FR2981435A1 - Thermodynamic energy recuperator for recovery of energy based on gray water discharge in health facility building, has evaporator comprising refrigerating system that includes compressor, condenser and relaxation capillary - Google Patents

Thermodynamic energy recuperator for recovery of energy based on gray water discharge in health facility building, has evaporator comprising refrigerating system that includes compressor, condenser and relaxation capillary Download PDF

Info

Publication number
FR2981435A1
FR2981435A1 FR1103118A FR1103118A FR2981435A1 FR 2981435 A1 FR2981435 A1 FR 2981435A1 FR 1103118 A FR1103118 A FR 1103118A FR 1103118 A FR1103118 A FR 1103118A FR 2981435 A1 FR2981435 A1 FR 2981435A1
Authority
FR
France
Prior art keywords
energy
recuperator
evaporator
thermodynamic
recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR1103118A
Other languages
French (fr)
Inventor
Yves Pages
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR1103118A priority Critical patent/FR2981435A1/en
Publication of FR2981435A1 publication Critical patent/FR2981435A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0012Recuperative heat exchangers the heat being recuperated from waste water or from condensates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/20Sewage water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/30Relating to industrial water supply, e.g. used for cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The recuperator has a container made up of a cylindrical tube (1), a conical bottom (2), a lid (5) and an evaporator (9). The evaporator comprises a refrigerating system that includes a compressor (11), a water-cooled condenser (12) and a relaxation capillary. An output tube (8) is connected to a drain that is connected to a general evacuation tube. A heat exchanger is placed partly above the evaporator.

Description

La présente invention concerne un récupérateur d'énergie sur eaux d'évacuation comprenant un système thermodynamique associé à un réservoir de transfert. La réduction continuelle des consommations énergétiques dans le bâtiment et en particulier dans l'habitat individuel s'accompagne en pourcentage d'une augmentation progressive des consommations liées à la production d'eau chaude. L'amélioration du confort a pour effet des consommations d'eau chaude accrues ce qui aggrave le phénomène. Des appareils, échangeurs de chaleur, sont mis sur le marché en vue de récupérer une partie de l'importante quantité d'énergie perdue par évacuation. Ces appareils présentent différents inconvénients. Leur usage se limite à la récupération de chaleur sur eau de douche. L'eau d'évacuation cède une partie de son énergie par l'intermédiaire d'un échangeur de chaleur à une arrivée d'eau froide qui vient compenser l'eau chaude fournie par un ballon de stockage. Ces appareils sont par contre sans intérêt lorsque la récupération doit être faite sur l'évacuation d'eau en provenance de stockages intermédiaires. Dans ce cas il n'y a pas de consommation simultanée d'eau froide. C'est le cas des lavabos, évier, baignoires et diverses machines à laver. En outre l'énergie récupérée permet l'obtention d'eau tiède non exploitable sans chauffage complémentaire et l'énergie récupérée ne dépasse pas 50% du potentiel de récupération dans les meilleures conditions. La présente invention vise récupérer pratiquement l'intégralité de l'énergie normalement perdue sans perturber le débit instantané de l'évacuation d'eau. L'invention met à profit les phénomènes de stratification qui prennent naissance dans une masse liquide. Les eaux d'évacuation chaudes sont introduites dans un réservoir en partie haute et latéralement afin de favoriser la stratification. Un échangeur placé en partie haute et constituant l'évaporateur du système frigorifique prélève l'énergie calorifique. L'eau refroidie dont la densité augmente a tendance à descendre vers la partie basse du réservoir. Une nouvelle arrivée d'eau a tendance a augmenter le volume contenu dans le réservoir et la poussée gravitaire chasse l'eau froide située au fond du réservoir par un tube prenant son origine au point le plus bas et son extrémité en haut du réservoir au même niveau que la tube d'amenée. La quantité d'eau chaude contenue dans le réservoir sera variable en fonction du débit et de la température de l'évacuation. The present invention relates to a wastewater energy recuperator comprising a thermodynamic system associated with a transfer tank. The continual reduction of energy consumption in the building and in particular in the individual housing is accompanied as a percentage of a gradual increase in consumption related to the production of hot water. The improved comfort results in increased consumption of hot water which aggravates the phenomenon. Apparatuses, heat exchangers, are put on the market in order to recover part of the large amount of energy lost by evacuation. These devices have different disadvantages. Their use is limited to heat recovery on shower water. The waste water gives up some of its energy via a heat exchanger to a cold water inlet that compensates for the hot water supplied by a storage tank. These devices are however of no interest when the recovery must be made on the discharge of water from intermediate storage. In this case there is no simultaneous consumption of cold water. This is the case of washbasins, sink, bathtubs and various washing machines. In addition, the recovered energy makes it possible to obtain non-exploitable warm water without additional heating and the recovered energy does not exceed 50% of the recovery potential under the best conditions. The present invention aims to recover virtually all the energy normally lost without disturbing the instantaneous flow rate of the water discharge. The invention takes advantage of the stratification phenomena that originate in a liquid mass. The hot wastewater is introduced into a reservoir at the top and laterally to promote stratification. An exchanger placed at the top and constituting the evaporator of the refrigerating system takes the heat energy. The cooled water whose density increases tends to descend towards the lower part of the tank. A new inflow of water tends to increase the volume contained in the tank and the gravitational thrust flushes the cold water at the bottom of the tank with a tube originating from the lowest point and its end at the top of the tank at the same level as the supply tube. The amount of hot water contained in the tank will vary depending on the flow and the temperature of the evacuation.

