FR2976967A1 - TRACER FLUIDS WITH MEMORY EFFECT FOR THE STUDY OF A PETROLEUM FACILITY - Google Patents

TRACER FLUIDS WITH MEMORY EFFECT FOR THE STUDY OF A PETROLEUM FACILITY Download PDF

Info

Publication number
FR2976967A1
FR2976967A1 FR1155515A FR1155515A FR2976967A1 FR 2976967 A1 FR2976967 A1 FR 2976967A1 FR 1155515 A FR1155515 A FR 1155515A FR 1155515 A FR1155515 A FR 1155515A FR 2976967 A1 FR2976967 A1 FR 2976967A1
Authority
FR
France
Prior art keywords
nanoparticles
subsoil
signal
fluorophore
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1155515A
Other languages
French (fr)
Other versions
FR2976967B1 (en
Inventor
Pascal Perriat
Nicolas Crowther
Matteo Martini
Olivier Tillement
Thomas Brichart
Nicolas Agenet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies SE
Original Assignee
Total SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Total SE filed Critical Total SE
Priority to FR1155515A priority Critical patent/FR2976967B1/en
Priority to EP12730898.9A priority patent/EP2723827A1/en
Priority to US14/128,323 priority patent/US20150001385A1/en
Priority to PCT/EP2012/062084 priority patent/WO2012175669A1/en
Publication of FR2976967A1 publication Critical patent/FR2976967A1/en
Application granted granted Critical
Publication of FR2976967B1 publication Critical patent/FR2976967B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6497Miscellaneous applications

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Geophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Le domaine de cette invention est celui de l'exploration et de l'exploitation de gisements pétroliers. Plus précisément, cette invention concerne la mise au point de nanoparticules et de fluides traceurs les contenant, destinés à être injecté dans un puits, et recueillis par inversion du flux du fluide par le même puits. Les fluides traceurs selon l'invention ont l'avantage de produire un signal fluorescent à effet mémoire, c'est-à-dire un signal modifié en fonction des conditions physicochimiques rencontrées dans le milieu traversé par les nanoparticules après injection dans le sous-sol géologique. L'analyse des signaux fluorescents dans les fluides recueillis après diffusion permet d'en déduire des informations sur les caractéristiques du gisement pétrolier.The field of this invention is that of the exploration and exploitation of oil deposits. More specifically, this invention relates to the development of nanoparticles and tracer fluids containing them, intended to be injected into a well, and collected by inversion of the fluid flow by the same well. The tracer fluids according to the invention have the advantage of producing a fluorescent signal with a memory effect, that is to say a signal modified according to the physicochemical conditions encountered in the medium traversed by the nanoparticles after injection into the subsoil. geological. The analysis of the fluorescent signals in the fluids collected after diffusion makes it possible to deduce information on the characteristics of the oil reservoir.

Description

FLUIDES TRACEURS A EFFET MEMOIRE POUR L'ETUDE D'UN GISEMENT PETROLIER TRACER FLUIDS WITH MEMORY EFFECT FOR THE STUDY OF A PETROLEUM FACILITY

Le domaine de cette invention est celui de l'exploration et de l'exploitation de gisements pétroliers. Plus précisément, cette invention concerne la mise au point de nanoparticules et de fluides traceurs les contenant, destinés à être injecté dans un puits, et recueillis par inversion du flux du fluide par le même puits. The field of this invention is that of the exploration and exploitation of oil deposits. More specifically, this invention relates to the development of nanoparticles and tracer fluids containing them, intended to be injected into a well, and collected by inversion of the fluid flow by the same well.

Les fluides traceurs selon l'invention ont l'avantage de produire un signal fluorescent à effet mémoire, c'est-à-dire un signal modifié en fonction des conditions physicochimiques rencontrées dans le milieu traversé par les nanoparticules après injection dans le sous-sol géologique. L'analyse des signaux fluorescents dans les fluides recueillis après diffusion permet d'en déduire des informations sur les caractéristiques du gisement pétrolier. The tracer fluids according to the invention have the advantage of producing a fluorescent signal with a memory effect, that is to say a signal modified according to the physicochemical conditions encountered in the medium traversed by the nanoparticles after injection into the subsoil. geological. The analysis of the fluorescent signals in the fluids collected after diffusion makes it possible to deduce information on the characteristics of the oil reservoir.

ARRIERE PLAN TECHNOLOGIQUE BACKGROUND TECHNOLOGY

Il est bien connu dans l'art antérieur d'utiliser des traceurs pour obtenir des informations sur un gisement pétrolier ou plus généralement sur une ressource d'un sous-sol géologique, un gisement d'hydrocarbure, eau, gaz, huile ou pétrole. Des techniques utilisant par exemple des traceurs avec des coefficients de partition différents ont été décrites. Le principe est fondé notamment sur la chromatographie. L'un des traceurs interagit plus spécifiquement avec certains fluides contenus dans la roche, par exemple, l'huile, et sa diffusion sera freinée en présence d'huile. En quantifiant le retard de diffusion par rapport à un traceur qui interagit peu ou pas du tout avec son environnement (traceur furtif), on en déduit la quantité d'huile contenue dans le gisement. It is well known in the prior art to use tracers to obtain information on a petroleum deposit or more generally on a resource of a geological subsoil, a hydrocarbon deposit, water, gas, oil or oil. Techniques using, for example, tracers with different partition coefficients have been described. The principle is based in particular on chromatography. One of the tracers interacts more specifically with certain fluids contained in the rock, for example, the oil, and its diffusion will be curbed in the presence of oil. By quantifying the diffusion delay with respect to a tracer which interacts little or nothing with its environment (stealth tracer), we deduce the amount of oil contained in the deposit.

Ces méthodes d'analyse peuvent être conduites à partir d'un seul puits (« Single Weil Tracer Test ») ou de deux puits, comprenant un puits d'injection et un puits de production. These methods of analysis may be conducted from a single well ("Single Weil Tracer Test") or two wells, including an injection well and a production well.

Concernant l'état de la technique propre à de tels traceurs pour des eaux d'injection (fluide de traçage) permettant de sonder des gisements pétroliers par diffusion entre un puits d'injection et un puits de production, on peut citer les brevets US 4,231,426-B1 et 4,299,709-B1 qui divulguent des fluides traceurs aqueux comprenant de 0,01 à 10 % en poids d'un sel de nitrate associé à un agent bactéricide. With regard to the state of the art specific to such tracers for injection water (tracer fluid) making it possible to probe oil deposits by diffusion between an injection well and a production well, mention may be made of US Patents 4,231,426 -B1 and 4,299,709-B1 which disclose aqueous tracer fluids comprising from 0.01 to 10% by weight of a nitrate salt associated with a bactericidal agent.

Le brevet US 3 623 842 décrit une méthode de mesure d'une saturation en huile au voisinage d'un puits (« Single Weil Tracer Test ») consistant à injecter un premier traceur partitionnant (eau/huile), celui-ci libérant un traceur furtif après un certain temps de diffusion dans le milieu poreux. US Pat. No. 3,623,842 describes a method for measuring an oil saturation in the vicinity of a well ("Single Weil Tracer Test") of injecting a first partitioning tracer (water / oil), the latter releasing a tracer. stealth after a certain time of diffusion in the porous medium.

Le site de "Instituts for Energy Technology" (IFE) met en ligne une présentation power point intitulée SIP 2007 - 2009 «New functional traceus based on nanotechnology and radiotracer generators Department for Reservoir and Exploration Technology » (dernière modification en date du 7 mars 2011). En particulier, ce document suggère l'utilisation de nanoparticules modifiées en surface, à titre de traceur pour le contrôle des flux dans des gisements pétroliers et des puits de pétrole et dans des études de procédés. Plus précisément encore, cette présentation décrit également des traceurs fonctionnalisés capables d'émettre un signal modulé en fonction des conditions physico-chimiques traversées. The Institute for Energy Technology (IFE) website puts on-line a power point presentation entitled SIP 2007 - 2009 "New functional traceus based on nanotechnology and radiotracer generators Department for Reservoir and Exploration Technology" (last modification dated March 7th, 2011 ). In particular, this paper suggests the use of surface-modified nanoparticles as a tracer for flow control in oilfields and oil wells and in process studies. More precisely, this presentation also describes functionalized tracers capable of emitting a modulated signal depending on the physicochemical conditions traversed.

Dans un tout autre domaine, la demande de brevet français FR2867180-A1 décrit des nanoparticules hybrides comprenant, d'une part, un coeur constitué d'un oxyde de terre rare, éventuellement dopé avec une terre rare ou un actinide ou un mélange de terres rares ou bien un mélange de terres rares et d'actinide et, d'autre part, un enrobage autour de ce coeur, ledit enrobage étant constitué majoritairement de polysiloxane fonctionnalisé par au moins un ligand biologique greffé par liaison covalente. Le coeur peut être à base Gd2O3 dopé par du Tb3+ ou par de l'uranium et l'enrobage de polysiloxane peut être obtenu en faisant réagir un aminopropyltriéthoxysilane, un tétraéthylsilicate et de la triéthylamine. In a completely different field, the French patent application FR2867180-A1 describes hybrid nanoparticles comprising, on the one hand, a core consisting of a rare earth oxide, optionally doped with a rare earth or an actinide or a mixture of grounds. rare or a mixture of rare earths and actinide and, secondly, a coating around this core, said coating consisting mainly of polysiloxane functionalized with at least one biological ligand covalently bonded. The core may be Tb3 + doped Gd2O3 based or uranium and the polysiloxane coating may be obtained by reacting an aminopropyltriethoxysilane, a tetraethylsilicate and triethylamine.

Ces nanoparticules sont utilisées en tant que sondes pour la détection, le suivi, et la quantification de systèmes biologiques. These nanoparticles are used as probes for the detection, monitoring, and quantification of biological systems.

On connait par ailleurs une dizaine de familles de molécules adaptées et validées actuellement comme traceur pour eaux d'injection dans des gisements pétroliers. Ces familles de molécules sont par exemple les acides benzoïques fluorés ou les acides naphtalènes sulfoniques. We also know about ten families of molecules adapted and currently validated as a tracer for injection water in oil fields. These families of molecules are, for example, fluorinated benzoic acids or naphthalenesulphonic acids.

Il est également connu que les objets fluorescents ont souvent une fluorescence étroitement liées aux conditions physicochimiques rencontrées avec une très forte variation possible de leurs spectres d'émission, leurs spectres d'excitation, leur durée de vie d'émission ou leurs rendements quantiques. It is also known that fluorescent objects often have a fluorescence closely related to the physicochemical conditions encountered with a very strong possible variation of their emission spectra, their excitation spectra, their emission lifetime or their quantum yields.

Par exemple, certains composés présentent une émission ou une durée de vie d'émission (temps de déclin de fluorescence) fortement dépendante de la température et sont ainsi 30 35 utilisés en mesure délocalisée de température (J. Lakowicz, « Principles of fluorescence spectroscopy », Springer 2006, page 216). For example, some compounds have a strongly temperature dependent emission or emission lifetime (fluorescence decline time) and are thus used in delocalized temperature measurement (J. Lakowicz, "Principles of fluorescence spectroscopy"). Springer 2006, page 216).

D'autres composés comme la fluorescéine et ses dérivées sont quant à eux très sensibles aux conditions de pH et peuvent avoir une intensité d'émission qui varie de plusieurs ordre de grandeur entre un pH acide et basique (N. Clonis, W.H. Sawyer, « Spectral properties of the prototropic forms of fluorescein in acqueous solution », J. Fluorescence, 1996, 6, 147). Other compounds such as fluorescein and its derivatives are in turn very sensitive to pH conditions and may have an emission intensity that varies by several orders of magnitude between an acidic and basic pH (N. Clonis, WH Sawyer, " Spectral properties of the prototropic forms of fluorescein in acqueous solution ", J. Fluorescence, 1996, 6, 147).

