 3, forme donc un bloc unitaire. Les logements 9 et les zones de dissipation thermique 11 sont solidarisés au dissipateur thermique 7. L'ensemble des éléments du module chauffant 3 : le dissipateur thermique 7, les éléments résistifs 5, les électrodes 12, forme un bloc chauffant.30 - En référence aux figures 4a à 4f, on décrit un procédé d'assemblage d'un module chauffant 3 tel que décrit ci-dessus. Lors d'une première étape (figure 4a), on réalise un dissipateur thermique 7 sous la forme d'un bloc unitaire tel que décrit précédemment.Such a dissipator 7 forming support elements of the heating module 3, therefore forms a unitary block. The housings 9 and the heat dissipation zones 11 are secured to the heat sink 7. The set of elements of the heating module 3: the heat sink 7, the resistive elements 5, the electrodes 12 form a heating block. FIGS. 4a to 4f describe a method of assembling a heating module 3 as described above. During a first step (FIG. 4a), a heat sink 7 is produced in the form of a unit block as described above.

Plus précisément, selon le premier mode de réalisation, on réalise d'une seule pièce le dissipateur thermique 7 à partir d'un matériau métallique. Ainsi, les logements 9 et les zones de dissipation thermique 11 sont réalisées d'une seule pièce avec le dissipateur thermique 7. On dispose ainsi d'une pièce monobloc réalisée par simple emboutissage ou par moulage.More specifically, according to the first embodiment, the heat sink 7 is made in one piece from a metallic material. Thus, the housings 9 and the heat dissipation zones 11 are formed in one piece with the heat sink 7. There is thus a single piece made by simple stamping or molding.