Le système frigorifique évacue la chaleur au moyen d'un deuxième échangeur, condenseur à eau. Cet échangeur est associé à une pompe qui permet d'évacuer l'énergie produite à une température supérieure à 50°C. Le système de récupération est mis en service si la température d'eau excède 15°C en partie haute du réservoir et son arrêt est provoqué lorsque la température cette partie s'abaisse à 10 35 °C qui est également et généralement proche de la température d'eau délivrée par le réseau d'eau froide. Le dimensionnement du réservoir et du système thermodynamique conditionnent la capacité de récupération qui peut atteindre 100%. La consommation d'énergie est modeste sachant le système frigorifique présente un coefficient de performance élevé en raison niveau énergétique de la source de chaleur. La figure 1 montre une vue simplifiée en coupe du récupérateur d'énergie et du réservoir associé. Le réservoir réalisé de préférence en matière résistant à la corrosion et mauvais conducteur de chaleur se compose de 3 parties. Une partie verticale cylindrique (1), un fond (2) qui présente une forme conique permettant la concentration des impuretés au point bas. Un orifice optionnel (3) muni d'un bouchon permet la vidange du réservoir . Le fond est assemblé à la partie verticale par soudure ou autre procédé. Le couvercle du réservoir (5) est fixé sur la partie verticale avec un joint (21) et reste démontable. L'embase ( 4) assure le supportage de l'ensemble. L'introduction des eaux d'évacuation dites chaudes s'effectue par un embout tubulaire (6) placé en partie haute. L'évacuation des eaux dites froides s'effectuent au moyen d'un tube dont l'origine (7) se situe au fond du réservoir et l'extrémité au même niveau (8) que le tube d'introduction. Ce faisant, il y a aspiration partielle des impuretés ayant tendance à se concentrer en fond de cuve. L'évaporateur du circuit frigorifique en forme de spirale (9) est placé en partie haute en prenant soin de ménager au-dessus un espace immergé (10) représentant environ 20 1 de capacité. Cet espace permet de contenir provisoirement une arrivée d'eau très chaude ( machine à laver, lave vaisselle) qui peut provoquer des désordres sur la machine frigorifique. Le compresseur (11) comprime les vapeurs issues de l'évaporateur et les refoule à une pression et température plus élevée sur le condenseur à eau (12). Une pompe de circulation (13) permet d'assurer le refroidissement du condenseur et d'évacuer l'énergie vers le circuit d'utilisation comprenant un départ (14) et un retour (15). Une sonde de mesure de température (16 ) placée au coeur de l'échangeur permet de solliciter le groupe frigorifique si la température mesurée est supérieure ou égale à 15°C. Cette sonde a également pour autre fonction l'interdiction de démarrage si la température dans le réservoir dépasse une valeur prédéterminée fonction des caractéristiques du fluide frigorifique utilisé. La sonde de température (17) placée sur la canalisation « retour utilisation » provoque l'arrêt du groupe si la température de consigne fixée est obtenue. Le capillaire (22) est utilisé pour assurer la détente du fluide frigorifique. Une particularité importante dans le fonctionnement de l'appareil est que ce n'est point la demande d'énergie qui provoque la mise en service du groupe frigorifique, mais bien la disponibilité d'énergie au sein du réservoir. Le récupérateur d'énergie doit être disposé de manière à permettre l'écoulement des eaux d'évacuation. L'ensemble des composants du système thermodynamique, évaporateur exclu, sont placés dans une enveloppe de protection (18) placée au-dessus du réservoir. Le coffret électrique (19) comprend les équipements électriques nécessaires au fonctionnement et régulation du récupérateur. Le niveau d'eau atteint dans le réservoir (20) se situe au niveau de l'embout (6). La figure 1 ne montre pas les accessoires complémentaires nécessaires que l'on trouve sur les circuits frigorifiques et hydrauliques. La figure 2 montre l'installation de l'ensemble récupérateur (23) posé sur un sol (35) dans le cas d'une installation avec écoulement en provenance de l'étage ( 24). Le tube de sortie (8) est raccordé à la canalisation d'écoulement (25) qui se raccorde à l'évacuation générale (26). Dans un cas différent de locaux sans étage, l'ensemble récupérateur (23) sera partiellement encastré dans le sol (35) suivant figure 3. La position du récupérateur est fonction de la 10 hauteur d'arrivée des eaux d'évacuation. La figure 4 montre une des principales applications du récupérateur d'énergie suivant l'invention . La sortie eau chaude (14) du récupérateur alimente l'échangeur (29) d'un ballon contenant de l'eau (28) afin d'assurer la préparation d'eau chaude sanitaire. L'eau froide (31) entre et sort après chauffage en (32).Lorsque les besoins d'eau chaude sont satisfaits la 15 vanne trois voies (27) commute la production de chaleur sur une bouteille de mélange ( 30) pour apporter un complément d'énergie au circuit chauffage. Le retour de l'eau de chauffage (33) est après son passage dans la bouteille de mélange dirigée vers le générateur de chauffage principal par la canalisation(34). Le récupérateur d'énergie sur eaux d'évacuation trouve son application pour la production 20 d'eau chaude sanitaire qu'il peut assurer à 100% dans l'habitat individuel. Sachant