FR2977010A1 - Concentrateur solaire comprenant un heliostat et une lentille de fresnel - Google Patents
Concentrateur solaire comprenant un heliostat et une lentille de fresnel Download PDFInfo
- Publication number
- FR2977010A1 FR2977010A1 FR1101971A FR1101971A FR2977010A1 FR 2977010 A1 FR2977010 A1 FR 2977010A1 FR 1101971 A FR1101971 A FR 1101971A FR 1101971 A FR1101971 A FR 1101971A FR 2977010 A1 FR2977010 A1 FR 2977010A1
- Authority
- FR
- France
- Prior art keywords
- rotation
- axis
- solar
- mirror
- axes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 abstract description 5
- 239000012141 concentrate Substances 0.000 abstract description 4
- 238000009434 installation Methods 0.000 abstract description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
- G02B7/183—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/30—Arrangements for concentrating solar-rays for solar heat collectors with lenses
- F24S23/31—Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/77—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with flat reflective plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S30/40—Arrangements for moving or orienting solar heat collector modules for rotary movement
- F24S30/45—Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes
- F24S30/458—Arrangements for moving or orienting solar heat collector modules for rotary movement with two rotation axes with inclined primary axis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0543—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/0547—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S30/00—Arrangements for moving or orienting solar heat collector modules
- F24S2030/10—Special components
- F24S2030/13—Transmissions
- F24S2030/136—Transmissions for moving several solar collectors by common transmission elements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Astronomy & Astrophysics (AREA)
- Photovoltaic Devices (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Problème posé : les concentrateurs solaires qui utilisent des héliostats nécessitent deux axes de rotation par miroir pour suivre le soleil, ce qui implique l'utilisation d'un grand nombre de moteurs et une mécanique complexe, donc des coûts élevés. Solution : Un héliostat comprend un miroir plan (1) et un premier axe de rotation (4) qui est positionné parallèlement à l'axe de rotation de la Terre. Le rayonnement solaire réfléchi (8) par le miroir (1) est dirigé en permanence vers une lentille de Fresnel fixe (9) qui est perpendiculaire au premier axe de rotation (4) et qui concentre le rayonnement solaire (8) sur une cible fixe (10). Un champ solaire est composé d'une pluralité d'héliostats selon ces caractéristiques et dont tous les premiers axes de rotation (4) sont mis en rotation grâce à une liaison mécanique (6) couplée à une tige qui est mise en mouvement par un seul moteur. Ce qui réduit le coût global de l'installation.
Description
1 CONCENTRATEUR SOLAIRE COMPRENANT UN HELIOSTAT ET UNE LENTILLE DE FRESNEL
La présente invention se rapporte aux concentrateurs solaires et plus particulièrement à ceux dont la cible est fixe, comme ceux qui utilisent des héliostats pour concentrer la lumière du soleil sur une cible fixée au sommet d'une tour, cette cible pouvant être un capteur thermique pour la production d'énergie mécanique ou calorifique, et/ou un capteur photovoltaïque pour la production d'énergie électrique.
ETAT DE LA TECHNIQUE Le principe des concentrateurs solaires qui utilisent des héliostats est que chaque héliostat redirige le rayonnement solaire vers une cible fixe, ce qui provoque une accumulation de lumière à la surface de la cible, donc une concentration de rayonnement qui est proportionnelle au nombre d'héliostats. Le déplacement du soleil se faisant suivant deux directions, en hauteur et en azimut, les héliostats possèdent en général deux axes de rotation pour suivre le soleil, donc deux moteurs chacun, ce qui est coûteux et augmente les besoins de maintenance. On connaît déjà quelques dispositifs particuliers (US2006060188A1 ; US7192146 ; US5787878) qui permettent de mettre en mouvement, avec un seul moteur, une pluralité d'héliostats, ce qui réduit le nombre de moteurs et donc le coût global d'une installation. Mais la partie mécanique des héliostats reste complexe et chère.
BUT DE L'INVENTION L'invention a pour but principal d'améliorer les concentrateurs solaires et de proposer une structure permettant de résoudre les inconvénients de complexité et de coût cités plus haut. En particulier, la présente invention a pour but de permettre de hautes concentrations solaires avec un seul héliostat et une cible qui restera fixe. Un autre but de l'invention est de proposer un concentrateur solaire dans lequel 30 chaque héliostat aura une mécanique simplifiée pour sa mise en rotation ce qui nécessitera un nombre réduit de moteurs, donc une économie sur le coût global de l'installation.