Une étape de découpage peut permettre de découper le matériau aux dimensions souhaitées. Ensuite, on peut former, par exemple par emboutissage ou moulage, au moins un logement de réception 9 semi-ouvert, par exemple de section transversale sensiblement en «U », et au moins une zone de dissipation thermique 11 apte à être traversée de part en part par le flux d'air à réchauffer. Des persiennes 15 peuvent par exemple être réalisées par découpage et pliage au niveau de la ou des zones de dissipation thermique 11. Lors d'une deuxième étape (figure 4b), on dispose de la colle 10, telle que de la colle silicone, au niveau des logements de réception 9 du dissipateur thermique 7. Lors d'une troisième étape (figure 4c), on agence au moins un élément chauffant tel qu'un élément résistif 5 dans un logement 9 associé recouvert de colle 10. Les éléments résistifs 5 sont fixés dans les logements 9 associés du dissipateur thermique 7 par l'intermédiaire de la colle 10. La fixation d'un élément résistif 5 se fait de sorte qu'une première grande face 5a soit en contact avec le dissipateur thermique 7. L'ouverture d'un logement 9, par exemple au niveau de la face de sortie de flux d'air du dissipateur 7, facilite la disposition des éléments résistifs 5 dans le logement 9. Lors d'une quatrième étape (figure 4d), on place une plaque d'électrode 12 sur le ou les éléments résistifs 5 reçus dans un logement 9. Cette plaque d'électrode 12 est placée sur la deuxième grande face 51) libre du ou des éléments résistifs 5 reçus dans le logement 9 associé. Les plaques d'électrodes 12 sont par exemple enduites au préalable de colle pour permettre la fixation aux éléments résistifs S. L'agencement des plaques - d'électrode 12 sur les éléments résistifs 5 reçus dans les logements 9 est simplifié du fait des logements semi-ouverts 9 avec leur ouverture au niveau d'une face, par exemple de sortie de flux d'air, du dissipateur thermique 7. Le procédé peut ensuite comporter une étape de pressage (figure 4e) ainsi qu'une 5 étape de chauffage de l'ensemble par exemple par passage dans un four. Cette étape permet notamment de durcir la colle utilisée pour la fixation des éléments résistifs 5 dans les logements 9 et aux électrodes 12. Le procédé peut aussi comporter une étape de dépôt d'une couche supplémentaire 13 de maintien du contact entre les électrodes 12 et les éléments résistifs 10 5 associés dans un logement de réception 9 du dissipateur thermique 7. Cette couche supplémentaire 13 est une couche d'isolant électrique, telle qu'une couche de silicone conducteur thermique. Cette couche d'isolant électrique assure également le maintien mécanique des éléments reçus dans le logement 9 tout en permettant un contrôle de la dissipation thermique. 15 Enfin, on peut prévoir une étape de chauffage de l'ensemble ainsi assemblé par exemple par passage dans un four. Ainsi, tous les éléments du module chauffant 3 ainsi obtenu sont définitivement fixés les uns aux autres en formant un bloc chauffant. 20 On a représenté sur les figures 5 et 6, un deuxième mode de réalisation dans lequel le dissipateur thermique 107 diffère du premier mode de réalisation. En effet, selon ce deuxième mode de réalisation, le bloc dissipateur thermique 107 comporte une plaque support 119, par exemple réalisé en aluminium, et des ailettes de dissipation 121, par exemple réalisées en aluminium. L'ensemble peut être fixé par 25 collage ou brasage formant ainsi un bloc unitaire. Les ailettes de dissipations 121 sont agencées au niveau des zones de dissipation thermique 111 du dissipateur thermique 107. De façon similaire au premier mode de réalisation les logements de réception 109 sont réalisés avec une section transversale en « U » et s'étendent dans le sens de la 30 longueur L du dissipateur thermique 107. - Les éléments résistifs 5, les électrodes 12, et une éventuelle couche 13 d'isolant électrique conducteur thermique et de maintien mécanique, sont identiques au premier mode de réalisation. De même, les étapes du procédé d'assemblage sont sensiblement les mêmes que 5 pour le premier mode de réalisation. La différence réside dans le phase d'obtention du bloc dissipateur thermique 107 comprenant des ailettes de dissipation 121. Les ailettes de dissipation 121 peuvent être réalisées d'une seule pièce avec le dissipateur thermique 107 et les logements 109, par exemple par moulage. 10 En variante, les ailettes de dissipation 121 peuvent être brasées ou encore collées aux logements 109 pour former un dissipateur thermique 107 sous forme de bloc unitaire. Enfin, un troisième mode de réalisation est représenté sur les figures 7 à 10b. 15 Selon ce troisième mode de réalisation, le bloc dissipateur thermique 207 présente une plaque support 219 comprenant des logements 209 et des ailettes de dissipation 221. Ce troisième mode diffère des premier et deuxième modes de réalisation par le fait que les logements 209 présentent une forme sensiblement de tube et présentent une 20 section transversale de forme sensiblement rectangulaire comme représenté à la figure 8. Bien entendu, les logements 209 peuvent présenter une ouverture ménagée sur une face du dissipateur thermique 207 destinée à être en contact avec le flux d'air, comme par exemple la face de sortie de flux d'air. Dans ce cas, les logements 209 sont réalisés sous la forme de tubes partiellement ouverts. 25 En outre, selon ce troisième mode de réalisation, des structures chauffantes 223 sont agencées dans les logements 209 associés du dissipateur thermique 207. La forme des logements 209 est complémentaire de la forme des structures chauffantes 223. En référence à la figure 9, une structure chauffante 223 comporte un nombre 30 prédéfini d'éléments chauffants 5, notamment des éléments résistifs de type à coefficient - de température positif par exemple réalisés sous la forme de pierres CTP 5 et deux électrodes 212 et 212'. Les deux électrodes sont agencées de part et d'autre des éléments résistifs 5, dans le sens de la largeur 1 du dissipateur thermique 207, une fois assemblés au dissipateur thermique 7, et s'étendent longitudinalement. L'électrode 212 est par exemple l'électrode positive et l'électrode 212' l'électrode négative. Dans ce cas, les éléments résistifs 5 sont isolés électriquement du dissipateur thermique 207, à l'aide d'une enveloppe d'isolation 225. Cette enveloppe d'isolation 255 entoure les éléments chauffants 5 et les électrodes 212 et 212' associées pour