FR2984470A1 - Device for conditioning different buildings by air-conditioning system, has solar panel for producing electrical energy to feed air-conditioning system, and refrigeration unit producing cold in cold storage chamber - Google Patents

Device for conditioning different buildings by air-conditioning system, has solar panel for producing electrical energy to feed air-conditioning system, and refrigeration unit producing cold in cold storage chamber Download PDF

Info

Publication number
FR2984470A1
FR2984470A1 FR1103900A FR1103900A FR2984470A1 FR 2984470 A1 FR2984470 A1 FR 2984470A1 FR 1103900 A FR1103900 A FR 1103900A FR 1103900 A FR1103900 A FR 1103900A FR 2984470 A1 FR2984470 A1 FR 2984470A1
Authority
FR
France
Prior art keywords
cold
bowl
conditioning system
storage chamber
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
FR1103900A
Other languages
French (fr)
Inventor
Cheikh Moncef Ben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR1103900A priority Critical patent/FR2984470A1/en
Publication of FR2984470A1 publication Critical patent/FR2984470A1/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0046Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The device has a solar panel (1) for producing electrical energy to feed an air-conditioning system. A refrigeration unit (2) produces cold in a cold storage chamber (19). A heat absorber (10) is moved to ensure air conditioning in spaces concerned according to a user need. The cold storage chamber allows the storage and the conservation of negative cold with temperature. Walls (4) of a basin (6) prevents freezing of water in the basin using an insulation against external heat. A tube is mounted to a valve of the basin to control the filling of water in the basin.