Ces variations peuvent être irréversibles ou réversibles en fonction des composés. Si l'utilisation de composés fluorescents comme traceur est connue, l'utilisation de la modification de fluorescence "irréversible" est généralement considérée comme un inconvénient pour l'interprétation des courbes de traçage et des quantifications. These variations may be irreversible or reversible depending on the compounds. If the use of fluorescent compounds as a tracer is known, the use of "irreversible" fluorescence modification is generally considered a disadvantage for the interpretation of tracing curves and quantifications.

Or, la dégradation du signal de fluorescence peut néanmoins donner des informations sur le 15 milieu rencontré et pourrait alors être utilisé comme signal à "effet mémoire" des conditions rencontrées. However, the degradation of the fluorescence signal can nevertheless give information on the medium encountered and could then be used as a "memory effect" signal of the conditions encountered.

Dans le domaine biologique, quelques essais de modification de fluorescence liés à des effets mémoires ont été proposés : ils sont en relation avec la rencontre d'une biomolécule 20 ou d'une cellule spécifique. On peut citer par exemple la demande de brevet US2010/0272651, il y est suggéré d'utiliser des traceurs fluorescents en relation avec des indicateurs pour la détermination de pharmacocinétiques ou biodistributions particulières au sein d'organismes. In the biological field, some fluorescence modification assays related to memory effects have been proposed: they are related to the meeting of a biomolecule 20 or a specific cell. For example, patent application US2010 / 0272651, it is suggested to use fluorescent tracers in connection with indicators for the determination of specific pharmacokinetics or biodistributions within organisms.

25 Néanmoins, à ce jour, l'utilisation de signaux à « effet mémoire » dans le domaine pétrolier n'a jamais été décrite ni même suggérée. Nevertheless, to date, the use of "memory effect" signals in the petroleum field has never been described or even suggested.

De fait, les inventeurs ont du mettre au point de nouveaux traceurs présentant une fluorescence modifiée détectable par temps résolu (lié à l'émission de lanthanide en 30 particulier), même en présence d'un fort bruit de fond lié aux composés organiques présents dans les différentes huiles. In fact, the inventors have had to develop new tracers having a detectable time-resolved fluorescence (particularly related to lanthanide emission), even in the presence of a strong background related to the organic compounds present in the molecule. the different oils.

PROBLEME TECHNIQUE ET OBJECTIFS A ATTEINDRE TECHNICAL PROBLEM AND OBJECTIVES TO BE REACHED

35 Dans ce contexte, la présente invention vise à satisfaire au moins l'un des objectifs suivants: - proposer un nouveau procédé d'étude d'un milieu solide, par exemple un gisement pétrolier, par diffusion d'un liquide au travers dudit milieu solide, qui soit simple à mettre en oeuvre et économique ; - remédier aux inconvénients des traceurs pour eaux d'injection de gisements pétroliers selon l'art antérieur ; - fournir des nanoparticules présentant un signal de fluorescence à effet mémoire, c'est-à-dire dont le spectre d'émission et/ou d'excitation est modifié en fonction des conditions physico-chimiques du milieu traversé ; - fournir un nouveau fluide traceur comprenant ces nanoparticules utilisables notamment dans un procédé d'étude d'un milieu solide, par exemple un gisement pétrolier par diffusion dudit liquide au travers dudit milieu solide et récupération par le même puits par inversion du flux. In this context, the present invention aims to satisfy at least one of the following objectives: to propose a new method for studying a solid medium, for example a petroleum deposit, by diffusion of a liquid through said medium solid, which is simple to implement and economical; to overcome the drawbacks of tracers for injection water from petroleum deposits according to the prior art; providing nanoparticles having a memory effect fluorescence signal, that is to say whose emission and / or excitation spectrum is modified as a function of the physicochemical conditions of the medium traversed; provide a new tracer fluid comprising these nanoparticles that can be used in particular in a method for studying a solid medium, for example a petroleum deposit by diffusion of said liquid through said solid medium and recovery by the same well by inversion of the flow.

BREVE DESCRIPTION DE L'INVENTION Ces objectifs, parmi d'autres, sont atteints par l'invention qui concerne en premier lieu un procédé d'étude d'un sous-sol géologique, tel qu'un gisement pétrolier, par diffusion d'un liquide d'injection dans ledit sous-sol, caractérisé en ce qu'il comprend les étapes suivantes: 0 on injecte, dans le sous-sol à étudier, un liquide d'injection comprenant des nanoparticules: ^ de diamètre moyen compris entre 20 et 200 nm; ^ aptes à former une suspension colloïdale stable en milieu salin; ^ dont une partie au moins est constituée d'un coeur et, le cas échéant d'une matrice enrobant le coeur; ^ et, dont le coeur et/ou, le cas échéant, la matrice, comprennent au moins une ou plusieurs entités fluorescentes susceptible(s) de produire au moins un signal de fluorescence à effet mémoire, c'est-à-dire un signal de fluorescence modifié de manière irréversible en fonction des conditions physico-chimiques rencontrées dans le sous-sol ; ^ on recueille le liquide d'injection ayant diffusé, à différents temps suivant la période d'injection; o et on détecte le ou les signaux fluorescents à effet mémoire émis par les nanoparticules en fonction du temps, l'analyse du ou des signaux fluorescents à effet mémoire détectés permettant d'en déduire des informations sur les conditions physico-chimiques du sous-sol géologique étudié, par exemple du gisement pétrolier. 30 35 Dans un mode de réalisation préféré du procédé selon l'invention, au moins une partie des nanoparticules comprend - au moins un fluorophore organique, et, - au moins un fluorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire. BRIEF DESCRIPTION OF THE INVENTION These objectives, among others, are achieved by the invention, which concerns in the first place a method of studying a geological subsoil, such as a petroleum deposit, by diffusion of a injection liquid in said subsoil, characterized in that it comprises the following steps: injecting, in the subsoil to be studied, an injection liquid comprising nanoparticles of average diameter between 20 and 200 nm; capable of forming a stable colloidal suspension in a saline medium; at least a portion of which consists of a core and, if appropriate, a matrix coating the core; and, whose core and / or, where appropriate, the matrix, comprise at least one or more fluorescent entities capable of producing at least one memory effect fluorescence signal, that is to say a signal fluorescence irreversibly modified depending on the physico-chemical conditions encountered in the subsoil; the diffused injection liquid is collected at different times after the injection period; and the fluorescent memory effect signal or signals emitted by the nanoparticles as a function of time is detected, the analysis of the detected fluorescent effect signal (s) enabling the inference of information on the physico-chemical conditions of the subsoil. geological study, for example of the oil field. In a preferred embodiment of the process according to the invention, at least a part of the nanoparticles comprises at least one organic fluorophore and at least one organometallic fluorophore, the combination of the two types of fluorophores being chosen so as to the nanoparticle produces at least one memory effect fluorescence signal.

L'invention concerne également un fluide traceur utilisable notamment dans le procédé 10 selon l'invention, et caractérisé en ce qu'il comprend des nanoparticules : - de diamètre moyen compris entre 20 et 200 nm; - aptes à former une suspension colloïdale stable en milieu salin; - dont une partie au moins est constituée d'un coeur et, le cas échéant d'une matrice enrobant le coeur; 15 - et, dont le coeur et/ou, le cas échéant, la matrice, comprend au moins un fluorophore organique et au moins un fluorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire, ledit signal étant détectable par fluorescence en temps résolu. 20 Dans un mode de réalisation spécifique, les nanoparticules sont capables d'émettre au moins un signal de fluorescence à effet mémoire, et au moins un signal de fluorescence stable, c'est-à-dire qui ne varie pas en fonction des conditions physico-chimiques rencontrés ou dont la variation n'est pas irréversible. DESCRIPTION DETAILLEE DE L'INVENTION The invention also relates to a tracer fluid that can be used in particular in the process 10 according to the invention, and characterized in that it comprises nanoparticles: - with a mean diameter of between 20 and 200 nm; - capable of forming a stable colloidal suspension in a saline medium; at least part of which consists of a core and, if appropriate, a matrix coating the core; And, whose core and / or, where appropriate, the matrix, comprises at least one organic fluorophore and at least one organometallic fluorophore, the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least one a memory effect fluorescence signal, said signal being detectable by time resolved fluorescence. In a specific embodiment, the nanoparticles are capable of emitting at least one memory effect fluorescence signal, and at least one stable fluorescence signal, that is to say which does not vary according to the physicochemical conditions. -chemicals encountered or whose variation is not irreversible. DETAILED DESCRIPTION OF THE INVENTION

Procédé d'étude d'un soussol géologique Le sous-sol étudié (e.g. des roches) peut être de nature géologique variée. De préférence, il 30 s'agit d'étudier un gisement sous-terrain d'hydrocarbures, et plus particulièrement un gisement pétrolier. Il s'agit en particulier de mesurer la proportion de pétrole et d'eau aux abords d'un puits ainsi que d'en caractériser les propriétés physico-chimiques tels que le pH ou le potentiel redox. Method of studying a geological subsoil The studied subsoil (e.g., rocks) may be of varied geological nature. Preferably, it is a question of studying a hydrocarbon underground deposit, and more particularly a petroleum deposit. In particular, it involves measuring the proportion of oil and water around a well as well as characterizing the physicochemical properties such as pH or redox potential.

35 Les nanoparticules: Les fluides d'injection utilisés dans le procédé selon l'invention comprennent des nanoparticules avec les caractéristiques suivantes : - elles présentent un diamètre moyen compris entre 20 et 200 nm; 25 - elles sont aptes à former une suspension colloïdale stable en milieu salin; - elles ont une partie au moins constituée d'un coeur et, le cas échéant d'une matrice enrobant le coeur; - le coeur et/ou, le cas échéant, la matrice, comprennent au moins une ou plusieurs entités fluorescentes susceptible(s) de produire au moins un signal de fluorescence à effet mémoire, c'est-à-dire un signal de fluorescence modifié de manière irréversible en fonction des conditions physico-chimiques rencontrées dans le sous-sol. Nanoparticles: The injection fluids used in the process according to the invention comprise nanoparticles with the following characteristics: they have a mean diameter of between 20 and 200 nm; They are capable of forming a stable colloidal suspension in a saline medium; they have at least one part consisting of a core and, if appropriate, a matrix coating the core; the core and / or, where appropriate, the matrix, comprise at least one or more fluorescent entities capable of producing at least one memory effect fluorescence signal, that is to say a modified fluorescence signal irreversibly depending on the physico-chemical conditions encountered in the subsoil.

Ces nanoparticules sont détectables, c'est-à-dire que l'on peut identifier leur présence ou non dans le milieu au-delà d'une certaine concentration et que l'on peut même quantifier leur concentration dés lors qu'elles sont présentes dans le milieu. These nanoparticles are detectable, that is to say that one can identify their presence or not in the medium beyond a certain concentration and that one can even quantify their concentration as soon as they are present in the middle.

Ces nanoparticules sont aptes à former une suspension colloïdale stable en milieu salin, qui 15 sédimente peu. Par exemple, cette suspension ne présente pas de précipitation ou d'agglomération avec le temps, e.g. après 6 mois à température ambiante. These nanoparticles are capable of forming a stable colloidal suspension in a saline medium, which sediments little. For example, this suspension shows no precipitation or agglomeration over time, e.g. after 6 months at room temperature.