les isoler du dissipateur thermique 207. L'enveloppe d'isolation 255 est par exemple réalisée en Kapton. En référence aux figures 10a et 10b, on décrit un procédé d'assemblage d'un module chauffant 3 selon le troisième mode de réalisation tel que décrit ci-dessus. Lors d'une première étape (figure 10a), on réalise un dissipateur thermique 207 sous la forme d'un bloc unitaire tel que décrit selon le troisième mode de réalisation.A cutting step can be used to cut the material to the desired dimensions. Then, it is possible to form, for example by stamping or molding, at least one semi-open receiving housing 9, for example of substantially U-shaped cross-section, and at least one heat-dissipating zone 11 capable of being traversed on the one hand. in part by the flow of air to be heated. Louvers 15 may for example be made by cutting and folding at the heat dissipation zone (s) 11. During a second step (FIG. 4b), glue 10, such as silicone glue, is available at level of the receiving housing 9 of the heat sink 7. In a third step (Figure 4c), is arranged at least one heating element such as a resistive element 5 in an associated housing 9 covered with adhesive 10. The resistive elements 5 are fixed in the associated housing 9 of the heat sink 7 by means of the adhesive 10. The fixing of a resistive element 5 is such that a first large face 5a is in contact with the heat sink 7. The opening a housing 9, for example at the airflow outlet face of the dissipator 7, facilitates the provision of the resistive elements 5 in the housing 9. In a fourth step (Figure 4d) is placed an electrode plate 12 on the resistive element or elements 5 received in a housing 9. This electrode plate 12 is placed on the second large free face 51) of the resistive element or elements 5 received in the associated housing 9. The electrode plates 12 are for example pre-coated with glue to allow attachment to the resistive elements S. The arrangement of the electrode plates 12 on the resistive elements 5 received in the housings 9 is simplified because of the semi-housing. 9 with their opening at one face, for example airflow outlet, of the heat sink 7. The process may then comprise a pressing step (FIG. 4e) and a heating step of FIG. the assembly for example by passage in an oven. This step makes it possible in particular to harden the adhesive used for fixing the resistive elements 5 in the housings 9 and the electrodes 12. The method may also comprise a step of deposition of an additional layer 13 for maintaining contact between the electrodes 12 and the electrodes 12. associated resistive elements 10 5 in a receiving housing 9 of the heat sink 7. This additional layer 13 is an electrical insulating layer, such as a layer of thermal conductive silicone. This layer of electrical insulation also ensures the mechanical maintenance of the elements received in the housing 9 while allowing control of the heat dissipation. Finally, it is possible to provide a step of heating the assembly thus assembled, for example by passing through an oven. Thus, all the elements of the heating module 3 thus obtained are permanently fixed to each other by forming a heating block. FIGS. 5 and 6 show a second embodiment in which the heat sink 107 differs from the first embodiment. Indeed, according to this second embodiment, the heat sink block 107 comprises a support plate 119, for example made of aluminum, and dissipation fins 121, for example made of aluminum. The assembly can be fixed by gluing or soldering thus forming a unitary block. The dissipation fins 121 are arranged at the heat dissipation zones 111 of the heat sink 107. In a similar manner to the first embodiment, the receiving housings 109 are made with a "U" -shaped cross-section and extend in the direction of the length L of the heat sink 107. - The resistive elements 5, the electrodes 12, and a possible layer 13 of thermal conductive and mechanical mechanical insulation, are identical to the first embodiment. Likewise, the steps of the assembly method are substantially the same as for the first embodiment. The difference lies in the phase of obtaining the heat sink block 107 comprising dissipating fins 121. The dissipating fins 121 can be made in one piece with the heat sink 107 and the housings 109, for example by molding. Alternatively, the dissipating fins 121 may be soldered or bonded to the housings 109 to form a heat sink 107 in the form of a unitary block. Finally, a third embodiment is shown in Figures 7 to 10b. According to this third embodiment, the heat sink block 207 has a support plate 219 comprising housings 209 and dissipating fins 221. This third mode differs from the first and second embodiments in that the housings 209 have a shape. substantially of tube and have a cross section of substantially rectangular shape as shown in Figure 8. Of course, the housing 209 may have an opening on one side of the heat sink 207 intended to be in contact with the air flow, as for example the airflow outlet face. In this case, the housings 209 are made in the form of partially open tubes. Furthermore, according to this third embodiment, heating structures 223 are arranged in the associated housings 209 of the heat sink 207. The shape of the housings 209 is complementary to the shape of the heating structures 223. With reference to FIG. Heating structure 223 comprises a predefined number of heating elements 5, in particular positive temperature coefficient type resistive elements, for example made in the form of PTC stones 5 and two electrodes 212 and 212 '. The two electrodes are arranged on either side of the resistive elements 5, in the direction of the width 1 of the heat sink 207, once assembled to the heat sink 7, and extend longitudinally. The electrode 212 is for example the positive electrode and the electrode 212 'the negative electrode. In this case, the resistive elements 5 are electrically isolated from the heat sink 207, using an insulation envelope 225. This insulation envelope 255 surrounds the heating elements 5 and the electrodes 212 and 212 'associated for the isolate heat sink 207. The insulation envelope 255 is for example made Kapton. Referring to Figures 10a and 10b, there is described a method of assembling a heating module 3 according to the third embodiment as described above. In a first step (FIG. 10a), a heat sink 207 is produced in the form of a unitary block as described according to the third embodiment.