Description

Description La présente invention concerne un dispositif de climatiser des différents locaux à ces variation des volumes suivants les besoins des utilisateurs, par un système de climatisation par stockage de froid à l'énergie solaire. La climatisation généralement se fait par le traditionnel système de climatisation avec une grande consommation de l'énergie électrique en fonction des besoins de l'utilisateur avec des plusieurs influence négatif sur l'environnement. Le dispositif selon l'invention permet de remédier à ces inconvénients, il comporte une première caractéristique une chambre de stockage nous permet de produire et conserver un volume refroidi à une température négatif pendant la plus longue période d'utilisation du système de climatisation par stockage de l'énergie solaire, une deuxième caractéristique un panneau solaire photo voltaïque producteur d'énergie électrique qui nous permet d'alimenter tout le système en respectant toujours la propreté de l'environnement, La chambre de stockage permet d'éliminer la consommation permanente de l'énergie électrique du groupe frigorifique qui produit le froid à température négatif avec l'évaporateur ce qui permet de donner une bonne aération des milieux, ceci ce fait en association avec l'absorbeur de chaleur d'après notre système de climatisation. Nous utilisons les panneaux solaire photo voltaïque pour la production de l'énergie électrique pour l'alimentation. Toutes les composantes de ce dernier fonctionnent avec une basse tension et basse puissance c'est à dire le minimum de l'énergie électrique (fourni par les panneaux photo voltaïque) sauf qu'au démarrage car sa nécessite à cette étape une quantité d'énergie plus importante mais cette dernière sera diminuer après de l'ordre de 90%donc plus d'économie. Après la mise en marche du groupe frigorifique ainsi que tout le système nous arrivons à fabriquer le glaçons dans la chambre de stockage, une fois ceci est fait notre système de climatisation change son change son mode de fonctionnement à la suite d'une optimisation bien déterminée. Affin d'obtenir une bonne qualité de climatisation le groupe frigorifique reste 2 heures en états de marche sur 24 heures pour conserver le froid à l'intérieur de la chambre de stockage et c'est ce qu'on appelle la climatisation par stockage. Bien qu'en même temps on peut utiliser l'énergie électrique par le réseau si on ne veut pas utilisé les panneaux solaires photo voltaïques. Un avantage de ce système à signaler c'est le faite qu'on peut l'adopter sur un système traditionnel de telle sorte que l'utilisateur peut conserver l'appareillage si bien sur il est en bonne état. Donc dans ce cas on se trouve avec un gain à la fin de `ancien système, de l'énergie, non utilisation des panneaux et surtout la propreté de l'environnement. A partir des analyses indiquée précédemment on constate que : - La chambre de stockage constitue la composante la plus importante du système de climatisation par stockage de l'énergie solaire. C'est une zone de conservation de froid à une baisse de Température de congélation. Cette dernière permet au système d'absorber la chaleur du local concerné pendant une courte durée et plus d'efficacité. - Les panneaux solaires photo voltaïque constituent la première partie pour produire de l'énergie électrique affine d'alimenter le groupe frigorifique pendant une durée limité et le reste des composantes sera alimenté à basse tension et de manière permanente. - Le groupe frigorifique constitue la partie productrice de froid à température négatif et nous permet aussi de stocker et de conserver le froid produit au démarrage pendant une longue période qui nous permet de l'utiliser à long terme en conservant une grande efficacité de climatisation des locaux. - L'absorbeur de chaleur constitue la dernière partie de notre système et sui a pour rôle d'absorber la chaleur des locaux. Pour mieux éclaircir l'image et par analogie au système traditionnel cette composante (absorbeur) remplace le ventilo convecteur. Les figures annexée illustrent l'invention La figure 1 : système de climatisation La figure 2 : les variantes du système Le dispositif selon la figure 1 en que comprend un capteur solaire photo voltaïque(1) producteur d'énergie électrique qui alimente tout le système de climatisation. Le premier consommateur de l'énergie électrique est le groupe frigorifique(2) ensuite la ventilateur ou la turbine (11) de l'absorbeur de chaleur (10) et en dernier on trouve le système de régulation .En effet, l'énergie électrique produite par le panneau solaire photo voltaïque(1) se propage entre toutes les composantes fonctionnelles à