Suivant une modalité avantageuse de ce procédé, le coeur des nanoparticules contient au moins un matériau choisi dans le groupe comprenant : les semi-conducteurs, les métaux 20 nobles (e.g. Au, Ag, Pt), les fluorures, les vanadates ou les oxydes de terres rares et leurs mélanges et/ou alliages; de préférence un lanthanide ; leurs alliages et leurs mélanges, et, plus préférentiellement encore, un lanthanide choisi dans le sous-groupe constitué par : Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm et Yb, et leurs mélanges et/ou alliages. According to an advantageous modality of this process, the core of the nanoparticles contains at least one material chosen from the group comprising: semiconductors, noble metals (eg Au, Ag, Pt), fluorides, vanadates or oxides of rare earths and their mixtures and / or alloys; preferably a lanthanide; their alloys and mixtures thereof and, more preferably still, a lanthanide chosen from the subgroup consisting of: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb, and their mixtures and / or alloys .

25 Le cas échéant, les nanoparticules contiennent en outre, une matrice de préférence transparente, choisie dans le groupe de matériaux comprenant: silices, polysiloxanes, alumines, zircones, aluminates, aluminophosphates, oxydes métalliques (par exemple TiO2, ZnO, CeO2, Fe2O3, ...) et leurs mélanges et/ou alliages, cette matrice incluant en son sein et/ou à sa surface: 30 i. des entités luminescentes choisies dans le groupe comprenant : les semi-conducteurs, les oxydes, les fluorures ou les vanadates de terres rares, les molécules fluorescentes organiques (de préférence la fluorescéine et/ou la rhodamine), les ions de métaux de transition, les ions de terres rares liés ou non à des molécules complexantes et/ou à des molécules 35 permettant d'améliorer leur absorption et leurs mélanges et/ou alliages, u. éventuellement d'autres entités permettant une modification des propriétés de luminescence et choisies dans le groupe comprenant : particules de métal noble et leurs mélanges et/ou alliages; iii. et les mélanges de ces entités (i) et (ii). If desired, the nanoparticles furthermore contain a preferably transparent matrix chosen from the group of materials comprising: silicas, polysiloxanes, aluminas, zirconiums, aluminates, aluminophosphates, metal oxides (for example TiO 2, ZnO, CeO 2, Fe 2 O 3, ...) and their mixtures and / or alloys, this matrix including within it and / or on its surface: i. luminescent entities selected from the group consisting of: rare earth semiconductors, oxides, fluorides or vanadates, organic fluorescent molecules (preferably fluorescein and / or rhodamine), transition metal ions, rare earth ions bound or not to complexing molecules and / or to molecules for improving their absorption and their mixtures and / or alloys, u. optionally other entities allowing a modification of the luminescence properties and chosen from the group comprising: noble metal particles and their mixtures and / or alloys; iii. and the mixtures of these entities (i) and (ii).

Les nanoparticules ont de préférence, une matrice fonctionnalisée à la surface, c'est à dire qui comporte des radicaux R greffés, de préférence par covalence, de préférence à base de 5 liaisons silanes Si-R en surface et issus: i. de composés hydrophiles éventuellement chargés, de préférence des composés organiques hydrophiles, de masses molaires inférieures à 5 000 g/mol et, mieux encore inférieures à 450 g/mol, de préférence choisis parmi les composés organiques comportant au moins l'une des fonctions suivantes: alcool, acide carboxylique, amine, amide, ester, éther-oxyde, sulfonate, phosphonate et phosphinate, et les mélanges de ces composés hydrophiles éventuellement chargés, ü. de composés hydrophiles neutres, de préférence un polyalkyléneglycol, plus préférentiellement encore un polyéthyléneglycol, acide Diéthyléne-TriaminePentaAcétique (DTPA), DTPA dithiolé (DTDTPA) ou un acide succinique, et les mélanges de ces composés hydrophiles neutres, d'un ou plusieurs composés, de préférence de polymères, hydrophobes; iv. ou de leurs mélanges. The nanoparticles preferably have a matrix functionalized on the surface, that is to say which comprises R radicals grafted, preferably covalently, preferably based on 5 Si-R silane bonds at the surface and derived from: i. optionally hydrophilic compounds, preferably hydrophilic organic compounds, with molar masses of less than 5000 g / mol and more preferably less than 450 g / mol, preferably chosen from organic compounds comprising at least one of the following functions: : alcohol, carboxylic acid, amine, amide, ester, ether-oxide, sulfonate, phosphonate and phosphinate, and mixtures of these hydrophilic compounds optionally charged, neutral hydrophilic compounds, preferably a polyalkylene glycol, more preferably a polyethylene glycol, diethylenetriamine pentaacetic acid (DTPA), dithiolated DTPA (DTDTPA) or a succinic acid, and mixtures of these neutral hydrophilic compounds, one or more compounds, preferably hydrophobic polymers; iv. or their mixtures.

20 La matrice peut comprendre le cas échéant, d'autres matériaux, choisis dans le groupe constitué par les silices, les alumines, les zircones, les aluminates, les aluminophosphates, les oxydes métalliques, ou encore les métaux (exemple : Fe, Cu, Ni, Co...) passivés en surface par une couche du métal oxydé ou d'un autre oxyde et leurs mélanges et alliages. The matrix may comprise, where appropriate, other materials selected from the group consisting of silicas, aluminas, zirconiums, aluminates, aluminophosphates, metal oxides, or metals (example: Fe, Cu, Ni, Co ...) passivated on the surface by a layer of the oxidized metal or another oxide and their mixtures and alloys.

25 Dans un mode de réalisation particulier, lesdites nanoparticules comprennent : - un coeur constitué d'un métal noble ou d'un alliage de métaux nobles, - une matrice comprenant (i) des polysiloxanes, (ii) un fluorophore organique, et (iii) un fluorophore organométallique, lesdits fluorophores étant liés de manière covalente aux polysiloxanes, ladite matrice étant fonctionnalisée à sa surface 30 pour former des liaisons silanes Si-R, lesdits radicaux -R étant constitués pour au moins 50%, de préférence au moins 75%, de composés hydrophiles neutres ou chargés, de préférence parmi des polyéthers ou des polyols, ou leurs mélanges. In a particular embodiment, said nanoparticles comprise: a core consisting of a noble metal or an alloy of noble metals, a matrix comprising (i) polysiloxanes, (ii) an organic fluorophore, and (iii) ) an organometallic fluorophore, said fluorophores being covalently bound to the polysiloxanes, said matrix being functionalized on its surface to form silane bonds Si-R, said radicals -R being constituted for at least 50%, preferably at least 75% neutral or charged hydrophilic compounds, preferably from polyethers or polyols, or mixtures thereof.

35 Avantageusement, la matrice des nanoparticules comporte des radicaux -R greffés à raison d'au moins un radical R pour 10 nm2 de surface et de préférence au moins un pour 1 nm2. 10 15 Pour contrôler les interactions entre, d'une part, le milieu solide à étudier, à savoir par exemple le sous-sol géologique (e.g. roches) contenant le gisement pétrolier et, d'autre part, les nanoparticules, il est possible selon une disposition avantageuse de l'invention, d'ajuster la balance hydrophile lipophile et/ou le potentiel zêta de la matrice des nanoparticules en fonction du sous-sol à étudier. Advantageously, the matrix of the nanoparticles comprises -R radicals grafted at least one R radical for 10 nm 2 of surface and preferably at least one for 1 nm 2. In order to control the interactions between, on the one hand, the solid medium to be studied, namely for example the geological subsoil (eg rocks) containing the oil reservoir and, on the other hand, the nanoparticles, it is possible according to an advantageous arrangement of the invention to adjust the hydrophilic lipophilic balance and / or the zeta potential of the matrix of the nanoparticles as a function of the subsoil to be studied.

Pour ce faire, par exemple, soit on prévoit une même charge de surface pour les nanoparticules et les roches du milieu solide, afin de créer une répulsion et limiter les interactions, soit on module les charges respectives pour que les nanoparticules et les roches du milieu solide interagissent de façon contrôlée et/ou spécifiques par rapport à certaines roches. To do this, for example, either the same surface charge is expected for the nanoparticles and rocks of the solid medium, in order to create a repulsion and limit the interactions, or the respective charges are modulated so that the nanoparticles and the rocks of the medium solid interact in a controlled manner and / or specific to certain rocks.

Les nanoparticules selon l'invention ont un diamètre moyen de préférence compris entre 20 nm et 100 nm, par exemple, compris entre 20 nm et 50 nm. Dans un mode de réalisation avantageux, les nanoparticules selon l'invention ont un indice de polydispersité inférieur à 0,3, de préférence inférieur à 0,2, par exemple inférieur à 0,1. The nanoparticles according to the invention have an average diameter of preferably between 20 nm and 100 nm, for example between 20 nm and 50 nm. In an advantageous embodiment, the nanoparticles according to the invention have a polydispersity index of less than 0.3, preferably less than 0.2, for example less than 0.1.

La distribution de taille des nanoparticules est par exemple mesurée à l'aide d'un granulométre commercial, tel qu'un granulométre Malvern Zêta sizer Nano-S basé sur la PCS (Photon Correlation Spectroscopy). Cette distribution est caractérisée par un diamètre moyen et un indice de polydispersité. The size distribution of the nanoparticles is for example measured using a commercial particle size analyzer, such as a PCS-based Malvern Zeta sizer Nano-S granulator (Photon Correlation Spectroscopy). This distribution is characterized by a mean diameter and a polydispersity index.

Au sens de l'invention, par « diamètre moyen » on entend la moyenne harmonique des diamètres des particules. L'indice de polydispersité fait référence à la largeur de la 25 distribution en taille dérivant de l'analyse des cumulants selon la norme ISO 13321:1996. For the purposes of the invention, "mean diameter" means the harmonic mean of the diameters of the particles. The polydispersity index refers to the width of the size distribution derived from the cumulant analysis according to ISO 13321: 1996.

Une caractéristique essentielle du procédé d'étude selon l'invention réside dans l'utilisation de nanoparticules capables de produire un signal à effet mémoire. An essential characteristic of the study method according to the invention lies in the use of nanoparticles capable of producing a memory effect signal.

30 Au sens de l'invention, on parle de signal fluorescent à effet mémoire, un signal dont les caractéristiques, par exemple l'intensité de fluorescence du spectre d'émission, du spectre d'excitation, la durée de vie d'émission ou les rendements quantiques, sont modifiées de manière irréversible en fonction de certaines conditions physico-chimiques rencontrées dans le sous-sol traversé. Ainsi, la nature et/ou l'intensité de l'altération du signal 35 fluorescent permet d'en déduire certaines conditions physico-chimiques de l'environnement traversé. Within the meaning of the invention, we speak of a fluorescent signal with a memory effect, a signal whose characteristics, for example the fluorescence intensity of the emission spectrum, the excitation spectrum, the transmission lifetime, or the quantum yields are irreversibly modified according to certain physico-chemical conditions encountered in the subsoil traversed. Thus, the nature and / or the intensity of the alteration of the fluorescent signal makes it possible to deduce certain physico-chemical conditions from the environment traversed.

Les conditions physico-chimiques étudiées incluent par exemple, la température du sous-sol, le pH, la teneur en hydrocarbure ou encore le potentiel redox du sous-sol traversé. The physicochemical conditions studied include, for example, the temperature of the subsoil, the pH, the hydrocarbon content or the redox potential of the subsoil traversed.