RESUME DE L'INVENTION Le dispositif de base objet de l'invention comprend un héliostat dont le miroir est 1 5 10 15 20 2530 plan. Ce miroir est mis en rotation autour de deux axes dont un premier axe est parallèle à l'axe de rotation de la Terre, donc dirigé vers l'étoile polaire, et un second axe qui est perpendiculaire et solidaire au premier. Dans le prolongement du premier axe de rotation est disposée une lentille de Fresnel dont la surface est perpendiculaire à cet axe de rotation et disposée de sorte que cet axe passe par le centre de la lentille. Une cible est positionnée à la focale de la lentille de Fresnel. Cette cible est une cellule photovoltaïque et/ou un capteur thermique et/ou un moteur thermique ou Stirling, ou encore un capteur à réaction chimique comme un catalyseur à hydrogène. L'héliostat contient donc un miroir plan et un premier axe de rotation parallèle à l'axe de rotation de la Terre et un deuxième axe de rotation qui est perpendiculaire au premier axe de rotation. La lentille de Fresnel est fixe, sa focale est linéaire ou ponctuelle, et la perpendiculaire au centre de sa surface est alignée sur le premier axe de rotation. La cible peut se placer entre la lentille de Fresnel et le plan focal de celle-ci, mais de préférence à la focale de la lentille. Les rayons parallèles du soleil sont réfléchis par le miroir de l'héliostat vers la lentille de Fresnel qui les concentre sur la cible. Le miroir tourne autour de son premier axe pour suivre le déplacement du soleil dans son mouvement horaire. II fait donc un tour en 24 heures. Le miroir tourne autour de son second axe pour suivre le soleil dans son déplacement annuel. II pivote donc de 12 degrés autour d'une position de référence qui est celle des Equinoxes. Cette position de référence positionne la perpendiculaire au miroir à 45° par rapport aux rayons solaires. Aux solstices d'été la perpendiculaire au miroir est à 45° + 12° = 57° par rapport aux rayons solaires, alors qu'au solstice d'hiver la perpendiculaire au miroir est à 45° - 12° = 33° par rapport aux rayons solaires. La rotation des deux axes étant lente celle-ci peut se faire par incréments temporisés, par exemple 0,25 degrés toutes les minutes pour le premier axe et environ 0,9 degrés toutes les semaines pour le second axe. La mise en rotation autour du premier axe peut se faire par le couplage mécanique à un moteur. La mise en rotation autour du second axe peut se faire soit par le couplage mécanique à un moteur, soit par une manipulation manuelle. La cornmande électrique des moteurs est soit filaire soit télécommandée par une liaison sans fil. Dans un mode de réalisation particulier d'un champ solaire intégrant une pluralité de concentrateurs, plusieurs concentrateurs sont alignés au sol de sorte que tous les premiers axes sont parallèles entre eux et comportent une partie mécanique de type poulie ou roue dentée ou vis sans fin, toutes ces dites parties mécaniques étant couplées mécaniquement à une tige rectiligne de liaison qui relie toutes ces parties mécaniques entre elles, de sorte que la mise en rotation de tous les premiers axes de l'ensemble des concentrateurs se fait simultanément par 1 10 15 20 25 30 un seul moteur agissant sur la tige de liaison. Cette pluralité de concentrateurs solaires constitue donc un champ solaire dont les premiers axes de rotation sont tous parallèles entre eux et tous reliés mécaniquement par une tige de liaison dont le déplacement met en rotation simultanée les dits premiers axes de rotation.