effet électrique proportionnellement aux besoins de ces dernières. le groupe frigorifique (2) a une consommation trop élevée qui diminue une fois la production du froid est faite car la durée de marche de groupe frigorifique (2) est de l'ordre de2à 3 heures par jours. Description The present invention relates to a device for air conditioning different premises to these variations in volumes following the needs of users, by a cooling system by storage of cold solar energy. The air conditioning is generally done by the traditional air conditioning system with a large consumption of electrical energy according to the needs of the user with several negative influence on the environment. The device according to the invention overcomes these disadvantages, it has a first feature a storage chamber allows us to produce and maintain a volume cooled to a negative temperature during the longest period of use of the air conditioning system by storage of solar energy, a second characteristic photovoltaic photovoltaic solar panel producing electrical energy that allows us to supply the entire system while always respecting the cleanliness of the environment, The storage chamber allows to eliminate the permanent consumption of electricity. electric energy of the refrigeration unit which produces the cold at negative temperature with the evaporator which allows to give a good aeration of the media, this is done in association with the heat absorber according to our air conditioning system. We use photo voltaic solar panels for the production of electrical energy for power supply. All components of the latter work with a low voltage and low power, ie the minimum of electrical energy (provided by photo voltaic panels) except at startup because it requires at this stage a quantity of energy more important but it will decrease after the order of 90% so more savings. After the start of the refrigeration unit and the whole system we are able to make the ice cubes in the storage room, once this is done our air conditioning system changes its mode of operation as a result of a well-defined optimization . In order to obtain a good quality of air conditioning the cooling unit remains 2 hours in 24-hour operating conditions to keep the cold inside the storage chamber and this is called storage air conditioning. Although at the same time we can use the electrical energy by the network if we do not want to use the photo voltaic solar panels. An advantage of this system to report is the fact that it can be adopted on a traditional system so that the user can keep the equipment so good on it is in good condition. So in this case we are with a gain at the end of old system, energy, non-use of panels and especially the cleanliness of the environment. From the analyzes indicated above it can be seen that: - The storage chamber is the most important component of the air conditioning system by storage of solar energy. It is a cold storage area with a drop in freezing temperature. The latter allows the system to absorb the heat of the room concerned for a short time and more efficiency. - Photo voltaic solar panels are the first part to produce refined electrical energy to supply the refrigeration unit for a limited time and the rest of the components will be supplied at low voltage and permanently. - The refrigeration unit is the producer of cold at a negative temperature and also allows us to store and conserve the cold produced at startup for a long time that allows us to use it in the long term while maintaining a high efficiency of air conditioning of the premises . - The heat absorber is the last part of our system and its role is to absorb the heat of the premises. To better clarify the image and by analogy with the traditional system this component (absorber) replaces the convector fan. The attached figures illustrate the invention. FIG. 1: air conditioning system FIG. 2: the variants of the system The device according to FIG. 1 comprises a photo voltaic solar collector (1) producing electrical energy which supplies the entire system of electricity. air conditioner. The first consumer of the electrical energy is the refrigeration unit (2) then the fan or the turbine (11) of the heat absorber (10) and lastly the control system is found. In fact, the electrical energy produced by the photo voltaic solar panel (1) propagates between all functional electrical components proportionally to the needs of the latter. the refrigerating unit (2) has a consumption too high which decreases once the production of the cold is made because the running time of the refrigerating unit (2) is of the order of 2 to 3 hours per day.