Dans un mode de réalisation avantageux, on utilisera des nanoparticules comprenant au moins une ou plusieurs entités fluorescentes permettant de produire au moins un signal de fluorescence à effet mémoire et une ou plusieurs entités fluorescente produisant un signal stable, c'est-à-dire, au contraire de l'effet mémoire, un signal qui n'est pas modifié de manière irréversible en fonction des conditions physico-chimiques rencontrées. A titre d'exemples d'entités fluorescentes produisant un signal stable, on peut citer les lanthanides ou d'autres entités dont la luminescence n'est pas sensible à l'environnent local du fait que les orbitales f mises en jeu sont peu disponibles pour interagir avec les éléments présents dans leur sphère de coordination et donc modifier leur propriétés de luminescence. In an advantageous embodiment, use will be made of nanoparticles comprising at least one or more fluorescent entities making it possible to produce at least one memory effect fluorescence signal and one or more fluorescent entities producing a stable signal, that is to say, unlike the memory effect, a signal that is not irreversibly modified depending on the physicochemical conditions encountered. By way of examples of fluorescent entities producing a stable signal, mention may be made of lanthanides or other entities whose luminescence is not sensitive to the local environment because the f orbitals involved are not widely available for interact with the elements present in their sphere of coordination and thus modify their luminescence properties.

Dans un mode de réalisation préféré de l'invention, au moins une partie des nanoparticules comprend : i. au moins un fluorophore organique, et, ü. au moins un fluorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce que la 20 nanoparticule produise au moins un signal de fluorescence à effet mémoire. In a preferred embodiment of the invention, at least a portion of the nanoparticles comprises: i. at least one organic fluorophore, and, at least one organometallic fluorophore, the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least one memory effect fluorescence signal.

Il est connu que le signal de fluorescence de certains fluorophores organiques est modifié de manière irréversible en fonction des conditions physico-chimiques rencontrées par le traceur portant des fluorophores, et notamment en fonction du pH, de la température, et/ou 25 du potentiel redox. It is known that the fluorescence signal of certain organic fluorophores is irreversibly modified according to the physicochemical conditions encountered by the tracer carrying fluorophores, and in particular as a function of the pH, the temperature, and / or the redox potential. .

A titre d'exemple de fluorophore organique susceptible d'être utilisé, en combinaison avec un fluorophore organométallique, pour obtenir un signal fluorescent à effet mémoire, on peut citer la fluorescéine (par exemple fluorescéine isothiocyanate FITC), la rhodamine 30 (par exemple Rhodamine B isothiocyanate RBITC) ou d'autres entités fluorescentes qui ont des spectres d'émission dans la même zone que la fluorescéine ou la rhodamine, par exemple les produits avec les dénominations commerciales Alexa Fluor, Cy Dyes, Atto, F1uoProbes. By way of example of an organic fluorophore that can be used, in combination with an organometallic fluorophore, to obtain a fluorescent signal with a memory effect, mention may be made of fluorescein (for example fluorescein isothiocyanate FITC), rhodamine 30 (for example Rhodamine). B isothiocyanate RBITC) or other fluorescent species that have emission spectra in the same area as fluorescein or rhodamine, for example products with the trade names Alexa Fluor, Cy Dyes, Atto, F1uoProbes.

35 De préférence, les fluorophores organométalliques des nanoparticules sont choisis parmi les vanadates ou les oxydes de terres rares, ou leurs mélanges. Dans un mode de réalisation spécifique, ils sont choisis parmi les lanthanides, leurs alliages et leurs mélanges, liés à des molécules complexantes. Preferably, the organometallic fluorophores of the nanoparticles are chosen from vanadates or rare earth oxides, or mixtures thereof. In a specific embodiment, they are chosen from lanthanides, their alloys and their mixtures, linked to complexing molecules.

Dans un mode de réalisation préféré, les fluorophores organométalliques sont détectables par fluorescence résolue dans le temps. Les lanthanides liés à des molécules complexantes sont alors particulièrement préférés. In a preferred embodiment, the organometallic fluorophores are detectable by time-resolved fluorescence. Lanthanides linked to complexing molecules are then particularly preferred.

Les métaux de la série des lanthanides comprennent les éléments de numéros atomiques de 57 (lanthane) à 71 (lutécium). Par exemple, on choisira les lanthanides dans le groupe constitué par : Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm et Yb et leurs mélanges et/ou alliages, liés à des molécules complexantes, et de préférence l'europium et le terbium. The metals of the lanthanide series include atomic number elements from 57 (lanthanum) to 71 (lutetium). For example, lanthanides will be selected from the group consisting of: Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb and mixtures and / or alloys thereof, linked to complexing molecules, and preferably europium and terbium.

Par « molécules complexantes » ou « agent chélatant », on entend toute molécule capable de former avec un agent métallique, un complexe comprenant au moins deux liaisons de coordination. By "complexing molecules" or "chelating agent" is meant any molecule capable of forming with a metal agent, a complex comprising at least two coordination bonds.

15 Dans un mode de réalisation préféré, on choisira un agent complexant ayant une coordinance d'au moins 6, par exemple au moins 8, et une constante de dissociation du complexe, pKd, supérieure à 10 et de préférence supérieur à 15, avec un lanthanide. In a preferred embodiment, a complexing agent having a coordination of at least 6, for example at least 8, and a dissociation constant of the complex, pKd, greater than 10 and preferably greater than 15, will be chosen with a lanthanide.

Au sens de l'invention, par constante de dissociation pKd, on entend la mesure de 20 l'équilibre entre les ions à l'état complexé par les ligands et ceux libres dissociés dans le solvant. Précisément, c'est moins le logarithme en base 10 du produit de dissociation (-log(Kd)), défini comme la constante d'équilibre de la réaction qui traduit le passage de l'état complexés à l'état ionique. Within the meaning of the invention, the dissociation constant pKd is understood to mean the measurement of the equilibrium between the ions in the complexed state by the ligands and those free dissolved in the solvent. Precisely, it is less the logarithm in the base of the dissociation product (-log (Kd)), defined as the equilibrium constant of the reaction which translates the transition from the complexed state to the ionic state.

25 De tels agents complexants sont de préférence des molécules chélatantes polydentates choisies parmi les familles de molécules de type polyamines, polyacides carboxyliques et possédant un nombre de site potentiel de coordination élevée de préférence supérieur à 6, comme certains macrocycles. Such complexing agents are preferably polydentate chelating molecules selected from families of polyamine-type polycarboxylic acid molecules and having a high potential coordination site number, preferably greater than 6, such as certain macrocycles.

30 Dans un mode de réalisation plus préféré, on choisira le DOTA, ou acide 1,4,7,10-tétraazacyclododécane-1,4,7,10-tétraacétique, de formule suivante : 10 ou l'un de ses dérivés. In a more preferred embodiment, DOTA, or 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, of the following formula or one of its derivatives will be selected.

Par « agent cyclique », on entend une molécule organique, comportant au moins un cycle ou hétérocycle aromatique, de préférence choisi parmi le benzène, la pyridine ou leurs dérivés, et susceptibles d'amplifier le signal fluorescent émis par le fluorophore organométallique et/ou le fluorophore organique, par exemple un agent complexant lié au lanthanide. Ces agents cycliques, intéressants s'ils sont caractérisés par une forte absorbance sont utilisés en particulier pour amplifier le signal fluorescent émis par les fluorophores (effet d'antenne par transfert de l'excitation de l'agent vers le fluorophore). By "cyclic agent" is meant an organic molecule, comprising at least one aromatic ring or heterocycle, preferably selected from benzene, pyridine or their derivatives, and capable of amplifying the fluorescent signal emitted by the organometallic fluorophore and / or the organic fluorophore, for example a complexing agent bound to lanthanide. These cyclic agents, interesting if they are characterized by a high absorbance, are used in particular to amplify the fluorescent signal emitted by the fluorophores (antenna effect by transfer of the excitation of the agent towards the fluorophore).

L'agent cyclique peut être greffé de manière covalente soit directement aux polysiloxanes de la matrice, soit au fluorophore organométallique et/ou organique. The cyclic agent may be grafted covalently either directly to the polysiloxanes of the matrix or to the organometallic and / or organic fluorophore.

Dans un mode de réalisation spécifique, les fluorophores organométalliques constitués d'un lanthanide avec un agent complexant sont greffés aux polysiloxanes de la matrice des nanoparticules de manière covalente via une fonction amide. In a specific embodiment, the organometallic fluorophores consisting of a lanthanide with a complexing agent are grafted to the polysiloxanes of the matrix of the nanoparticles covalently via an amide function.

Fluorophore organique et fluorophore organométallique contenues dans une même 20 nanoparticule sont choisis de sorte à produire un signal de fluorescence à effet mémoire, de préférence détectable par fluorescence en temps résolu. Organic fluorophore and organometallic fluorophore contained in the same nanoparticle are chosen so as to produce a fluorescence signal with a memory effect, preferably detectable by fluorescence in time resolved.

Dans un mode de réalisation plus particulièrement préféré, les nanoparticules comprennent au moins un fluorophore organique choisi parmi la fluorescéine ou l'un de ses dérivés et au 25 moins un fluorophore organométallique choisi parmi l'europium (Eu) ou le terbium (Tb), lié à un agent complexant. In a more particularly preferred embodiment, the nanoparticles comprise at least one organic fluorophore chosen from fluorescein or one of its derivatives and at least one organometallic fluorophore chosen from europium (Eu) or terbium (Tb), linked to a complexing agent.

Dans un autre mode de réalisation préféré, les nanoparticules comprennent au moins un fluorophore organique choisi parmi la rhodamine ou l'un de ses dérivés, et au moins un 30 fluorophore organométallique choisi parmi Eu ou Tb, lié à un agent complexant. In another preferred embodiment, the nanoparticles comprise at least one organic fluorophore chosen from rhodamine or one of its derivatives, and at least one organometallic fluorophore selected from Eu or Tb, linked to a complexing agent.

Afin de multiplier les informations sur l'environnement étudié, le liquide d'injection peut comprendre un mélange de nanoparticules, chaque type de nanoparticules étant caractérisé par l'émission d'un ou plusieurs signaux de fluorescence spécifiques, et en ce que lesdits 35 signaux émis par chaque type de nanoparticules sont détectables par des moyens de détection multiplex. 11 La détection multiplex permet d'analyser plusieurs signaux de fluorescence (caractérisées par exemple par des longueurs d'ondes différentes) en parallèle sur le même échantillon. Aussi, on utilisera des entités fluorescentes de longueurs d'onde d'émission et/ou d'excitation différentes selon chaque type de nanoparticules. D'autres signaux émis par les nanoparticules peuvent également être détectés en parallèle, et par exemple des signaux détectables par analyse chimique, par ICP et/ou par analyse magnétique (température de transition magnétique, par exemple de Curie ou de Néel). In order to multiply the information on the environment under study, the injection liquid may comprise a mixture of nanoparticles, each type of nanoparticle being characterized by the emission of one or more specific fluorescence signals, and in that said signals emitted by each type of nanoparticles are detectable by multiplex detection means. The multiplex detection makes it possible to analyze several fluorescence signals (characterized for example by different wavelengths) in parallel on the same sample. Also, fluorescent entities of different emission and / or excitation wavelengths will be used according to each type of nanoparticle. Other signals emitted by the nanoparticles can also be detected in parallel, and for example signals detectable by chemical analysis, by ICP and / or by magnetic analysis (magnetic transition temperature, for example of Curie or Néel).