DECRIPTION DETAILLEE DE L'INVENTION L'invention est maintenant décrite plus en détails à l'aide de la description des figures 1 et 2 indexées. La figure 1 est un schéma de principe du concentrateur solaire vue en coupe en élévation. La figure 2 illustre un mode de réalisation particulier dans lequel plusieurs concentrateurs solaires sont commandés par un seul moteur. Le concentrateur solaire de la figure 1 reçoit les rayons parallèles (7) du soleil sur un miroir plan (1). Le miroir (1) peut tourner autour d'un premier axe de rotation (4) qui est parallèle à l'axe de rotation de la Terre, donc orienté vers l'étoile polaire (5). Le miroir (1) peut tourner autour d'un second axe de rotation (3) qui est perpendiculaire au premier axe de rotation (4). Les rayons réfléchis (8) sont dirigés vers une lentille de Fresnel fixe (9) qui concentre le rayonnement vers une cible (10) qui est placée entre la lentille (9) et le plan focal de celle-ci. La lentille de Fresnel (9) a une focale linéaire ou ponctuelle, la droite perpendiculaire à la lentille qui passe par son centre est dans le prolongement du premier axe de rotation (4) du miroir (1). La cible (10) est une cellule photovoltaïque et/ou un capteur thermique, ou un moteur thermique ou un moteur Stirling, ou encore un capteur chimique de type catalyseur à hydrogène. Dans l'hémisphère Nord le miroir (1) est de préférence au Nord et la lentille de Fresnel (9) au Sud. Dans l'hémisphère Sud (position particulière non illustrée), le rniroir est de préférence au Sud et la lentille de Fresnel au Nord. La rotation du miroir (1) autour du premier axe de rotation (4) permet de suivre la course du soleil dans son mouvement horaire, soit un tour en 24h. La rotation du miroir (1) autour du second axe de rotation (3) permet de suivre le soleil dans son mouvement annuel, soit un écart (a) maximum de 12 degrés vers le Nord ( au solstice d'été) et 12 degrés vers le Sud (au solstice d'hiver) à partir d'une position de référence correspondant aux équinoxes d'été ou d'hiver lorsque la perpendiculaire au miroir (1) fait un angle (a) de 45 degrés avec les rayons solaires (7). Ainsi aux solstices d'été la perpendiculaire au miroir (1) fait un angle (a) de 45° + 12° = 57° par rapport aux rayons 1 10 15 20 25 30 solaires (7), alors qu'aux solstices d'hiver la perpendiculaire au miroir fait un angle (a) de 45° - 12° = 33° par rapport aux rayons solaires (7). La rotation du premier axe (4) peut s'effectuer par le couplage d'un moteur (2)à commande électrique filaire ou d'un moteur télécommandé. La rotation du deuxième axe (3) peut s'effectuer manuellement par de multiples corrections angulaires répétées, ce qui correspond à une correction moyenne de 0,9 degrés par semaine. Ce deuxième axe peut aussi être commandé par un moteur à commande électrique filaire ou un moteur télécommandé ( non illustré ).
La figure 2 illustre la possibilité d'aligner sur un axe Est/Ouest une pluralité de concentrateurs solaires suivant l'invention, ce que l'on peu appeler un champ solaire, de sorte que tous les premiers axes de rotation sont parallèles entre eux et sont tous reliés par une tige (7) ou une tige filetée par l'intermédiaire d'une partie mécanique (6) qui peut être par exemple une poulie, une roue dentée ou une vis sans fin. Le déplacement ou la rotation de la tige (7) sous l'action d'un seul moteur (8) permet alors la rotation de tous les premiers axes de rotation donc des miroirs (1). Dans le champ solaire les lentilles de Fresnel (9) et les cibles (10) restent fixes.