que la production calorifique est de plus excédentaire, il peut également assurer un complément pour le chauffage. L'emploi de ce type d'appareil est tout indiqué dans l'habitat BBC mais il trouve son application dans tous les cas d'énergie perdue sur les eaux grises d'évacuation. The refrigeration system removes heat by means of a second heat exchanger, a water condenser. This exchanger is associated with a pump that allows to evacuate the energy produced at a temperature above 50 ° C. The recovery system is put into operation if the water temperature exceeds 15 ° C in the upper part of the tank and its shutdown is caused when the temperature this part drops to 35 ° C which is also and generally close to the temperature water delivered by the cold water system. The sizing of the tank and the thermodynamic system condition the recovery capacity which can reach 100%. The energy consumption is modest knowing the refrigeration system has a high coefficient of performance due to the energy level of the heat source. Figure 1 shows a simplified sectional view of the energy collector and the associated reservoir. The tank preferably made of corrosion resistant material and poor heat conductor consists of 3 parts. A vertical cylindrical part (1), a bottom (2) which has a conical shape for the concentration of impurities at the low point. An optional orifice (3) with a plug allows the tank to be emptied. The bottom is assembled to the vertical part by welding or other process. The tank lid (5) is fixed on the vertical part with a seal (21) and remains removable. The base (4) supports the assembly. The introduction of so-called hot waste water is made by a tubular nozzle (6) placed at the top. The so-called cold water is discharged by means of a tube whose origin (7) is at the bottom of the tank and the end at the same level (8) as the introduction tube. In doing so, there is partial aspiration of impurities tending to concentrate at the bottom of the tank. The evaporator of the spiral-shaped refrigerant circuit (9) is placed in the upper part, taking care to provide above a submerged space (10) representing approximately 20 liters of capacity. This space can temporarily contain a very hot water supply (washing machine, dishwasher) which can cause disorders on the refrigerating machine. The compressor (11) compresses the vapors from the evaporator and delivers them to a higher pressure and temperature on the water condenser (12). A circulation pump (13) is used to cool the condenser and discharge the energy to the use circuit comprising a start (14) and a return (15). A temperature measuring probe (16) placed at the heart of the exchanger makes it possible to request the refrigeration unit if the measured temperature is greater than or equal to 15 ° C. This probe also has the other function of prohibiting start if the temperature in the tank exceeds a predetermined value depending on the characteristics of the refrigerant used. The temperature sensor (17) placed on the line "return use" causes the group to stop if the set target temperature is obtained. The capillary (22) is used to ensure the expansion of the refrigerant. An important feature in the operation of the device is that it is not the energy demand that causes the commissioning of the refrigeration unit, but the availability of energy within the tank. The energy recuperator must be arranged in such a way as to allow the discharge of wastewater. All the components of the thermodynamic system, evaporator excluded, are placed in a protective envelope (18) placed above the tank. The electrical box (19) includes the electrical equipment necessary for the operation and regulation of the recuperator. The water level reached in the reservoir (20) is at the tip (6). Figure 1 does not show the necessary additional accessories found on the refrigerant and hydraulic circuits. Figure 2 shows the installation of the recuperator assembly (23) placed on a floor (35) in the case of a flow installation from the stage (24). The outlet tube (8) is connected to the flow line (25) which connects to the general outlet (26). In a different case of rooms without floor, the recovery unit (23) will be partially embedded in the ground (35) according to FIG. 3. The position of the recuperator is a function of the arrival height of the wastewater. FIG. 4 shows one of the main applications of the energy recuperator according to the invention. The hot water outlet (14) of the recuperator feeds the exchanger (29) with a flask containing water (28) to ensure the preparation of domestic hot water. The cold water (31) enters and exits after heating at (32). When the hot water requirements are met the three way valve (27) switches the heat output on a mixing bottle (30) to provide a additional energy to the heating circuit. The return of the heating water (33) is after passing through the mixing bottle directed to the main heating generator via the pipe (34). The wastewater energy recuperator finds its application for the production of domestic hot water that it can provide 100% in the individual housing. Knowing that the heat production is surplus, it can also provide a supplement for heating. The use of this type of device is appropriate in the BBC habitat but it finds its application in all cases of energy lost on greywater evacuation.