10 Afin d'augmenter encore le niveau d'information susceptible d'être recueilli, le liquide d'injection comprend au moins deux types de nanoparticules qui se distinguent par leur balance hydrophile/lipophile et/ou leur potentiel zêta, de sorte qu'une partie des nanoparticules présente un signal fluorescent retardé par rapport à l'autre partie des nanoparticules du fait de leur interaction avec le sous-sol. Ainsi, par exemple, des 15 nanoparticules interagissant avec certaines roches du sous-sol verront leur signal à effet mémoire plus fortement modulé par rapport aux nanoparticules interagissant peu ou pas du tout avec ces mêmes roches. In order to further increase the level of information that can be collected, the injection liquid comprises at least two types of nanoparticles which are distinguished by their hydrophilic / lipophilic balance and / or their zeta potential, so that part of the nanoparticles has a fluorescent signal delayed compared to the other part of the nanoparticles because of their interaction with the subsoil. Thus, for example, nanoparticles interacting with certain rocks of the subsoil will have their memory effect signal more strongly modulated relative to the nanoparticles interacting little or not at all with these same rocks.

Des nanoparticules utilisables dans le procédé de l'invention et de leur préparation sont 20 présentées dans les Exemples ci-dessous. Nanoparticles useful in the process of the invention and their preparation are shown in the Examples below.

Méthodologie Methodology

Dans une application préférée du procédé selon l'invention, on injecte le liquide 25 d'injection et on le recueille dans le même puits (le puits d'injection et le puits de production sont identiques) par inversion du flux du liquide injecté. In a preferred application of the process according to the invention, the injection liquid is injected and collected in the same well (the injection well and the production well are identical) by inversion of the flow of the injected liquid.

Suivant une modalité remarquable du procédé selon l'invention, préalablement à l'analyse du liquide ayant diffusé, on concentre celui-ci, de préférence par filtration ou dialyse, et, 30 plus préférentiellement encore, par filtration tangentielle et de préférence par utilisation de membrane de seuils de coupures inférieurs à 300 kDa According to a remarkable modality of the process according to the invention, prior to the analysis of the diffused liquid, this is concentrated, preferably by filtration or dialysis, and more preferably still, by tangential filtration and preferably by use of Threshold membrane of cuts below 300 kDa

On peut mesurer la quantité de traceur dans le liquide ayant diffusé, par détection par fluorescence et/ou par analyse chimique et/ou par ICP et/ou par analyse magnétique 35 (température de transition magnétique, par exemple de Curie ou de Néel). The amount of tracer in the diffused liquid can be measured by fluorescence detection and / or by chemical analysis and / or by ICP and / or by magnetic analysis (magnetic transition temperature, eg Curie or Neel).

Suivant une variante pour la mesure de la quantité de traceur dans le liquide ayant diffusé, on procède au moins à une détection par fluorescence en temps résolu, c'est-à-dire5 enclenchée la détection avec retard (e.g. quelques microsecondes) après une impulsion d'excitation sur une ou plusieurs entités fluorescentes contenues dans la nanoparticule et susceptible d'émettre un signal « stable », c'est-à-dire qui n'a pas été modulé de manière irréversible en fonction des conditions physico-chimiques rencontrées. According to a variant for measuring the amount of tracer in the diffused liquid, at least one fluorescence detection is carried out in time resolved, that is to say 5 triggered the detection with delay (eg a few microseconds) after an impulse excitation of one or more fluorescent entities contained in the nanoparticle and likely to emit a "stable" signal, that is to say that has not been irreversibly modulated according to the physicochemical conditions encountered.

On mesure le ou les signaux fluorescents à effet mémoire, de préférence en fonction du temps suivant l'injection, là encore, de préférence par fluorescence en temps résolu. En comparant le ou les signaux obtenus en fonction du temps par rapport à un signal stable, on en déduit les modifications induites par les conditions physico-chimiques rencontrées lors de la diffusion du liquide d'injection au voisinage du puits. The fluorescent signal (s) with memory effect is measured, preferably as a function of the time following the injection, again, preferably by time resolved fluorescence. By comparing the signal or signals obtained as a function of time with respect to a stable signal, the modifications induced by the physicochemical conditions encountered during the diffusion of the injection liquid in the vicinity of the well are deduced therefrom.

Dans un mode de réalisation particulier, le procédé de l'invention permet d'obtenir des informations sur les variations de température subies par le fluide traceur dans le sous-sol traversé. Dans un autre mode de réalisation particulier, on en déduit les variations de pH dans le sous-sol traversé. Dans un autre mode de réalisation particulier, on en déduit le taux d'exposition à certains hydrocarbures. In a particular embodiment, the method of the invention makes it possible to obtain information on the temperature variations experienced by the tracer fluid in the subsoil traversed. In another particular embodiment, the pH variations are deduced in the subsoil traversed. In another particular embodiment, the rate of exposure to certain hydrocarbons is deduced therefrom.

Liquide d'in ection...(eaux)..po!:..l'étude. d'un..milieu solide,-..à..s«voir. . e.g....un..gisement ét1:olig: Selon un autre de ses objets, l'invention concerne un liquide d'injection (ou fluide traceur) dans un gisement pétrolier utilisable notamment dans le procédé défini supra, caractérisé en ce qu'il comprend des nanoparticules : - de diamètre moyen compris entre 20 et 200 nm; - aptes à former une suspension colloïdale stable en milieu salin; - dont une partie au moins est constituée d'un coeur et, le cas échéant d'une matrice enrobant le coeur; - et, dont le coeur et/ou, le cas échéant, la matrice, comprend au moins un fluorophore organique et au moins un fluorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire, ledit signal étant détectable par fluorescence en temps résolu. In ection liquid ... (waters) .. po!: .. the study. of a solid, solid medium, to see. . For example, according to another of its objects, the invention relates to an injection liquid (or tracer fluid) in a petroleum reservoir that can be used in particular in the process defined above, characterized in that it comprises nanoparticles: of average diameter between 20 and 200 nm; - capable of forming a stable colloidal suspension in a saline medium; at least part of which consists of a core and, if appropriate, a matrix coating the core; and, whose core and / or, where appropriate, the matrix, comprises at least one organic fluorophore and at least one organometallic fluorophore, the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least one memory effect fluorescence signal, said signal being detectable by time resolved fluorescence.

Avantageusement, ce liquide comprend de l'eau et des nanoparticules (ou mélange de 35 nanoparticules) telles que définies ci-dessus. Advantageously, this liquid comprises water and nanoparticles (or mixture of nanoparticles) as defined above.

Utilisation des nanoparticules Use of nanoparticles

Selon un autre de ses objets, l'invention concerne une nouvelle utilisation des nanoparticules telles que définies ci-dessus comme traceurs dans des eaux d'injection d'un gisement pétrolier destinées à l'étude dudit gisement par diffusion de ces eaux d'injection au travers dudit gisement, en vue notamment d'évaluer les volumes de pétrole en réserve dans le gisement. According to another of its objects, the invention relates to a new use of the nanoparticles as defined above as tracers in injection waters of a petroleum deposit intended for the study of said deposit by diffusion of these injection waters. through this deposit, in particular to evaluate the volumes of oil in reserve in the deposit.

Selon une autre application, par exemple dans des méthodes d'exploration ou de prospection incluant la fracturation hydraulique, on peut cartographier l'historique de température des nanoparticules après diffusion au voisinage d'un puits d'injection puis en déduire la présence d'une ou plusieurs lignes de fracturation. According to another application, for example in exploration or prospecting methods including hydraulic fracturing, it is possible to map the temperature history of the nanoparticles after diffusion in the vicinity of an injection well and then to deduce the presence of a or several fracturing lines.

EXEMPLES. Description des figures - La figure 1 montre les spectres d'émission des trois solutions selon la préparation 1 ramenées à température ambiante avec comme longueur d'onde excitation 330 nm (Fig. la), et 395 nm (Fig. lb) mesurés avec un délai de 0.1 ms et un temps d'acquisition 5 ms - La figure 2 montre le spectre d'émission des trois solutions selon la préparation 3 ramenées à température ambiante avec comme longueur d'onde excitation 285 nm (délai 0,1 ms, temps d'acquisition 5 ms). - La figure 3 montre le spectre d'émission des deux solutions selon la préparation 2 ramenées à température ambiante avec comme longueur d'onde excitation 330 nm, (délai 0,1 ms, temps d'acquisition 5 ms). - La figure 4 montre le spectre d'émission des trois solutions selon la préparation 4 30 ramenées à température ambiante avec comme longueur d'onde excitation 285 nm, (délai 0,1 ms, temps d'acquisition 5 ms). EXAMPLES. DESCRIPTION OF THE FIGURES FIG. 1 shows the emission spectra of the three solutions according to Preparation 1, brought to room temperature with the excitation wavelength 330 nm (FIG La) and 395 nm (FIG. 0.1 ms delay and 5 ms acquisition time - FIG. 2 shows the emission spectrum of the three solutions according to Preparation 3 brought back to ambient temperature with excitation wavelength 285 nm (delay 0.1 ms, time 5ms acquisition). FIG. 3 shows the emission spectrum of the two solutions according to preparation 2 brought back to ambient temperature with excitation wavelength 330 nm (delay 0.1 ms, acquisition time 5 ms). FIG. 4 shows the emission spectrum of the three solutions according to Preparation 4 brought back to ambient temperature with excitation wavelength 285 nm (delay 0.1 ms, acquisition time 5 ms).

- La figure 5 montre le spectre d'excitation à une émission fixée pour l'europium à 615 nm des trois solutions selon la préparation 1 à différents pH (délai 0,1 ms, temps 35 d'acquisition 5 ms). 14 - La figure 6 montre le spectre d'excitation à une émission fixée pour l'europium à 615 nm des deux solutions de nanoparticules selon la préparation 1 dans le DEG et un mélange DEG/eau (délai 0,1 ms, temps d'acquisition 5 ms). - La figure 7 montre le spectre d'excitation des trois solutions de colloïdes préparées selon la préparation 1 ramenées à température ambiante avec comme longueur d'onde d'émission de 615 nm, délai 0,1 ms, temps d'acquisition 5 ms. Préparation 1. Solution colloïdale de nanoparticules avec un coeur d'or et une matrice 10 de silice encapsulant des fluorophores organiques dérivés de fluorescéine et des complexes (DTPA) d'europium. FIG. 5 shows the excitation spectrum at a fixed emission for europium at 615 nm of the three solutions according to Preparation 1 at different pH (0.1 ms delay, 5 ms acquisition time). FIG. 6 shows the excitation spectrum at a fixed emission for europium at 615 nm of the two nanoparticle solutions according to Preparation 1 in the DEG and a DEG / water mixture (delay 0.1 ms, time of 5 ms acquisition). FIG. 7 shows the excitation spectrum of the three colloid solutions prepared according to Preparation 1, brought to room temperature with the emission wavelength of 615 nm, 0.1 ms delay, 5 ms acquisition time. Preparation 1. Colloidal solution of nanoparticles with a gold core and a silica matrix encapsulating fluorescein-derived organic fluorophores and europium (DTPA) complexes.