Plus précisément, on réalise une plaque support 219 présentant des logements 209 en forme sensiblement de tube partiellement ouvert, et des zones de dissipation thermique 211 comportant des ailettes de dissipation 221. On utilise un même matériau, par exemple de l'aluminium, pour la plaque support 219 et les ailettes 221. L'ensemble peut être assemblé par collage ou brasage, ou en variante les ailettes 221 peuvent être réalisées dans le même moule que la plaque support 219 et les logements 209. Lors d'une deuxième étape (figure 10b), on insère au moins une structure chauffante assemblée lors d'une étape préliminaire dans un logement 209 associé. Lors de l'étape préliminaire d'assemblage d'une structure chauffante 223, telle qu'illustrée sur la figure 9, on assemble deux plaques d'électrodes 212 et 212', de part et 25 d'autre d'un nombre prédéterminé d'éléments résistifs 5. Lorsqu'une structure chauffante 223 est insérée dans un logement 209 associé du dissipateur thermique 207, par la gauche sur les figures 10a, 10b, la structure chauffante 223 est guidée en continu le long du logement 209 du par sa forme en tube. On obtient ainsi un bloc chauffant, les éléments du module chauffant 3 : les 30 éléments résistifs 5, les électrodes 212, 212', et l'enveloppe d'isolation 225, étant portés - par le dissipateur thermique 207. On comprend donc qu'un dissipateur thermique 7, 107, 207 selon l'un quelconque des modes de réalisation précédemment décrits, forme un bloc unitaire réalisé avantageusement d'un même matériau et de préférence en une seule pièce, et sert de support pour l'ensemble des éléments du module chauffant 3, notamment pour les éléments résistifs 5 et les électrodes associées 12, 212, 212'. On réduit ainsi le nombre d'éléments du module chauffant, car le dissipateur thermique 7, 107, 207 cumule les fonctions : de support des éléments résistifs 5, de support des électrodes 12, 212, 212' et leurs terminaux pour la connexion électrique permettant le chauffage des éléments résistifs 5, ainsi que de transfert de la chaleur produite par ces éléments résistifs 5 vers le flux d'air à réchauffer traversant une ou plusieurs zones de dissipation thermique 11, 111, 15 211 du dissipateur thermique 7, 107, 207 qu'elles soient munies de persiennes 15 réalisées d'une seule pièce avec le dissipateur thermique 7, ou d'ailettes de dissipation 121, 221 réalisées d'une seule pièce avec le dissipateur thermique 107, 207 ou assemblées par brasage ou collage. Le procédé d'assemblage d'un module chauffant 3 est ainsi simplifié car il 20 nécessite moins d'étape, et peut être facilement automatisé.More specifically, a support plate 219 having housings 209 in the form of a partially open tube is formed, and heat dissipation zones 211 comprising dissipating fins 221. The same material, for example aluminum, is used for support plate 219 and fins 221. The assembly may be assembled by gluing or soldering, or alternatively fins 221 may be made in the same mold as support plate 219 and housing 209. In a second step (FIG. 10b), at least one assembled heating structure is inserted during a preliminary step into an associated housing 209. In the preliminary step of assembling a heating structure 223, as illustrated in FIG. 9, two electrode plates 212 and 212 'are assembled on each side of a predetermined number of resistive elements 5. When a heating structure 223 is inserted into an associated housing 207 of the heat sink 207, on the left in FIGS. 10a, 10b, the heating structure 223 is guided continuously along the housing 209 by its shape. in tube. This gives a heating block, the elements of the heating module 3: the resistive elements 5, the electrodes 212, 212 ', and the insulation envelope 225, being carried - by the heat sink 207. It is therefore understood that a heat sink 7, 107, 207 according to any one of the embodiments described above, forms a unitary unit advantageously made of the same material and preferably in one piece, and serves as a support for all the elements of the heating module 3, in particular for the resistive elements 5 and the associated electrodes 12, 212, 212 '. The number of elements of the heating module is thus reduced, since the heat sink 7, 107, 207 combines the functions of: supporting the resistive elements 5, supporting the electrodes 12, 212, 212 'and their terminals for the electrical connection allowing heating the resistive elements 5, as well as transferring the heat produced by these resistive elements 5 to the flow of air to be heated through one or more heat dissipation zones 11, 111, and 211 of the heat sink 7, 107, 207 they are provided with louvers 15 made in one piece with the heat sink 7, or dissipating fins 121, 221 made in one piece with the heat sink 107, 207 or assembled by soldering or gluing. The method of assembling a heating module 3 is thus simplified because it requires less step, and can be easily automated.