La production du froid se fait suite à une coopération entre l'évaporateur (3) et le groupe frigorifique (2). L'évaporateur (3) installé au tour et au dessous de la cuvette (6) affin d'absorber la chaleur de l'eau présent dans la cuvette (6) donc le changement de son état du liquide vers le solide est glaçons. Le glaçon transfert le froid par conductivité vers le serpentin(8) plongé dans la cuvette (6).Ensuite, vers l'absorbeur de chaleur (10) par l'effet de la pompe circulatoire (12) passant par les raccordements (13) des circuits. Cette distribution du fluide d'effectue sous l'effet de la pompe circulatoire (12) à une température négatif de froid. Dispositif selon la figure 2 caractérisé en ce que La chambre de stockage de froid (19) est la partie principale du système de climatisation par stockage à l'énergie solaire thermique, se compose à son tour de plusieurs composantes, l'évaporateur (3) producteur de froid à température négatif sous l'effet du groupe frigorifique (2). L'évaporateur est monté sous forme de serpentin qui fait le tour et au dessous de la cuvette (6) directe, en effet , la température de la cuvette(6) se baisse, ce qui génère un changement d'état de l'eau du liquide au solide. Bien sur à ne pas oublier que tout ceci ne ce fait que lorsque le groupe frigorifique (2) fabrique le glaçon dans la cuvette (6).Le serpentin (8) est rempli d'un liquide incongelable pour assurer le transfert de la température négatif de glaçon précédemment fabriquée par conductivité, et sou l'effet de la pompe circulatoire (12) qui absorbe la chaleur dans les locaux concerné. L'étape la plus importante est celle du stockage du glaçons pendant une longue durée ce qui nous permet une bonne utilisation avec une efficacité et une excellent aération. La vigilance est bien demandée dans notre cas c'est la raison pour la quelle on a mis au tour de la cuvette un isolat (5) qui est double et large injection et des parois (4) qui couvre la cuvette (6) et l'évaporateur ainsi que pour gagner les pertes de froid. Une isolation pour la chambre de stockage de toute la chaleur extérieure avec le couvercle (14) équipé d'une double et large similaires aux parois (4) mais par contre le couvercle (14) mobile pour faciliter les interventions dans la chambre de stockage de froid(19). le tube (15) monté sur la cuvette(6) traverse la parois (4) et l'isolation (5)d'un seul coté, le tube (15)mené d'une vanne (16) pour maitriser le remplissage de l'eau dans la cuvette (6),nous avons aussi un autre tube (17) monté sur la partie bas de la cuvette (6) traverse la parois (4) et l'isolat(5) d'un seul coté mené d'une vanne (18) pour maitriser le vidange d'eau de la cuvette(6). The production of cold is a result of cooperation between the evaporator (3) and the refrigeration unit (2). The evaporator (3) installed at the turn and below the bowl (6) to absorb the heat of the water present in the bowl (6) so the change of its state of the liquid to the solid is ice cubes. The ice cube transfers the cold conductivity to the coil (8) immersed in the bowl (6) .Then to the heat absorber (10) by the effect of the circulatory pump (12) passing through the connections (13) circuits. This fluid distribution performs under the effect of the circulatory pump (12) at a negative cold temperature. Device according to Figure 2 characterized in that the cold storage chamber (19) is the main part of the solar thermal storage storage system, consists in turn of several components, the evaporator (3) producer of cold at negative temperature under the effect of the refrigerating unit (2). The evaporator is mounted as a coil that circumnavigates and below the bowl (6) direct, indeed, the temperature of the bowl (6) is lowered, which generates a change of state of the water from liquid to solid. Of course, do not forget that all this only happens when the refrigeration unit (2) makes the ice cube in the bowl (6). The coil (8) is filled with an incongruent liquid to ensure the transfer of the negative temperature. previously produced by conductivity, and under the effect of the circulatory pump (12) which absorbs heat in the premises concerned. The most important step is the storage of ice cubes for a long time which allows us a good use with efficiency and excellent aeration. Vigilance is well requested in our case it is the reason for which one has put in the turn of the bowl an isolate (5) which is double and wide injection and walls (4) which covers the bowl (6) and the evaporator as well as to gain the cold losses. An insulation for the storage chamber of all external heat with the cover (14) equipped with a double and wide similar to the walls (4) but against the cover (14) movable to facilitate interventions in the storage room of cold (19). the tube (15) mounted on the bowl (6) passes through the wall (4) and the insulation (5) on one side, the tube (15) led by a valve (16) to control the filling of the water in the bowl (6), we also have another tube (17) mounted on the lower part of the bowl (6) through the walls (4) and the isolate (5) of a single side led d ' a valve (18) for controlling the water discharge from the bowl (6).