Claims (2)

REVENDICATIONS1. Récupérateur d'énergie thermodynamique sur eaux d'évacuation caractérisé en ce qu'il comprend un réservoir composé d'un tube cylindrique (1), d'un fond conique (2), d'un couvercle (5) et d'un évaporateur (9) constituant un élément du système frigorifique qui comporte un compresseur (11), d'un condenseur (12) et un capillaire de détente (22). REVENDICATIONS1. Thermodynamic energy recuperator on wastewater characterized in that it comprises a tank composed of a cylindrical tube (1), a conical bottom (2), a lid (5) and an evaporator (9) constituting an element of the refrigeration system which comprises a compressor (11), a condenser (12) and an expansion capillary (22). 2. Récupérateur d'énergie thermodynamique sur eaux d'évacuation selon la revendication 1 caractérisé en que le réservoir comprend un embout latéral d'amenée d'eau chaude (6) en partie supérieure du cylindre (1). . Récupérateur d'énergie thermodynamique sur eaux d'évacuation selon la revendication 1 caractérisé en que le réservoir comprend un tube d'évacuation d'eau froide trouvant son origine (7) au fond du réservoir (2) et son extrémité (8) en partie haute du cylindre (1). 4. Récupérateur d'énergie thermodynamique sur eaux d'évacuation selon la revendication 1 caractérisé en qu'il peut être posé au sol ou partiellement encastré dans le sol en fonction de la hauteur de l'évacuation d'eau à traiter. 5. Récupérateur d'énergie thermodynamique sur eaux d'évacuation selon la revendication 1 caractérisé en qu'il comprend une pompe de circulation (13) pour évacuer l'énergie produite. 2. thermodynamic energy recuperator on waste water according to claim 1 characterized in that the reservoir comprises a side nozzle for supplying hot water (6) in the upper part of the cylinder (1). . A thermodynamic waste water recuperator according to claim 1, characterized in that the reservoir comprises a cold water discharge tube having its origin (7) at the bottom of the tank (2) and its end (8) partly high cylinder (1). 4. Evaporative thermodynamic energy recuperator according to claim 1 characterized in that it can be placed on the ground or partially embedded in the ground depending on the height of the water discharge to be treated. 5. thermodynamic energy recovery of waste water according to claim 1 characterized in that it comprises a circulation pump (13) for discharging the energy produced.
FR1103118A 2011-10-12 2011-10-12 Thermodynamic energy recuperator for recovery of energy based on gray water discharge in health facility building, has evaporator comprising refrigerating system that includes compressor, condenser and relaxation capillary Withdrawn FR2981435A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR1103118A FR2981435A1 (en) 2011-10-12 2011-10-12 Thermodynamic energy recuperator for recovery of energy based on gray water discharge in health facility building, has evaporator comprising refrigerating system that includes compressor, condenser and relaxation capillary

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1103118A FR2981435A1 (en) 2011-10-12 2011-10-12 Thermodynamic energy recuperator for recovery of energy based on gray water discharge in health facility building, has evaporator comprising refrigerating system that includes compressor, condenser and relaxation capillary

Publications (1)