Dans une bouteille de 10 mL, 200 mg d'acide diéthylénetriaminepentaacétiquebisanhydride (DTPABA), 0,130 mL d'APTES et 0,065 mL de triéthylamine 15 sont introduits avec 4 mL de DMSO (diméthylsulfoxyde) sous agitation vigoureuse. Après 24 heures, 200 mg d'EuC13,6H20 est ajouté et le mélange est agité pendant 48 heures Dans une bouteille de 2,5 mL, 20 mg de FITC (fluorescéine isothiocyanate) sont introduits avec 0,5 mL d'APTES ((3-aminopropyl)triéthoxysilane) sous agitation vigoureuse. On homogénéise à température ambiante pendant 30 minutes. Dans un ballon de 500 mL, 36 20 mL de Triton X-100 (tensioactif), 36 mL de n-hexanol (co-tensioactif), 150 mL de cyclohexane (huile) et 21 mL de solution aqueuse contenant 9 mL de HAuC14.3H2O à 16,7 mM, 9 mL de MES (Sodium 2-mercaptoéthanesulfonate) à 32,8 mM et 3 mL de NaBH4 à 412 mM sont introduits sous agitation vigoureuse. Après 5 minutes, 0,400 mL de solution contenant la fluorescéine est ajoutée dans la microémulsion avec 1 mL de la solution 25 contenant le complexe d'europium. Ensuite, 0,200 mL d'APTES et 1,5 mL de TEOS (tetraéthylorthosilicate) sont également ajoutés à la microémulsion. La réaction de polymérisation de la silice est complétée par l'addition de 0,800 mL de NH4OH après 10 minutes. On laisse la micromémulsion sous agitation pendant 24 h à 30 température ambiante. Ensuite, 190 µL de Silane-gluconamide (N-(3-Triéthoxysilylpropyl)gluconamide) à 50% dans l'éthanol est ajouté à la microémulsion sous agitation à température ambiante. In a 10 mL bottle, 200 mg of diethylenetriaminepentaaceticbisanhydride (DTPABA), 0.130 mL of APTES and 0.065 mL of triethylamine are added with 4 mL of DMSO (dimethylsulfoxide) with vigorous stirring. After 24 hours, 200 mg of EuC13,6H20 is added and the mixture is stirred for 48 hours. In a 2.5 mL bottle, 20 mg of FITC (fluorescein isothiocyanate) are introduced with 0.5 mL of APTES ( 3-aminopropyl) triethoxysilane) with vigorous stirring. It is homogenized at room temperature for 30 minutes. In a 500 mL flask, 36 mL of Triton X-100 (surfactant), 36 mL of n-hexanol (co-surfactant), 150 mL of cyclohexane (oil) and 21 mL of aqueous solution containing 9 mL of HAuC14. 3H2O at 16.7 mM, 9 mL of 32.8 mM MES (Sodium 2-mercaptoethanesulfonate) and 3 mL of 412 mM NaBH4 are introduced with vigorous stirring. After 5 minutes, 0.400 mL of fluorescein-containing solution is added to the microemulsion with 1 mL of the solution containing the europium complex. Then, 0.200 mL of APTES and 1.5 mL of TEOS (tetraethylorthosilicate) are also added to the microemulsion. The polymerization reaction of the silica is completed by the addition of 0.800 ml of NH 4 OH after 10 minutes. The microemulsion is allowed to stir for 24 hours at room temperature. Then, 190 μl of 50% Silane-gluconamide (N- (3-Triethoxysilylpropyl) gluconamide) in ethanol is added to the microemulsion with stirring at room temperature.

Après 24 h, 190 µL de Silane-gluconamide sont à nouveau ajoutés à la solution toujours sous agitation à température ambiante. After 24 hours, 190 μL of silane-gluconamide is again added to the solution, still stirring at room temperature.

Après 24 h, la microémulsion est déstabilisée dans une ampoule à décanter par ajout d'un 5 mélange de 250 mL d'eau distillée et 250 mL d'isopropanol. La solution est laissée à décanter au moins 15 minutes et la phase inférieure contenant les particules est récupérée. After 24 hours, the microemulsion is destabilized in a separatory funnel by adding a mixture of 250 ml of distilled water and 250 ml of isopropanol. The solution is allowed to settle at least 15 minutes and the lower phase containing the particles is recovered.

La solution colloïdale récupérée est ensuite placée dans un système de filtration tangentielle VIVASPIN® à 300 kDa et centrifugée à 4000 tr/min jusqu'à obtention d'un 10 taux de purification supérieur à 500. The colloidal solution recovered is then placed in a 300 kDa VIVASPIN® tangential filtration system and centrifuged at 4000 rpm until a purification rate of greater than 500 is obtained.

La solution ainsi obtenue est alors filtrée à 0,2 µm et diluée par 5 dans du DEG (diéthylèneglycol). La solution obtenue est composée de particules de taille moyenne 50,25 nm et d'indice de polydispersité 0,091 à très bonne stabilité colloïdale en milieu aqueux 15 salé (jusqu'à 100 g de sels/L) The solution thus obtained is then filtered at 0.2 μm and diluted by 5 in DEG (diethylene glycol). The solution obtained is composed of particles of average size 50.25 nm and polydispersity index 0.091 with very good colloidal stability in a salty aqueous medium (up to 100 g of salts / L).

Préparation 2 : Solution colloïdale de nanoparticules avec un coeur d'or et une matrice de silice encapsulant des fluorophores organiques dérivées de rhodamine B et des complexes (DTPA) d'europium. Preparation 2: Colloidal solution of nanoparticles with a gold core and a silica matrix encapsulating organic fluorophores derived from rhodamine B and complexes (DTPA) of europium.

La synthèse est similaire à celle décrite pour la préparation 1 à la différence que les 20 mg de fluorescéine isothiocyanate sont remplacées par 20 mg de rhodamine B isothiocyanate (RBITC). Le reste de la synthèse est identique. La solution ainsi obtenue est composée de particules de taille moyenne 48 nm et d'indice de polydispersité 0,072. The synthesis is similar to that described for Preparation 1 with the difference that the 20 mg of fluorescein isothiocyanate is replaced by 20 mg of rhodamine B isothiocyanate (RBITC). The rest of the synthesis is identical. The solution thus obtained is composed of particles having a mean size of 48 nm and a polydispersity index of 0.072.

Préparation 3 : Solution colloïdale de nanoparticules avec un coeur d'or et une matrice de silice encapsulant des fluorophores organiques dérivées de fluorescéine et des complexes (DTPA) de terbium. Preparation 3: Colloidal solution of nanoparticles with a gold core and a silica matrix encapsulating organic fluorophores derived from fluorescein and complexes (DTPA) of terbium.

30 La synthèse est similaire à celle décrite pour la préparation 1 à la différence que les 200 mg d'EuC13,6H20 sont remplacés par 200 mg de TbC13,6Hz0. Le reste de la synthèse est identique. La solution ainsi obtenue est composée de particules de taille moyenne 43 nm et d'indice de polydispersité 0,069. 20 25 Préparation 4 : Solution colloïdale de nanoparticules avec un coeur d'or et une matrice de silice encapsulant des fluorophores organiques dérivées de rhodamine B et des complexes (DTPA) de terbium. The synthesis is similar to that described for Preparation 1 except that the 200 mg of EuC13,6H20 is replaced by 200 mg of TbC13,6Hz0. The rest of the synthesis is identical. The solution thus obtained is composed of particles of average size 43 nm and polydispersity index 0.069. Preparation 4: Colloidal solution of nanoparticles with a gold core and a silica matrix encapsulating organic fluorophores derived from rhodamine B and complexes (DTPA) of terbium.

La synthèse est similaire à celle décrite pour la préparation 1 à la différence que les 20 mg de fluorescéine isothiocyanate sont remplacés par 20 mg de rhodamine B isothiocyanate (RBITC) et que les 200 mg d'EuC13,6H20 sont remplacés par 200 mg de TbC13,6Hz0. Le reste de la synthèse est identique. La solution ainsi obtenue est composée de particules de taille moyenne 46 nm et d'indice de polydispersité 0,073. The synthesis is similar to that described for Preparation 1 with the difference that the 20 mg of fluorescein isothiocyanate is replaced by 20 mg of rhodamine B isothiocyanate (RBITC) and that the 200 mg of EuC13,6H20 are replaced by 200 mg of TbC13 , 6Hz0. The rest of the synthesis is identical. The solution thus obtained is composed of particles of average size 46 nm and polydispersity index 0.073.

Résultats Results

Exemple 1 : Détection d'un signal fluorescent à effet mémoire en fonction de la 15 température de l'environnement utilisant des nanoparticules selon la préparation 1 Example 1: Detection of a memory effect fluorescent signal as a function of environmental temperature using nanoparticles according to Preparation 1

Trois échantillons de 10 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 1 sont chauffés à 80°C respectivement pendant 0, 1 et 72 heures. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en 20 particuliers ceux en temps résolus. La figure 1 montre le spectre d'émission des trois solutions ramenées à température ambiante avec comme longueur d'onde excitation 330 nm (Fig. la), et 395 nm (Fig. lb). Les courbes de luminescence (fig. la) montrent une nette augmentation de l'intensité d'émission des particules (pic à 615 nm, spécifique de l'europium) en relation avec le temps de traitement thermique à 80°C lorsque l'excitation 25 est réalisée à 330 nm, alors qu'à 395 nm aucune variation n'est observée (fig. lb). Le rapport des pics d'émissions entre ces différentes excitations peut donc servir de sondes pour mesurer le temps d'exposition des particules à la température 80°C. Exemple 2: Détection d'un signal fluorescent à effet mémoire en fonction de la 30 température de l'environnement utilisant des nanoparticules selon la préparation 3 Three samples of 10 ml of colloidal solutions of nanoparticles obtained according to Preparation 1 are heated at 80 ° C. respectively for 0, 1 and 72 hours. The fluorescence study is then carried out and indicates a strong variation of the emission spectra especially those in time resolved. Figure 1 shows the emission spectrum of the three solutions brought back to room temperature with excitation wavelength 330 nm (Fig. La), and 395 nm (Fig. Lb). The luminescence curves (Fig. La) show a clear increase in the emission intensity of the particles (peak at 615 nm, specific for europium) in relation to the heat treatment time at 80 ° C. when the excitation 25 is performed at 330 nm, whereas at 395 nm no variation is observed (Fig. Lb). The ratio of the emission peaks between these different excitations can thus serve as probes to measure the exposure time of the particles at the temperature 80 ° C. Example 2: Detection of a memory effect fluorescent signal as a function of environmental temperature using nanoparticles according to Preparation 3

Trois échantillons de 10 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 3 sont chauffés à 80°C respectivement 0, 1 et 72 h. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 2 montre le spectre d'émission des trois solutions ramenées à température ambiante avec comme longueur d'onde excitation 285 nm. Three samples of 10 ml of colloidal solutions of nanoparticles obtained according to Preparation 3 are heated at 80 ° C. respectively 0, 1 and 72 h. The fluorescence study is then carried out and indicates a strong variation of the emission spectra especially those in time resolved. Figure 2 shows the emission spectrum of the three solutions brought to room temperature with excitation wavelength 285 nm.

Les courbes de luminescence montrent une nette augmentation de l'intensité d'émission des particules (pic à 550 nm, spécifique du terbium) en relation avec le temps de traitement thermique à 80°C. L'intensité des pics d'émissions peut donc servir de sondes pour mesurer le temps d'exposition des particules à la température 80°C, avec une augmentation de l'intensité en fonction du temps d'exposition. The luminescence curves show a clear increase in the emission intensity of the particles (peak at 550 nm, specific for terbium) in relation to the heat treatment time at 80 ° C. The intensity of the emission peaks can therefore be used as probes to measure the exposure time of the particles at 80 ° C, with an increase in intensity as a function of the exposure time.

Exemple 3 : Détection d'un signal fluorescent à effet mémoire en fonction de la température de l'environnement utilisant des nanoparticules selon la préparation 2 Example 3: Detection of a fluorescent signal with memory effect as a function of the temperature of the environment using nanoparticles according to Preparation 2

Deux échantillons de 10 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 2 sont chauffés à 80°C respectivement 0 et 1 h. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 3 montre le spectre d'émission des deux solutions ramenées à température ambiante avec comme longueur d'onde excitation 330 nm. Two samples of 10 ml of colloidal solutions of nanoparticles obtained according to Preparation 2 are heated at 80 ° C. respectively 0 and 1 h. The fluorescence study is then carried out and indicates a strong variation of the emission spectra especially those in time resolved. FIG. 3 shows the emission spectrum of the two solutions brought back to ambient temperature with 330 nm excitation wavelength.