Claims (5)

REVENDICATIONS1)- Dispositif pour climatiser des différents locaux par un système de climatisation par stockage de froid à l'énergie solaire caractérisé en ce qu'il comprend un panneau solaire (1) qui permet de produire l'énergie électrique pour alimenter tout le système de climatisation par stockage de froid à l'énergie solaire, qui sera permanente pour le groupe frigorifique(2). CLAIMS1) - Device for air conditioning of different premises by an air conditioning system by storage of cold solar energy characterized in that it comprises a solar panel (1) which allows the production of electrical energy to power the entire system. cooling by storage of cold with solar energy, which will be permanent for the cooling unit (2). 2)- Dispositif selon la revendication 1 caractérisé en ce que le groupe frigorifique (2) change de durée de fonctionnement une foie le glaçon est fabriqué dans la cuvette (6). Les autres composantes de notre système reste en marche suite à une régulation bien déterminé branché avec la chambre de stockage (19) pour conserver le glaçon précédemment fabriqué, l'absorbeur de chaleur (10) reste en marche pour nous assurer une bonne conditionnement d'air des espaces concernés suivant le besoin de l'utilisateur. 2) - Device according to claim 1 characterized in that the refrigerating unit (2) changes operating time a liver ice cube is manufactured in the bowl (6). The other components of our system remain running after a specific regulation connected with the storage chamber (19) to keep the ice cube previously manufactured, the heat absorber (10) remains running to ensure proper conditioning of air of the spaces concerned according to the needs of the user. 3) - Dispositif selon l'une quelleconque des revendications caractérisé en ce que la chambre de stockage (19) quinous permet le stockage et la conservation de froid à température négatif. La congélation de l'eau ce fait dans la cuvette (6) en utilisant une bonne isolation contre la chaleur extérieure. Les parois (4) présentent les premiers défenseurs contre la chaleur. L'isolation (5) C'est le deuxième défenseur contre la chaleur en double injection pour conserver la plus grande quantité de froid possible et pour une longue durée dans la cuvette (6) et finalement le couvercle (14) qui est mobile avec la même méthode d'isolation. 3) - Device according to any one of the claims characterized in that the storage chamber (19) quinous allows the storage and preservation of cold temperature negative. The freezing of the water is done in the bowl (6) using a good insulation against external heat. The walls (4) have the first defenders against heat. Insulation (5) This is the second double injection heat defender to keep as much cold as possible and for a long time in the bowl (6) and finally the lid (14) which is mobile with the same method of insulation. 4) Le dispositif selon l'une quelconque des revendication 1 à 3 caractérisé en ce que le serpentin (8) qui est dans la cuvette (6) c'est le premier point de transfert de froid au serpentin (9) qui se trouve dans l'échangeur de chaleur (10) suite à la circulation du liquide à Température négatif sous l'effet de la pompe circulatoire(12). 4) The device according to any one of claims 1 to 3 characterized in that the coil (8) which is in the bowl (6) is the first point of cold transfer to the coil (9) which is in the heat exchanger (10) following the circulation of the negative temperature liquid under the effect of the circulatory pump (12). 5) Dispositif selon quelconque des revendications 1 à 4 caractérisé par le tube (15) monté à la cuvette (6) mené d'une vanne (16) pour maitriser le remplissage de l'eau dans la cuvette (6), un autre tube (17) monté aussi à la basse partie de la cuvette (6) mené d'une vanne (18)pour maîtriser le vidange d'eau qui est dans la cuvette(6).donc le remplissage et le vidange de la cuvette (6) sera effectué suivant le besoin. 5) Device according to any one of claims 1 to 4 characterized by the tube (15) mounted to the bowl (6) led a valve (16) to control the filling of the water in the bowl (6), another tube (17) also mounted to the low part of the bowl (6) led by a valve (18) to control the draining of water which is in the bowl (6) .so the filling and emptying of the bowl (6). ) will be performed as needed.
FR1103900A 2011-12-16 2011-12-16 Device for conditioning different buildings by air-conditioning system, has solar panel for producing electrical energy to feed air-conditioning system, and refrigeration unit producing cold in cold storage chamber Pending FR2984470A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1103900A FR2984470A1 (en) 2011-12-16 2011-12-16 Device for conditioning different buildings by air-conditioning system, has solar panel for producing electrical energy to feed air-conditioning system, and refrigeration unit producing cold in cold storage chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1103900A FR2984470A1 (en) 2011-12-16 2011-12-16 Device for conditioning different buildings by air-conditioning system, has solar panel for producing electrical energy to feed air-conditioning system, and refrigeration unit producing cold in cold storage chamber