Publication Number Publication Date
FR2981435A1 true FR2981435A1 (en) 2013-04-19

Family

ID=45524603

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1103118A Withdrawn FR2981435A1 (en) 2011-10-12 2011-10-12 Thermodynamic energy recuperator for recovery of energy based on gray water discharge in health facility building, has evaporator comprising refrigerating system that includes compressor, condenser and relaxation capillary

Country Status (1)

Country Link
FR (1) FR2981435A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756283A1 (en) * 1996-12-12 1998-06-18 Peter Dipl Ing Schueler Device for storing and recovering heat from warm domestic effluent
DE10022193A1 (en) * 2000-05-06 2001-11-22 Siegfried Luckert Waste water tank with integrated air heat recovery is fitted with dual heat exchanger system transferring heat from water and air to heat pump
DE202006005592U1 (en) * 2006-04-04 2007-08-16 Schröder, Ulrich Water storage and heat pump system
DE102010006882A1 (en) * 2010-01-29 2011-08-04 Selent, Stefan, 12557 Excess heat accumulator for storing excess heat resulting during operation of e.g. block-type thermal power station, has cavity filled with liquid storage medium, where excess heat is introduced into cavity by heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756283A1 (en) * 1996-12-12 1998-06-18 Peter Dipl Ing Schueler Device for storing and recovering heat from warm domestic effluent
DE10022193A1 (en) * 2000-05-06 2001-11-22 Siegfried Luckert Waste water tank with integrated air heat recovery is fitted with dual heat exchanger system transferring heat from water and air to heat pump
DE202006005592U1 (en) * 2006-04-04 2007-08-16 Schröder, Ulrich Water storage and heat pump system
DE102010006882A1 (en) * 2010-01-29 2011-08-04 Selent, Stefan, 12557 Excess heat accumulator for storing excess heat resulting during operation of e.g. block-type thermal power station, has cavity filled with liquid storage medium, where excess heat is introduced into cavity by heat exchanger

Similar Documents

Publication Publication Date Title
CN201093904Y (en) Inorganic heat tube spraying condenser
EP0427648B1 (en) Method and device for the transfer of cold
KR20140091423A (en) Portable Water-Hot Boiler
FR2970071A1 (en) Device for recovery of heat on columns of grey water in e.g. houses, has heat exchanger placed at level of upper part of grey water tank, where evacuation of cold water is provided at level below arrival of grey water via conduit
FR2981435A1 (en) Thermodynamic energy recuperator for recovery of energy based on gray water discharge in health facility building, has evaporator comprising refrigerating system that includes compressor, condenser and relaxation capillary
CN106323064B (en) It is a kind of using super heat-conductive pipe and the mobile energy storage equipment of foam copper phase-change material
FR2699651A3 (en) Air conditioning unit for dwellings using an air-water heat pump.
FR3060714A1 (en) VAPOR GENERATING DEVICE USING LOW TEMPERATURE HEAT SOURCE
EP2353374B1 (en) Facility for transferring milk from a milking machine to a storage tank, provided with at least one heat exchanger
FR2880387A1 (en) Oil particle receiving and evacuating device for heat exchanger, has tank with reservoir to receive oil particles carried by air flow in turbocompressor and line mounted between reservoir and outlet tubing to draw particles in reservoir
FR2551536A1 (en)
CN208620868U (en) A kind of hot gas cooling device
WO2008083458A1 (en) A continuous power source of steam in circulation, and power reinforcement
FR3038974A1 (en) SYSTEM FOR RECOVERING CALORIES ON WASTEWATER, METHOD FOR IMPLEMENTING THE SAME
FR2893703A1 (en) Domestic hot water producing installation for e.g. apartment house, has sterilization chamber assuring, for heated supply water, stay time based on preset rate of domestic hot water to be delivered and desired sterilization temperature
FR2999687A1 (en) HOT WATER ACCUMULATOR
EP3587954B1 (en) Facility for producing domestic hot water and method for controlling same
FR2921716A1 (en) DISTRIBUTION BALL.
EP2655977B1 (en) Device for producing sanitary hot water by means of water solar collectors directly connected to a hot water reservoir
BE1015568A3 (en) Production installation hot water.
EP2947393B1 (en) Circuit for protection against the effects of overheating in a hot-water production system, and corresponding hot-water production system
FR2470946A3 (en) Heat recovery reservoir with bottom cold water feed - has refrigerator heat exchanger warm side near top hot water outlet, and cold side near cold water inlet
FR3008342A1 (en) PRESSING DEVICE
WO2011131917A1 (en) Container for condensing the products of bleeding a steam system and associated system for treating the products of bleeding
BE569691A (en)

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

ST Notification of lapse

Effective date: 20200910