Claims (25)

REVENDICATIONS1. Dissipateur thermique d'un module chauffant (3) pour un dispositif de chauffage électrique (1) d'un flux d'air, ledit module chauffant (3) comprenant au moins un élément chauffant (5) et ledit dissipateur thermique (7, 107, 207) étant configure pour être traversé par le flux d'air et pour transmettre la chaleur de l'élément chauffant (5) au flux d'air à réchauffer, caractérisé en ce que le dissipateur thermique (7, 107, 207) est un bloc unitaire présentant au moins un logement (9, 109, 209) de réception d'au moins un élément chauffant (5), le logement (9, 109,0209) présentant au moins une ouverture ménagée sur une face dudit dissipateur destinée à être en contact avec le flux d'air.REVENDICATIONS1. Heat sink of a heating module (3) for an electric heating device (1) of an air flow, said heating module (3) comprising at least one heating element (5) and said heat sink (7, 107 , 207) being configured to be traversed by the air flow and for transmitting the heat of the heating element (5) to the air stream to be heated, characterized in that the heat sink (7, 107, 207) is a unitary block having at least one housing (9, 109, 209) for receiving at least one heating element (5), the housing (9, 109.0209) having at least one opening on one side of said dissipator for be in contact with the air flow. 2. Dissipateur selon la revendication 1, caractérisé en ce qu'il est réalisé d'une seule pièce.2. Heatsink according to claim 1, characterized in that it is made in one piece. 3. Dissipateur selon l'une des revendications 1 ou 2, présentant une face d'entrée du flux d'air et une face de sortie du flux d'air, et dans lequel le logement (9, 109, 209) présente au moins une ouverture ménagée sur la face de sortie du flux d'air dudit dissipateur (7, 107, 207).3. Heatsink according to one of claims 1 or 2, having an inlet face of the air flow and an outlet face of the air flow, and wherein the housing (9, 109, 209) has at least an opening on the outlet side of the air flow of said dissipator (7, 107, 207). 4. Dissipateur selon l'une des revendications précédentes, dans lequel le logement de réception (9, 109) présente une section transversale sensiblement en « U ».4. Heatsink according to one of the preceding claims, wherein the receiving housing (9, 109) has a cross section substantially "U". 5. Dissipateur selon l'une quelconque des revendications précédentes, dans lequel l'élément chauffant (5) est agencé en contact thermique et électrique avec le dissipateur (7, 107, 207) et dans lequel une électrode (12) est disposée dans le logement (9, 109, 209) en contact électrique avec l'élément chauffant (5).A heat sink according to any one of the preceding claims, wherein the heating element (5) is arranged in thermal and electrical contact with the dissipator (7, 107, 207) and wherein an electrode (12) is disposed in the housing (9, 109, 209) in electrical contact with the heating element (5). 6. Dissipateur selon la revendication 5, comprenant en outre une couche d'isolant électrique (13) disposée dans le logement (9, 109) et destinée à- fermer mécaniquement le logement (9, 109).6. Heatsink according to claim 5, further comprising a layer of electrical insulator (13) disposed in the housing (9, 109) and intended to-mechanically close the housing (9, 109). 7. Dissipateur selon l'une quelconque des revendications précédentes, comprenant au moins une zone de dissipation thermique (11, 111, 211) distincte du logement de réception (9, 109, 209).7. Heatsink according to any one of the preceding claims, comprising at least one heat dissipation zone (11, 111, 211) separate from the receiving housing (9, 109, 209). 8. Dissipateur selon la revendication 7, dans lequel la zone de dissipation thermique (11) présente des persiennes (15).8. Heatsink according to claim 7, wherein the heat dissipation zone (11) has louvers (15). 9. Dissipateur selon la revendication 7, dans lequel la zone de dissipation thermique (111, 211) comporte des ailettes de dissipation (121, 221).The heat sink of claim 7, wherein the heat dissipation zone (111, 211) has dissipation fins (121, 221). 10. Dissipateur selon l'une quelconque des revendications 7 à 9, présentant une alternance de zones de dissipation thermique (11, 111, 211) et de logements de réception (9, 109, 209) d'au moins un élément chauffant (5).10. Heatsink according to any one of claims 7 to 9, having alternating zones of heat dissipation (11, 111, 211) and receiving housing (9, 109, 209) of at least one heating element (5 ). 11. Dissipateur selon l'une quelconque des revendications précédentes, réalisé sous la forme d'une plaque support.11. Heatsink according to any one of the preceding claims, in the form of a support plate. 12. Module chauffant d'un dispositif de chauffage électrique pour réchauffer un flux d'air traversant ledit module chauffant, ledit module chauffant (3) comprenant : au moins un élément chauffant (5), et un dissipateur thermique (7, 107, 207) configure pour être traversé par le flux d'air et pour transmettre la chaleur de l'élément chauffant (5) au flux d'air à réchauffer, caractérisé en ce que le dissipateur thermique (7, 107, 207) est un bloc unitaire présentant au moins un logement de réception (9, 109, 209) d'au moins un élément chauffant (5), et formant un support dudit au moins un élément chauffant (5), le logement (9, 109, 209) présentant au moins une ouverture ménagée sur une face dudit dissipateur destinée à être en contact avec le flux- d'air.Heating module of an electric heater for heating an air flow passing through said heating module, said heating module (3) comprising: at least one heating element (5) and a heat sink (7, 107, 207). ) configured to be traversed by the airflow and to transmit the heat of the heating element (5) to the airflow to be heated, characterized in that the heat sink (7, 107, 207) is a unitary block having at least one receiving housing (9, 109, 209) of at least one heating element (5), and forming a support for said at least one heating element (5), the housing (9, 109, 209) presenting at least one less an opening on one side of said dissipator intended to be in contact with the air flow. 13. Module chauffant selon la revendication 12, dans lequel l'élément chauffant (5) est un élément résistif.Heating module according to claim 12, wherein the heating element (5) is a resistive element. 14. Module chauffant selon l'une quelconque des revendications 12 ou 13, comprenant au moins une électrode (12, 212, 212') en contact avec l'élément chauffant (5).14. Heating module according to any one of claims 12 or 13, comprising at least one electrode (12, 212, 212 ') in contact with the heating element (5). 15. Module chauffant selon la revendication 14, dans lequel le dissipateur thermique (7, 107) reçoit dans un logement de réception (9, 109) au moins un élément chauffant (5) agencé entre le dissipateur thermique (7, 107) et une plaque d'électrode (12).Heating module according to claim 14, wherein the heat sink (7, 107) receives in a receiving housing (9, 109) at least one heating element (5) arranged between the heat sink (7, 107) and a electrode plate (12). 