Les courbes de luminescence montrent une nette diminution de l'intensité d'émission des particules (pic à 550 nm, spécifique du terbium) en relation avec le temps de traitement thermique à 80°C. L'intensité des pics d'émissions peut donc servir de sondes pour mesurer le temps d'exposition des particules à la température 80°C, avec une diminution de l'intensité en fonction du temps d'exposition. The luminescence curves show a clear decrease in the emission intensity of the particles (peak at 550 nm, specific for terbium) in relation to the heat treatment time at 80 ° C. The intensity of the emission peaks can therefore be used as probes to measure the exposure time of the particles at the temperature 80 ° C, with a decrease in the intensity as a function of the exposure time.

Exemple 4: Détection d'un signal fluorescent à effet mémoire en fonction de la température de l'environnement utilisant des nanoparticules selon la préparation 4 Example 4: Detection of a fluorescent signal with memory effect as a function of the temperature of the environment using nanoparticles according to Preparation 4

Trois échantillons de 10 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 4 sont chauffés à 80°C respectivement 0, 1 et 72 h. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 4 montre le spectre d'émission des trois solutions ramenées à température ambiante avec comme longueur d'onde excitation 285 nm. Three samples of 10 ml of colloidal solutions of nanoparticles obtained according to Preparation 4 are heated at 80 ° C. respectively 0, 1 and 72 h. The fluorescence study is then carried out and indicates a strong variation of the emission spectra especially those in time resolved. Figure 4 shows the emission spectrum of the three solutions brought to room temperature with excitation wavelength 285 nm.

Les courbes de luminescence montrent une nette diminution de l'intensité d'émission des particules (pic à 550 nm, spécifique du terbium) en relation avec le temps de traitement thermique à 80°C. L'intensité des pics d'émissions peut donc servir de sondes pour mesurer le temps d'exposition des particules à la température 80°C, avec une diminution de l'intensité en fonction du temps d'exposition. The luminescence curves show a clear decrease in the emission intensity of the particles (peak at 550 nm, specific for terbium) in relation to the heat treatment time at 80 ° C. The intensity of the emission peaks can therefore be used as probes to measure the exposure time of the particles at the temperature 80 ° C, with a decrease in the intensity as a function of the exposure time.

Exemple 5 : Détection d'un signal fluorescent à effet mémoire en fonction du pH de l'environnement utilisant des nanoparticules selon la préparation 1 Trois échantillons de 1 mL de solutions colloïdales de nanoparticules sont obtenus selon la préparation 1 et dispersés dans 10 mL de solution aqueuse ramenée par un mélange soude/acide chlorhydrique à un pH respectivement de 1, 5 et 12. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'émissions en particuliers ceux en temps résolus. La figure 5 montre le spectre d'excitation à une émission fixée pour l'europium à 615 nm des trois solutions à ces différents pH ambiante. EXAMPLE 5 Detection of a Fluorescent Signal with Memory Effect as a Function of the pH of the Environment Using Nanoparticles According to Preparation 1 Three samples of 1 ml of colloidal solutions of nanoparticles are obtained according to Preparation 1 and dispersed in 10 ml of solution aqueous solution brought back by a sodium hydroxide / hydrochloric acid mixture at a pH of respectively 1, 5 and 12. The fluorescence study is then carried out and indicates a strong variation of the emission spectra, in particular those in time resolved. Figure 5 shows the excitation spectrum at a fixed emission for europium at 615 nm of the three solutions at these different ambient pH.

Les courbes de luminescence montrent une nette augmentation du spectre d'excitation des particules en relation avec l'augmentation de pH. L'intensité des pics d'émissions (ou excitation) peut donc servir de sondes pour mesurer le pH d'exposition des particules. Exemple 6 : Détection d'un signal fluorescent à effet mémoire en fonction de la nature su fluide de l'environnement utilisant des nanoparticules selon la préparation 1 The luminescence curves show a clear increase in the excitation spectrum of the particles in relation to the increase in pH. The intensity of the emission peaks (or excitation) can therefore be used as probes to measure the exposure pH of the particles. Example 6 Detection of a Fluorescent Signal with a Memory Effect as a Function of the Nature of the Environment Fluid Using Nanoparticles According to Preparation 1

Deux échantillons de 5 mL de solutions colloïdales de nanoparticules sont obtenus selon la 25 préparation 1 et dispersées respectivement dans 5 mL d'eau et dans 5 mL de DEG. Les deux solutions sont ensuite chauffées à 80°C pendant 3 jours. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'excitations en particuliers ceux en temps résolus. La figure 6 montre le spectre d'excitation à une émission fixée pour l'europium à 615 nm des deux solutions. 30 Les courbes de luminescence montrent une nette dégradation du spectre d'excitation des particules en relation avec la teneur croissante en eau. L'intensité des pics d'émissions (ou20 excitation) peut donc servir de sondes pour mesurer le taux d'exposition des particules à des teneurs en eau différents. Two 5 mL samples of colloidal nanoparticle solutions were obtained according to Preparation 1 and dispersed in 5 mL of water and 5 mL of DEG, respectively. Both solutions are then heated at 80 ° C for 3 days. The fluorescence study is then carried out and indicates a strong variation of the excitation spectra, in particular those in time resolved. Figure 6 shows the excitation spectrum at a fixed emission for europium at 615 nm of both solutions. The luminescence curves show a clear degradation of the excitation spectrum of the particles in relation to the increasing water content. The intensity of emission peaks (or excitation) can thus serve as probes for measuring the exposure rate of particles at different water contents.

Exemple 7: Détection d'un signal fluorescent à effet mémoire en fonction des 5 variations de température de l'environnement utilisant des nanoparticules selon la préparation 1 Example 7: Detection of a memory effect fluorescent signal as a function of temperature variations of the environment using nanoparticles according to Preparation 1

Trois échantillons de 1 mL de solutions colloïdales de nanoparticules obtenus selon la préparation 1 sont mélangées à 9 mL d'eau sont chauffés pendant 1 h à respectivement 60, 10 80 et 100°C. L'étude en fluorescence est ensuite réalisée et indique une forte variation des spectres d'excitation en particuliers ceux en temps résolus. La figure 7 montre le spectre d'excitation des trois solutions ramenées à température ambiante avec comme longueur d'onde d'émission de 615 nm. Three samples of 1 ml of colloidal solutions of nanoparticles obtained according to Preparation 1 are mixed with 9 ml of water are heated for 1 hour at 60, 80 and 100 ° C. respectively. The fluorescence study is then carried out and indicates a strong variation of the excitation spectra, in particular those in time resolved. FIG. 7 shows the excitation spectrum of the three solutions brought back to ambient temperature with the emission wavelength of 615 nm.

15 Les courbes de luminescence montrent une nette variation de l'intensité d'excitation de la composante à 330 nm des particules en relation avec la température du traitement. L'intensité des pics d'excitation peut donc servir de sondes pour mesurer la température d'exposition des particules, avec une diminution de l'intensité en fonction de la température d'exposition. The luminescence curves show a clear variation in the excitation intensity of the 330 nm component of the particles in relation to the temperature of the treatment. The intensity of the excitation peaks can therefore serve as probes for measuring the exposure temperature of the particles, with a decrease in the intensity as a function of the exposure temperature.

Claims (4)