On décrit maintenant un exemple concret de réalisation du concentrateur solaire selon l'invention. Un champ solaire situé à la latitude de 42° Nord est constitué dans cet exemple de 10 héliostats alignés suivant la direction Est/Ouest et comprenant des miroirs (1) rectangulaires de 1 m x 1,50 m. Les miroirs (1) sont fixés à leur dos à un premier axe de rotation (4) qui est orienté vers l'étoile polaire (5), donc orienté Nord/Sud et incliné de 42° par rapport à l'horizon Nord. Un deuxième axe de rotation (3) est perpendiculaire au premier axe (4) et incline les miroirs de 45° par rapport aux rayons solaires à la date du 21 Mars ou du 21 Septembre. Une lentille de Fresnel (9) concentrique et en verre organique est carrée et fait 1 m de côté. Elle est disposée face aux rayons réfléchis (8) par le miroir (1) de sorte que la perpendiculaire au centre de sa surface soit dans le prolongement du premier axe de rotation (4) du miroir. La focale de la lentille fait 1,20 m. A la focale de la lentille (9) est disposé le capteur thermique d'un moteur Stirling (10) de 250 Watts de puissance. L'extrémité du premier axe de rotation (4) est munie d'une roue dentée de 30 cm de diamètre. Les dix roues dentées (6) des dix héliostats sont reliées par une tige filetée (7) de 15 mm de diamètre. La rotation de la tige (7) sur elle-même est obtenue par un moteur électrique (8) à mouvement rotatif situé à une des extrémités de la tige (7) . Cette rotation fait tourner chaque miroir d'un 1 10 15 20 25 tour en 24 heures. Le deuxième axe de rotation (3) de chaque miroir est mis en rotation par un moteur électrique pas à pas télécommandé et fixé à l'arrière du miroir. Le déplacement du deuxième axe de rotation (3) est programmé par un calculateur astronomique distant qui oriente les miroirs en fonction de la déclinaison du soleil par rapport à l'équateur céleste. Ce déplacement est très faible et correspond en moyenne à 0,9 degrés par semaine. Ce moteur télécommandé est alimenté en électricité par une batterie ou un super condensateur logé à l'arrière du miroir. La charge de la batterie ou du super condensateur est faite par une cellule photovoltaïque de 1 Watt attachée à une extrémité du miroir et en permanence éclairée par le soleil. Par ciel clair la puissance solaire est d'environ 1000 W par m2 de surface. Les héliostats renvoient vers les lentilles de Fresnel (9) cette puissance qui est concentrée sur le capteur thermique (10) du moteur Stirling. Le rendement du rnoteur étant de 25 % la puissance mécanique de sortie du moteur est de 250 Watts. Cette puissance mécanique est transformée en électricité grâce à une dynamo couplée à chaque moteur. La puissance totale fournie par le champ solaire est alors de 2500 Watts.
AVANTAGES DE L'INVENTION En définitive l'invention répond aux buts fixés. Elle est particulièrement adaptée à la haute concentration solaire avec une cible qui reste fixe et un nombre réduit de moteurs pour rnettre en rotation les héliostats. Cette simplification de la partie mécanique qui est nécessaire au suivi du soleil réduit donc le coût global des installations. 30
Claims (4)
- REVENDICATIONS1 Concentrateur solaire caractérisé en ce qu'il comprend un héliostat dont le miroir (1) est plan et dont un premier axe de rotation (4) est parallèle à l'axe de rotation de la Terre et dont un deuxième axe de rotation (3) est perpendiculaire au premier axe de rotation (4), une lentille de Fresnel (9) fixe dont la focale est linéaire ou ponctuelle et dont la perpendiculaire en son centre est alignée sur le premier axe de rotation (4), et une cible (10) placée entre la lentille de Fresnel (9) et le plan focal de celle-ci.
- 2 - Concentrateur solaire selon la revendication 1 caractérisé en ce que la cible (10) est une cellule photovoltaïque et/ou un capteur thermique ou un moteur thermique ou mécanique, ou un moteur Stirling ou un capteur à réaction chimique.
- 3 - Concentrateur solaire selon la revendication 1 ou la revendication 2 caractérisé en ce que ledit premier axe de rotation (4) et/ou ledit second axe de rotation (3) sont actionnés par un moteur filaire ou par un moteur télécommandé.