16. Module chauffant selon la revendication 14, comportant au moins une structure chauffante (223) comprenant un nombre prédéfini d'éléments chauffants (5) et deux plaques d'électrode (212, 212') de part et d'autre des éléments chauffants (5), et dans lequel une structure chauffante (223) est reçue dans un logement de réception (209) du dissipateur thermique (207).16. Heating module according to claim 14, comprising at least one heating structure (223) comprising a predefined number of heating elements (5) and two electrode plates (212, 212 ') on either side of the heating elements. (5), and wherein a heating structure (223) is received in a receiving housing (209) of the heat sink (207). 17. Procédé d'assemblage d'un module chauffant pour un dispositif de chauffage électrique d'un flux d'air, caractérisé en ce qu'il comprend les étapes suivantes : on réalise un dissipateur thermique (7, 107, 207) sous la forme d'un bloc unitaire comprenant au moins un logement de réception (9, 109, 209) d'au moins un élément chauffant (5) et au moins une zone de dissipation thermique (11, 111, 211), le logement (9, 109, 209) présentant au moins une ouverture ménagée sur une face dudit dissipateur destinée à être en contact avec un flux d'air traversant ledit dissipateur, et on agence au moins un élément chauffant (5) dans un logement de réception (9, 109, 209) associé du dissipateur thermique.-17. A method of assembling a heating module for a device for electric heating of an air flow, characterized in that it comprises the following steps: a heat sink (7, 107, 207) is produced under the in the form of a unitary block comprising at least one receiving housing (9, 109, 209) of at least one heating element (5) and at least one heat dissipating zone (11, 111, 211), the housing (9 , 109, 209) having at least one opening on one side of said dissipator intended to be in contact with a flow of air passing through said dissipator, and arranging at least one heating element (5) in a receiving housing (9, 109, 209) associated with the heat sink. 18. Procédé selon la revendication 17, dans lequel le dissipateur thermique (7, 107, 207) est réalisé d'une seule pièce à partir d'un matériau métallique, par emboutissage ou moulage.18. The method of claim 17, wherein the heat sink (7, 107, 207) is made in one piece from a metal material, by stamping or molding. 19. Procédé selon l'une des revendications 17 ou 18, dans lequel on réalise des persiennes (15) par pliage sur la zone de dissipation thermique (11).19. Method according to one of claims 17 or 18, wherein making blinds (15) by folding on the heat dissipation zone (11). 20. Procédé selon l'une quelconque des revendications 17 à 19, dans lequel on agence une plaque d'électrode (12) sur ledit au moins un élément chauffant (5) agencé dans un logement de réception (9, 109) du dissipateur thermique (7, 107).20. A method according to any one of claims 17 to 19, wherein an electrode plate (12) is arranged on said at least one heating element (5) arranged in a receiving housing (9, 109) of the heat sink. (7, 107). 21. Procédé selon la revendication 20, dans lequel on agence une couche d'isolant électrique (13) sur la plaque d'électrode (12) et ledit au moins un élément chauffant (5) agencés dans un logement de réception (9, 109) du dissipateur thermique (7, 107), telle qu'une couche de silicone.21. The method of claim 20, wherein an electrically insulating layer (13) is arranged on the electrode plate (12) and said at least one heating element (5) arranged in a receiving housing (9, 109). ) of the heat sink (7, 107), such as a silicone layer. 22. Procédé selon l'une quelconque des revendications 17 à 21, comprenant une étape préliminaire à l'étape d'agencement d'au moins un élément chauffant (5) dans le logement de réception (9, 109) associé du dissipateur thermique, dans laquelle on dispose de la colle (10) dans ledit au moins un logement du dissipateur thermique.22. A method according to any one of claims 17 to 21, comprising a step preliminary to the step of arranging at least one heating element (5) in the receiving housing (9, 109) associated with the heat sink, wherein the glue (10) is disposed in the at least one housing of the heat sink. 23. Procédé selon la revendication 18, dans lequel on réalise des ailettes de dissipation (121, 221) d'une seule pièce avec ledit dissipateur (107, 207) par moulage.23. The method of claim 18, wherein one carries out dissipation fins (121, 221) in one piece with said dissipator (107, 207) by molding. 24. Procédé selon la revendication 17, dans lequel on assemble des ailettes de dissipation (121, 221) sur la zone de dissipation thermique (111, 211), par brasage ou collage.24. The method of claim 17, wherein the dissipating fins (121, 221) are assembled on the heat dissipation zone (111, 211), by brazing or gluing. 25. Procédé selon l'une des revendications 17, 23 ou 24, caractérisé en ce qu'il comprend les étapes suivantes : - on assemble deux plaques d'électrodes (212, 212') de part et d'autre d'un- nombre prédéterminé d'éléments chauffants (5), de manière à former une structure chauffante (223), et on insère la structure chauffante (223) dans un logement associé (209) du dissipateur thermique (207).25. Method according to one of claims 17, 23 or 24, characterized in that it comprises the following steps: - two electrode plates (212, 212 ') are assembled on either side of a predetermined number of heating elements (5) to form a heating structure (223), and inserting the heating structure (223) into an associated housing (209) of the heat sink (207).
FR1259983A 2012-10-19 2012-10-19 THERMAL DISSIPATOR, HEATING MODULE THEREFOR AND CORRESPONDING ASSEMBLY METHOD Expired - Fee Related FR2997168B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
FR1259983A FR2997168B1 (en) 2012-10-19 2012-10-19 THERMAL DISSIPATOR, HEATING MODULE THEREFOR AND CORRESPONDING ASSEMBLY METHOD
JP2015537263A JP6301938B2 (en) 2012-10-19 2013-10-17 Heat sink, associated heating module, and corresponding assembly method
CN201380062425.9A CN104823004B (en) 2012-10-19 2013-10-17 It is heat sink, associated for thermal modules and corresponding assemble method
US14/435,811 US20150300686A1 (en) 2012-10-19 2013-10-17 Heat sink, associated heating module and corresponding assembly method
PCT/EP2013/071777 WO2014060546A1 (en) 2012-10-19 2013-10-17 Heat sink, associated heating module and corresponding assembly method
KR1020157012958A KR20150074088A (en) 2012-10-19 2013-10-17 Heat sink, associated heating module and corresponding assembly method
EP13779572.0A EP2909542B1 (en) 2012-10-19 2013-10-17 Heat dissipator, associated heating module and assembly method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1259983 2012-10-19
FR1259983A FR2997168B1 (en) 2012-10-19 2012-10-19 THERMAL DISSIPATOR, HEATING MODULE THEREFOR AND CORRESPONDING ASSEMBLY METHOD