Publications (1)

Publication Number Publication Date
FR2984470A1 true FR2984470A1 (en) 2013-06-21

Family

ID=48538201

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1103900A Pending FR2984470A1 (en) 2011-12-16 2011-12-16 Device for conditioning different buildings by air-conditioning system, has solar panel for producing electrical energy to feed air-conditioning system, and refrigeration unit producing cold in cold storage chamber

Country Status (1)

Country Link
FR (1) FR2984470A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162368A1 (en) * 2014-04-23 2015-10-29 Edouard Serras Method and device for controlling the temperature and the relative humidity inside a building
EP3076105A3 (en) * 2015-03-30 2016-12-07 Viessmann Werke GmbH & Co. KG Cold reservoir and cooling system
CN108061344A (en) * 2017-11-22 2018-05-22 国网湖北省电力有限公司 A kind of optimal coordinated control system and method for distribution family photovoltaic+ice cold-storage
WO2018062981A3 (en) * 2016-09-30 2018-05-24 Universite Internationale De Rabat System and method for hybrid solar temperature control with energy storage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111319A1 (en) * 1991-04-08 1992-10-15 Siemens Ag Air-conditioning installation powered by buffered solar battery - includes forced draught heat exchanger fans and coolant compressor driven by motors independent of mains electricity
JP2006183933A (en) * 2004-12-27 2006-07-13 Sanyo Electric Co Ltd Photovoltaic system
WO2008060196A1 (en) * 2006-11-16 2008-05-22 Gf Konsult Ab A cooling system and method including coolant accumulator and solar cells for electricity production
US7543455B1 (en) * 2008-06-06 2009-06-09 Chengjun Julian Chen Solar-powered refrigerator using a mixture of glycerin, alcohol and water to store energy
DE202010013633U1 (en) * 2010-09-25 2011-02-10 Rolfs, Abram Combination of a wind turbine or photovoltaic system with a refrigerant heat pump system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4111319A1 (en) * 1991-04-08 1992-10-15 Siemens Ag Air-conditioning installation powered by buffered solar battery - includes forced draught heat exchanger fans and coolant compressor driven by motors independent of mains electricity
JP2006183933A (en) * 2004-12-27 2006-07-13 Sanyo Electric Co Ltd Photovoltaic system
WO2008060196A1 (en) * 2006-11-16 2008-05-22 Gf Konsult Ab A cooling system and method including coolant accumulator and solar cells for electricity production
US7543455B1 (en) * 2008-06-06 2009-06-09 Chengjun Julian Chen Solar-powered refrigerator using a mixture of glycerin, alcohol and water to store energy
DE202010013633U1 (en) * 2010-09-25 2011-02-10 Rolfs, Abram Combination of a wind turbine or photovoltaic system with a refrigerant heat pump system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162368A1 (en) * 2014-04-23 2015-10-29 Edouard Serras Method and device for controlling the temperature and the relative humidity inside a building
FR3020447A1 (en) * 2014-04-23 2015-10-30 Edouard Serras METHOD AND DEVICE FOR REGULATING TEMPERATURE AND RELATIVE HUMIDITY IN A BUILDING
EP3076105A3 (en) * 2015-03-30 2016-12-07 Viessmann Werke GmbH & Co. KG Cold reservoir and cooling system
WO2018062981A3 (en) * 2016-09-30 2018-05-24 Universite Internationale De Rabat System and method for hybrid solar temperature control with energy storage
CN108061344A (en) * 2017-11-22 2018-05-22 国网湖北省电力有限公司 A kind of optimal coordinated control system and method for distribution family photovoltaic+ice cold-storage

Similar Documents

Publication Publication Date Title
FR2984470A1 (en) Device for conditioning different buildings by air-conditioning system, has solar panel for producing electrical energy to feed air-conditioning system, and refrigeration unit producing cold in cold storage chamber
DK177404B1 (en) An energy system with a heat pump
EP3172496A1 (en) Device and method for storing thermal energy
EP0670462B1 (en) Unit for distributing and/or collecting cold and/or warmth
FR2995979A1 (en) INSTALLATION OF HEATING WATER HEATER WITH HEATING FUNCTION
CH711726A2 (en) Device and method for regulating the temperature of a battery or fuel cell of an electric or hybrid vehicle.
FR2991439A1 (en) INSTALLATION OF THERMAL ENERGY TRANSFORMATION
RU2652490C2 (en) Temperature management system
EP2196743A2 (en) Multi-energy and multi-source thermodynamic device with hot water tank
FR2954472A1 (en) Method for regulating electrosolar water heater of heating installation utilized in dwelling for domestic use, involves starting nonsolar unit according to moment of day when supply does not allow solar unit to heat water in tank
EP2526352A2 (en) Thermal power upgrade facility
CN202393610U (en) Cold-heat source coupling liquid support system in performance test for refrigerating machine
CA2712068A1 (en) Plant for producing sanitary hot water
JP4369331B2 (en) Supercooled water dynamic ice storage tank
JP5792501B2 (en) Thermal storage device and method for preventing freezing thereof
TW201309984A (en) Water dispenser
CN201772572U (en) Reservoir structure using low valley electricity to store energy
FR2983282A1 (en) Refrigeration installation for cooling e.g. cold room, for preserving perishable goods i.e. milk, has light radiation sensor controlling operation of compressors of refrigerating units in accordance with light radiation
CN111519709A (en) Water supply system and method for transformer spraying cooling system
CN203657121U (en) Temperature adjusting system
EP0836059A1 (en) Cold pump
EP2971760A1 (en) Concentrating solar power station with improved operation
CN112902512B (en) Sleeve type condenser low-temperature constant-temperature system and using method thereof
JP2004233009A (en) Operation control method of ice storage type water cooler
EP3501865B1 (en) Method for managing the operation of a refrigerated transport truck of the indirect injection type for heat-sensitive products

Legal Events

Date Code Title Description
RN Application for restoration

Effective date: 20150930

IC Decision of the director general to declare irreceivable or to reject an appeal

Effective date: 20160421