- 4 - Champ solaire caractérisé en ce qu'il comporte une pluralité de concentrateurs solaires selon l'une des revendications 1 à 3, dont les premiers axes de rotation (4) sont tous parallèles entre eux et tous reliés mécaniquement par une tige (7) de liaison dont le déplacement ou la rotation par un moteur (8) met en rotation simultanée les dits premiers axes de rotation (4). 30
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1101971A FR2977010B1 (fr) | 2011-06-27 | 2011-06-27 | Concentrateur solaire comprenant un heliostat et une lentille de fresnel |
PCT/FR2012/000256 WO2013001177A2 (fr) | 2011-06-27 | 2012-06-25 | Concentrateur solaire comprenant un heliostat et une lentille de fresnel |
US13/520,672 US20140320990A1 (en) | 2011-06-27 | 2012-06-25 | Solar concentrator including a heliostat and a fresnel lens |
CN201280041965.4A CN103890500B (zh) | 2011-06-27 | 2012-06-25 | 包括定日镜和菲涅耳透镜的太阳能集中器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1101971A FR2977010B1 (fr) | 2011-06-27 | 2011-06-27 | Concentrateur solaire comprenant un heliostat et une lentille de fresnel |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2977010A1 true FR2977010A1 (fr) | 2012-12-28 |
FR2977010B1 FR2977010B1 (fr) | 2013-07-12 |
Family
ID=46579143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1101971A Expired - Fee Related FR2977010B1 (fr) | 2011-06-27 | 2011-06-27 | Concentrateur solaire comprenant un heliostat et une lentille de fresnel |
Country Status (4)
Country | Link |
---|---|
US (1) | US20140320990A1 (fr) |
CN (1) | CN103890500B (fr) |
FR (1) | FR2977010B1 (fr) |
WO (1) | WO2013001177A2 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3057940A1 (fr) * | 2016-10-24 | 2018-04-27 | Freville Stades & Arenas Equipements | Dispositif de reflexion de la lumiere |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140042296A1 (en) * | 2011-03-03 | 2014-02-13 | Aplicaciones Renovables Integradas, S.L. | Heliostat with a Drive Shaft Pointing at the Target, Reflection Sensor and a Closed-Loop Control System |
RU2681015C2 (ru) * | 2014-02-21 | 2019-03-01 | Шотт Аг | Высокооднородная стеклокерамическая деталь |
CN107678448B (zh) * | 2017-11-27 | 2023-06-02 | 上海晶电新能源有限公司 | 一种基于天体图像的追日校正系统及其方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4249083A (en) * | 1978-10-05 | 1981-02-03 | Bitterly Jack G | Solar electrical generator |
US20080092877A1 (en) * | 2006-09-14 | 2008-04-24 | James Mathew Monsebroten | Solar concentrator system |
WO2009028868A2 (fr) * | 2007-08-27 | 2009-03-05 | Nsnet Co., Ltd. | Système de condensation de lumière solaire pour un éclairage naturel |
US20110017274A1 (en) * | 2009-01-06 | 2011-01-27 | Zhong Huang | Large Tracking-Type Fresnel Lens Point-Focusing Solar System |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86201577U (zh) * | 1986-03-21 | 1987-05-13 | 雍长云 | 太阳能定向跟踪装置 |
US5787878A (en) * | 1996-09-23 | 1998-08-04 | Ratliff, Jr.; George D. | Solar concentrator |
US6604436B1 (en) * | 1998-01-13 | 2003-08-12 | Midwest Research Institute | Ultra-accelerated natural sunlight exposure testing facilities |
AUPR356601A0 (en) * | 2001-03-07 | 2001-04-05 | University Of Sydney, The | Solar energy reflector array |
US20030137754A1 (en) * | 2001-12-17 | 2003-07-24 | Vasylyev Sergiy Victorovich | Multistage system for radiant energy flux transformation |
US7192146B2 (en) | 2003-07-28 | 2007-03-20 | Energy Innovations, Inc. | Solar concentrator array with grouped adjustable elements |
US7677241B2 (en) | 2004-09-22 | 2010-03-16 | Energy Innovations, Inc. | Apparatus for redirecting parallel rays using rigid translation |
US20060107993A1 (en) * | 2004-11-19 | 2006-05-25 | General Electric Company | Building element including solar energy converter |
US20080087274A1 (en) * | 2006-06-05 | 2008-04-17 | Datong Chen | Synchronized solar concentrator array |
US8093492B2 (en) * | 2008-02-11 | 2012-01-10 | Emcore Solar Power, Inc. | Solar cell receiver for concentrated photovoltaic system for III-V semiconductor solar cell |