Publications (2)

Publication Number Publication Date
FR2997168A1 true FR2997168A1 (en) 2014-04-25
FR2997168B1 FR2997168B1 (en) 2018-09-14

Family

ID=47425125

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1259983A Expired - Fee Related FR2997168B1 (en) 2012-10-19 2012-10-19 THERMAL DISSIPATOR, HEATING MODULE THEREFOR AND CORRESPONDING ASSEMBLY METHOD

Country Status (7)

Country Link
US (1) US20150300686A1 (en)
EP (1) EP2909542B1 (en)
JP (1) JP6301938B2 (en)
KR (1) KR20150074088A (en)
CN (1) CN104823004B (en)
FR (1) FR2997168B1 (en)
WO (1) WO2014060546A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013172603A1 (en) * 2012-05-16 2013-11-21 한라비스테온공조 주식회사 Heater for a vehicle
FR3035765A1 (en) * 2015-04-29 2016-11-04 Valeo Systemes Thermiques ELECTRIC RADIATOR FOR HEATING AND AIR CONDITIONING DEVICE
FR3035764A1 (en) * 2015-04-29 2016-11-04 Valeo Systemes Thermiques ELECTRIC RADIATOR FOR HEATING AND AIR CONDITIONING DEVICE
IT201700065507A1 (en) * 2017-06-13 2018-12-13 Irca Spa FLEXIBLE RESISTOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1519036A (en) * 1974-10-18 1978-07-26 Promothermo Verwarmingstoepass Electrical convection heating radiator
WO2008122362A1 (en) * 2007-04-04 2008-10-16 Beru Aktiengesellschaft Electric heater, particularly for automobiles

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786230A (en) * 1971-12-14 1974-01-15 F Brandenburg Radiant heater
JPS60253757A (en) * 1984-05-30 1985-12-14 Nippon Denso Co Ltd Fan heater
US4900898A (en) * 1988-01-20 1990-02-13 Kling William E Electric space heater
EP0333906B1 (en) * 1988-03-25 1993-10-20 David & Baader DBK Spezialfabrik elektrischer Apparate und Heizwiderstände GmbH PTC heating resistor
DE3869773C5 (en) * 1988-07-15 2010-06-24 Dbk David + Baader Gmbh Radiator.
FR2643138B1 (en) * 1989-02-14 1991-06-07 Airelec Ind ELECTRIC HEATER
JPH0855673A (en) * 1994-08-10 1996-02-27 Murata Mfg Co Ltd Positive temperature coefficient thermister heat generating device
US6553141B1 (en) * 2000-01-21 2003-04-22 Stentor, Inc. Methods and apparatus for compression of transform data
US20030095795A1 (en) * 2001-11-21 2003-05-22 Birdsell Walter G. PTC heating element
ITMI20021226A1 (en) * 2002-06-05 2003-12-05 Cebi Spa ELECTRIC HEATER WITH PTC ELEMENTS PARTICULARLY FOR VEHICLE CABIN AERATION SYSTEMS
US6760543B1 (en) * 2002-12-18 2004-07-06 Lasko Holdings, Inc. Heated air circulator with uniform exhaust airflow
US7007504B2 (en) * 2003-01-29 2006-03-07 Kyeong-Hwa Kang Condenser
ATE295281T1 (en) * 2003-02-28 2005-05-15 Catem Gmbh & Co Kg ELECTRIC HEATING DEVICE WITH HEATING ZONES
SE0303570L (en) * 2003-12-03 2005-06-04 Microdrug Ag Moisture-sensitive medical product
EP1963753B1 (en) * 2005-12-20 2016-06-08 BorgWarner Ludwigsburg GmbH Electrical heating apparatus, in particular for automobiles
CN200980172Y (en) * 2006-12-06 2007-11-21 宁波宁达电器有限公司 An improved electric heating pipe and an electric heater composed of electric heating pipes
DE102008033140A1 (en) * 2008-07-15 2010-01-21 Beru Ag car heater
US20110024063A1 (en) * 2009-07-29 2011-02-03 Hao-Ting Cheou Interchangeable rolling blind device
CN201663711U (en) * 2010-01-06 2010-12-01 东莞市通盛机械有限公司 Ceramic heater
JP5535742B2 (en) * 2010-04-19 2014-07-02 三菱重工業株式会社 Heat medium heating device and vehicle air conditioner using the same
CN202133104U (en) * 2011-05-18 2012-02-01 江苏金达电热电器有限公司 Hot air circulation heating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1519036A (en) * 1974-10-18 1978-07-26 Promothermo Verwarmingstoepass Electrical convection heating radiator
WO2008122362A1 (en) * 2007-04-04 2008-10-16 Beru Aktiengesellschaft Electric heater, particularly for automobiles

Also Published As

Publication number Publication date
US20150300686A1 (en) 2015-10-22
JP6301938B2 (en) 2018-03-28
WO2014060546A1 (en) 2014-04-24
CN104823004B (en) 2018-10-26
FR2997168B1 (en) 2018-09-14
EP2909542B1 (en) 2018-02-21
CN104823004A (en) 2015-08-05
KR20150074088A (en) 2015-07-01
EP2909542A1 (en) 2015-08-26
JP2015536435A (en) 2015-12-21

Similar Documents

Publication Publication Date Title
EP1632109B1 (en) Electric heating device, particularly for a motor vehicle
EP2766669B1 (en) Insulated heating module for additional heating device
EP2909542B1 (en) Heat dissipator, associated heating module and assembly method therefor
EP2819863B1 (en) Electric fluid heating device for a vehicle and corresponding heating and/or cooling device
EP2022293B1 (en) Metal thermal energy dissipating element, traversed by an air stream and an electric current
EP2604088B1 (en) Heater block for electric heating radiator
EP3583825B1 (en) Electrical connection interface of an electric heating device for a motor vehicle
WO2012019952A1 (en) Heat exchanger comprising a screen-printed heating element
FR2853198A1 (en) ELECTRIC HEATING DEVICE INCLUDING A HEATING BODY
EP2936955A1 (en) Cooling device for a printed circuit board
FR2901869A1 (en) Heat exchanger/radiator for heating/air-conditioning system of low consumption motor vehicle, has heating element fixed on air outlet of exchanger and presents electro conductive coverings connected in non electro-conductive manner
FR3081540A1 (en) HEATING DEVICE FOR MOTOR VEHICLE
WO2020065165A1 (en) Electric radiator of a ventilation, heating and/or air-conditioning system of a motor vehicle
FR3075333A1 (en) HEAT EXCHANGER FOR VEHICLE
EP2604089B1 (en) Heating module comprising a screen-printed heating element
WO2019229316A1 (en) Heating device for a motor vehicle
WO2016188970A1 (en) Heating module and electric heating device comprising such a heating module
FR2762958A1 (en) HEATING DEVICE WITH RESISTIVE ELEMENTS WITH POSITIVE TEMPERATURE COEFFICIENT
FR2996066A1 (en) Thermal control device for battery module of car, has bundle of heat pipes, where each heat pipe includes end having surface in thermal contact with battery, and another end having surface in thermal contact with heat exchanger
EP2241840B1 (en) Frame for an electric heating module and respective manufacturing method
FR3081280A1 (en) HEATING MODULE FOR HEATING DEVICE FOR MOTOR VEHICLE
FR3075334A1 (en) HEAT EXCHANGER FOR A VEHICLE HAVING AN ELECTRICALLY HEATING DISSIPATION DEVICE
WO2019086802A1 (en) Sheet of electrical insulation with reliefs for accepting an electrode and a heating body for a motor vehicle heating device heating module
FR2906602A1 (en) HEATED METALLIC ELEMENT CROSSING BY AN AIR FLOW.
EP3247954A1 (en) Additional electric radiator for motor vehicle

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 4

PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

ST Notification of lapse

Effective date: 20210605