US9995507B2 (en) * | 2009-04-15 | 2018-06-12 | Richard Norman | Systems for cost-effective concentration and utilization of solar energy |
US20110000543A1 (en) * | 2009-07-02 | 2011-01-06 | Errico Joseph P | Solar energy collection and conversion system |
-
2011
- 2011-06-27 FR FR1101971A patent/FR2977010B1/fr not_active Expired - Fee Related
-
2012
- 2012-06-25 US US13/520,672 patent/US20140320990A1/en not_active Abandoned
- 2012-06-25 WO PCT/FR2012/000256 patent/WO2013001177A2/fr active Application Filing
- 2012-06-25 CN CN201280041965.4A patent/CN103890500B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4249083A (en) * | 1978-10-05 | 1981-02-03 | Bitterly Jack G | Solar electrical generator |
US20080092877A1 (en) * | 2006-09-14 | 2008-04-24 | James Mathew Monsebroten | Solar concentrator system |
WO2009028868A2 (fr) * | 2007-08-27 | 2009-03-05 | Nsnet Co., Ltd. | Système de condensation de lumière solaire pour un éclairage naturel |
US20110017274A1 (en) * | 2009-01-06 | 2011-01-27 | Zhong Huang | Large Tracking-Type Fresnel Lens Point-Focusing Solar System |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3057940A1 (fr) * | 2016-10-24 | 2018-04-27 | Freville Stades & Arenas Equipements | Dispositif de reflexion de la lumiere |
Also Published As
Publication number | Publication date |
---|---|
WO2013001177A2 (fr) | 2013-01-03 |
FR2977010B1 (fr) | 2013-07-12 |
CN103890500B (zh) | 2018-05-22 |
CN103890500A (zh) | 2014-06-25 |
US20140320990A1 (en) | 2014-10-30 |
WO2013001177A3 (fr) | 2014-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4284839A (en) | Internal refractor focusing solar energy collector apparatus and method | |
CA2794602C (fr) | Cadre de groupement de suivi solaire a axe double contrebalance a haut rendement | |
US4297521A (en) | Focusing cover solar energy collector apparatus | |
ES2587066T3 (es) | Seguidor solar para dispositivos de energía solar | |
RU2300058C2 (ru) | Параболоцилиндрический концентратор солнечной энергии с абсорбером и системой слежения за солнцем | |
US9995506B2 (en) | Cable drive system for solar tracking | |
EP2534430B1 (fr) | Capteur solaire à miroirs de fresnel | |
FR2977010A1 (fr) | Concentrateur solaire comprenant un heliostat et une lentille de fresnel | |
FR2983569A1 (fr) | Heliostat pourvu d'un dispositif pour l'actionner selon deux axes avec un seul moteur | |
RU2715901C1 (ru) | Установка слежения за солнцем и способ ее ориентации | |
FR2480002A2 (fr) | Dispositif astronomique porteur d'instruments pour le suivi de la course d'un astre ou d'un satellite | |
EP2612083A2 (fr) | Ensemble panneau solaire | |
WO2018135934A1 (fr) | Systeme rotatif de poursuite de l'elevation du soleil - application: energie solaire photovoltaique | |
KR100833634B1 (ko) | 태양전지의 적도의식 구동장치 | |
WO2013079823A1 (fr) | Héliostat à deux miroirs | |
KR20090113797A (ko) | 일사량 변화에 따른 태양광 발전장치 및 그 방법 | |
EP3237817B1 (fr) | Dispositif de réflexion pour centrale solaire thermique | |
FR2501345A1 (fr) | Capteur solaire heliostatique | |
FR2460502A1 (fr) | Dispositif astronomique porteur d'instruments pour le suivi de la course d'un astre ou d'un satellite | |
FR2966917A1 (fr) | Concentrateur de rayonnement solaire. | |
CN108490983B (zh) | 一种机械式全季太阳跟踪器 | |
CN1442654A (zh) | U形曲面镜太阳能采集装置 | |
Wang et al. | ’Track Mode Selection of Parabolic Trough Collectors | |
Butuc et al. | GEARS BASED AZIMUTHALLY TRACKING SYSTEMS FOR PHOTOVOLTAIC PLATFORMS | |
FR2923918A1 (fr) | Dispositif collecteur d'ondes eletromagnetiques |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PLFP | Fee payment |
Year of fee payment: 5 |
|
TP | Transmission of property |
Owner name: SUNPARTNER TECHNOLOGIES, FR Effective date: 20160217 |
|
PLFP | Fee payment |
Year of fee payment: 6 |
|
CA | Change of address |
Effective date: 20161011 |
|
PLFP | Fee payment |
Year of fee payment: 7 |
|
PLFP | Fee payment |
Year of fee payment: 8 |
|
PLFP | Fee payment |
Year of fee payment: 9 |
|
ST | Notification of lapse |
Effective date: 20210205 |