REVENDICATIONS1. Procédé d'étude d'un sous-sol géologique, tel qu'un gisement pétrolier, par 5 diffusion d'un liquide d'injection dans ledit sous-sol, caractérisé en ce qu'il comprend les étapes suivantes: - on injecte, dans le sous-sol à étudier, un liquide d'injection comprenant des nanoparticules: o de diamètre moyen compris entre 20 et 200 nm; 10 o aptes à former une suspension colloïdale stable en milieu salin; o dont une partie au moins est constituée d'un coeur et, le cas échéant d'une matrice enrobant le coeur; o et, dont le coeur et/ou, le cas échéant, la matrice, comprennent au moins une ou plusieurs entités fluorescentes susceptibles de produire au moins 15 un signal de fluorescence à effet mémoire, c'est-à-dire un signal de fluorescence modifié en fonction des conditions physico-chimiques rencontrées dans le sous-sol ; - on recueille le liquide d'injection ayant diffusé, à différents temps suivant la période d'injection; 20 - et on détecte le ou les signaux fluorescents à effet mémoire émis par les nanoparticules en fonction du temps, l'analyse du ou des signaux fluorescents à effet mémoire détectés permettant d'en déduire des informations sur les conditions physico-chimiques du sous-sol géologique étudié, par exemple du gisement pétrolier. 25 REVENDICATIONS1. A method of studying a geological subsoil, such as a petroleum deposit, by diffusion of an injection liquid into said subsoil, characterized in that it comprises the following steps: - injection, in the subsoil to be studied, an injection liquid comprising nanoparticles: o of mean diameter between 20 and 200 nm; Able to form a stable colloidal suspension in a saline medium; at least a portion of which consists of a core and, if appropriate, a matrix coating the core; and, whose core and / or, where appropriate, the matrix, comprise at least one or more fluorescent entities capable of producing at least one memory effect fluorescence signal, that is to say a fluorescence signal. modified according to the physicochemical conditions encountered in the subsoil; the diffused injection liquid is collected at different times following the injection period; And the fluorescent effect signal (s) emitted by the nanoparticles as a function of time is detected, the analysis of the detected fluorescent effect signal (s) making it possible to deduce therefrom information on the physico-chemical conditions of the sub-component. geological soil studied, for example oil field. 25 2. Procédé selon la revendication 1, caractérisé en ce que le liquide d'injection est recueilli par le puits d'injection en inversant le flux du fluide après injection et diffusion. 30 2. Method according to claim 1, characterized in that the injection liquid is collected by the injection well by inverting the flow of the fluid after injection and diffusion. 30 3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'au moins une partie des nanoparticules comprend i. au moins un fluorophore organique, et, ii. au moins un fluorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce 35 que la nanoparticule produise au moins un signal de fluorescence à effet mémoire. 5. 6. 7. 25 30 8. 35 3. Method according to one of claims 1 or 2, characterized in that at least a portion of the nanoparticles comprises i. at least one organic fluorophore, and, ii. at least one organometallic fluorophore, the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least one memory effect fluorescence signal. 5. 6. 7. 25 30 8. 35 4. Procédé selon la revendication 3, caractérisé en ce que le fluorophore organométallique est choisi parmi les ions de terres rares liés à un agent complexant, de préférence parmi les lanthanides liés à un agent complexant. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit liquide d'injection comprend un mélange de nanoparticules, chaque type de nanoparticules étant caractérisé par l'émission d'un ou plusieurs signaux fluorescents spécifiques, et en ce que lesdits signaux émis par chaque type de nanoparticules sont détectables par des moyens de détection multiplex. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le ou les signaux fluorescents à effet mémoire sont détectés par fluorescence en temps résolu. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la matrice des nanoparticules comporte des radicaux R greffés par covalence à base de liaisons silanes Si-R en surface et issus: i. de composés hydrophiles chargés, de préférence des composés organiques hydrophiles de masses molaires inférieures à 5 000 g/mol et, mieux encore inférieures à 450 g/mol, de préférence choisies parmi les composés organiques comportant au moins l'une des fonctions suivantes: alcool, acide carboxylique, amine, amide, ester, éther-oxyde, sulfonate, phosphonate et phosphinate, et les mélanges de ces composés hydrophiles chargés, ü. de composés hydrophiles neutres, de préférence un polyalkyléneglycol, plus préférentiellement encore un polyéthyléneglycol, acide DiéthyléneTriamine-PentaAcétique (DTPA), DTPA dithiolé (DTDTPA) ou un acide succinique, et les mélanges de ces composés hydrophiles neutres, iii. d'un ou plusieurs composés hydrophobes; iv. ou de leurs mélanges. Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce que le liquide d'injection comprend au moins deux types de nanoparticules qui se distinguent par leur balance hydrophile/lipophile et/ou leur potentiel zêta, de sorte qu'une partie des nanoparticules présente un signal fluorescent retardé par rapport à l'autre partie des nanoparticules du fait de leur interaction avec le sous-sol.9. Procédé selon la revendication 8, caractérisé en ce qu'au moins une partie des nanoparticules a une balance hydrophile/lipophile et/ou le potentiel zêta ajusté de sorte à ne pas interagir avec le milieu du sous-sol dans lequel elles diffusent et au moins une autre partie des nanoparticules a une balance hydrophile/lipophile et/ou un potentiel zêta ajusté de sorte à interagir avec des roches spécifiques du sous-sol. 10. Fluide traceur utilisable notamment dans le procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend des nanoparticules : - de diamètre moyen compris entre 20 et 200 nm; - aptes à former une suspension colloïdale stable en milieu salin; - dont une partie au moins est constituée d'un coeur et, le cas échéant d'une matrice enrobant le coeur; - et, dont le coeur et/ou, le cas échéant, la matrice, comprend au moins un fluorophore organique et au moins un fluorophore organométallique, la combinaison des deux types de fluorophores étant choisie de sorte à ce que la nanoparticule produise au moins un signal de fluorescence à effet mémoire, ledit signal étant détectable par fluorescence en temps résolu. 11. Fluide traceur selon la revendication 10, caractérisé en ce que ledit fluorophore organométallique est choisi parmi les ions de terres rares liés à un agent complexant. 12. Fluide traceur selon la revendication 11, caractérisé en ce que les ions de terres rares sont choisis dans le groupe des lanthanides constitués par Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm et Yb et leurs mélanges et/ou alliages. 13. Fluide traceur selon l'une quelconque des revendications 10 à 12, caractérisé en qu'au moins une partie des nanoparticules comprend au moins un fluorophore organique choisi parmi la fluorescéine et au moins un fluorophore organométallique comprenant un lanthanide choisi parmi l'europium ou le terbium, ledit lanthanide étant lié à un agent complexant. 14. Fluide traceur selon l'une quelconque des revendications 10 à 12, caractérisé en qu'au moins une partie des nanoparticules comprend au moins un fluorophore organique choisi parmi la rhodamine ou l'un de ses dérivés et au moins unfluorophore organométallique choisi parmi l'europium ou le terbium lié à un agent complexant. 15. Fluide traceur selon l'une quelconque des revendications 10 à 14, caractérisé en ce que l'agent complexant est choisi dans le groupe constitué par le DTPA, le DOTA et leurs dérivés. 16. Utilisation d'un fluide traceur selon l'une quelconque des revendications 10 à 15, dans l'étude d'un gisement d'hydrocarbure, par exemple un gisement pétrolier. 17. Utilisation d'un fluide traceur selon l'une quelconque des revendications 10 à 15, dans un procédé d'exploration ou de prospection d'un gisement d'hydrocarbure comprenant une étape de fracturation hydraulique, pour la cartographie des lignes de fractures. 4. Method according to claim 3, characterized in that the organometallic fluorophore is chosen from rare earth ions bound to a complexing agent, preferably from lanthanides linked to a complexing agent. Process according to any one of Claims 1 to 4, characterized in that the said injection liquid comprises a mixture of nanoparticles, each type of nanoparticle being characterized by the emission of one or more specific fluorescent signals, and in that said signals emitted by each type of nanoparticle are detectable by multiplex detection means. Process according to any one of Claims 1 to 5, characterized in that the fluorescent signal (s) with a memory effect are detected by fluorescence in time resolved. Process according to any one of Claims 1 to 6, characterized in that the nanoparticle matrix comprises covalently grafted R radicals based on silane Si-R bonds at the surface and derived from: i. charged hydrophilic compounds, preferably hydrophilic organic compounds of molar masses less than 5000 g / mol and more preferably less than 450 g / mol, preferably chosen from organic compounds containing at least one of the following functions: alcohol carboxylic acid, amine, amide, ester, ether-oxide, sulfonate, phosphonate and phosphinate, and mixtures of these charged hydrophilic compounds, neutral hydrophilic compounds, preferably a polyalkylene glycol, more preferably still a polyethylene glycol, diethylenetriamine-pentaacetic acid (DTPA), dithiolated DTPA (DTDTPA) or a succinic acid, and mixtures of these neutral hydrophilic compounds, iii. one or more hydrophobic compounds; iv. or their mixtures. Process according to any one of Claims 1 to 7, characterized in that the injection liquid comprises at least two types of nanoparticles which are distinguished by their hydrophilic / lipophilic balance and / or their zeta potential, so that part of the nanoparticles has a delayed fluorescent signal compared to the other part of the nanoparticles due to their interaction with the subsoil. Process according to Claim 8, characterized in that at least a part of the nanoparticles has a hydrophilic / lipophilic balance and / or the zeta potential adjusted so as not to interact with the subsoil medium in which they diffuse and at least another part of the nanoparticles has a hydrophilic / lipophilic balance and / or a zeta potential adjusted to interact with specific subsoil rocks. 10. tracer fluid used in particular in the process according to any one of claims 1 to 9, characterized in that it comprises nanoparticles: - average diameter between 20 and 200 nm; - capable of forming a stable colloidal suspension in a saline medium; at least part of which consists of a core and, if appropriate, a matrix coating the core; and, whose core and / or, where appropriate, the matrix, comprises at least one organic fluorophore and at least one organometallic fluorophore, the combination of the two types of fluorophores being chosen so that the nanoparticle produces at least one memory effect fluorescence signal, said signal being detectable by time resolved fluorescence. 11. tracer fluid according to claim 10, characterized in that said organometallic fluorophore is selected from rare earth ions bound to a complexing agent. Tracer fluid according to claim 11, characterized in that the rare earth ions are chosen from the group of lanthanides consisting of Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm and Yb and mixtures thereof. / or alloys. 13. Tracer fluid according to any one of claims 10 to 12, characterized in that at least a portion of the nanoparticles comprises at least one organic fluorophore selected from fluorescein and at least one organometallic fluorophore comprising a lanthanide selected from europium or terbium, said lanthanide being bound to a complexing agent. 14. tracer fluid according to any one of claims 10 to 12, characterized in that at least a portion of the nanoparticles comprises at least one organic fluorophore selected from rhodamine or one of its derivatives and at least one organometallic fluorophore selected from l europium or terbium bound to a complexing agent. 15. tracer fluid according to any one of claims 10 to 14, characterized in that the complexing agent is selected from the group consisting of DTPA, DOTA and their derivatives. 16. Use of a tracer fluid according to any one of claims 10 to 15, in the study of a hydrocarbon deposit, for example a petroleum deposit. 17. Use of a tracer fluid according to any one of claims 10 to 15, in a method of exploration or prospection of a hydrocarbon reservoir comprising a hydraulic fracturing step, for the mapping of fracture lines.
FR1155515A 2011-06-22 2011-06-22 TRACER FLUIDS WITH MEMORY EFFECT FOR THE STUDY OF A PETROLEUM FACILITY Expired - Fee Related FR2976967B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
FR1155515A FR2976967B1 (en) 2011-06-22 2011-06-22 TRACER FLUIDS WITH MEMORY EFFECT FOR THE STUDY OF A PETROLEUM FACILITY
EP12730898.9A EP2723827A1 (en) 2011-06-22 2012-06-22 Tracer fluids with a memory effect for the study of an oil deposit
US14/128,323 US20150001385A1 (en) 2011-06-22 2012-06-22 Memory effect tracer fluids for the study of an oil reservoir
PCT/EP2012/062084 WO2012175669A1 (en) 2011-06-22 2012-06-22 Tracer fluids with a memory effect for the study of an oil deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1155515A FR2976967B1 (en) 2011-06-22 2011-06-22 TRACER FLUIDS WITH MEMORY EFFECT FOR THE STUDY OF A PETROLEUM FACILITY

Publications (2)

Publication Number Publication Date
FR2976967A1 true FR2976967A1 (en) 2012-12-28
FR2976967B1 FR2976967B1 (en) 2015-05-01

Family

ID=46420138

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1155515A Expired - Fee Related FR2976967B1 (en) 2011-06-22 2011-06-22 TRACER FLUIDS WITH MEMORY EFFECT FOR THE STUDY OF A PETROLEUM FACILITY

Country Status (4)

Country Link
US (1) US20150001385A1 (en)
EP (1) EP2723827A1 (en)
FR (1) FR2976967B1 (en)
WO (1) WO2012175669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109937470A (en) * 2016-11-07 2019-06-25 应用材料公司 The method and apparatus of nano particle of the detection and analysis from semiconductor chamber component

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO338122B1 (en) 2013-04-07 2016-08-01 Resman As Gassbrønninnstrømningsdetekteringsmetode
JP2015175045A (en) * 2014-03-17 2015-10-05 株式会社神戸製鋼所 Aluminum alloy sheet for constructional material
CA3045424A1 (en) 2016-11-15 2018-05-24 Massachusetts Institute Of Technology Nanoparticle-based shear-thickening materials
US10480313B2 (en) * 2017-06-19 2019-11-19 Baker Hughes, A Ge Company, Llc Multicolor fluorescent silica nanoparticles as tracers for production and well monitoring
CN109667574B (en) * 2017-10-13 2022-07-22 中国石油化工股份有限公司 Metal ion tracer for multi-section fracturing and application thereof
DE102018105394A1 (en) * 2018-03-08 2019-09-12 Karlsruher Institut für Technologie Analysis particles and methods for the quantification of porous materials
US10502040B1 (en) 2018-06-15 2019-12-10 Baker Hughes, A Ge Company, Llc Upconverting nanoparticles as tracers for production and well monitoring
RU2685600C1 (en) * 2018-07-20 2019-04-22 Общество с ограниченной ответственностью "ГеоСплит" Method for determination of downhole fluid inflows at multi-stage hydraulic fracturing of formation
GB201813976D0 (en) * 2018-08-28 2018-10-10 Johnson Matthey Plc Method of monitoring a fluid and use of a tracer for monitoring a fluid
CN111257967A (en) * 2020-01-13 2020-06-09 苏州星烁纳米科技有限公司 Oil field tracer and oil field tracing method
US11773715B2 (en) 2020-09-03 2023-10-03 Saudi Arabian Oil Company Injecting multiple tracer tag fluids into a wellbore
MX2023004558A (en) * 2020-10-21 2023-07-10 Eni Spa Multifunctional tracers for analysis of oilfields.
US11660595B2 (en) 2021-01-04 2023-05-30 Saudi Arabian Oil Company Microfluidic chip with multiple porosity regions for reservoir modeling
US11534759B2 (en) 2021-01-22 2022-12-27 Saudi Arabian Oil Company Microfluidic chip with mixed porosities for reservoir modeling
US11952279B2 (en) 2021-08-23 2024-04-09 Saudi Arabian Oil Company Modified carbon nanomaterials as tracers for reservoir monitoring
CN113605883B (en) * 2021-09-22 2024-05-31 北京永源思科技发展有限公司 Method for analyzing saturation of residual oil
US12000278B2 (en) 2021-12-16 2024-06-04 Saudi Arabian Oil Company Determining oil and water production rates in multiple production zones from a single production well
US11859452B2 (en) 2022-04-08 2024-01-02 Baker Hughes Oilfield Operations Llc Wet connect system and method
CN115419398B (en) * 2022-10-13 2024-05-03 西南石油大学 Method for measuring liquid production profile by fluorescence

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102023A1 (en) * 2006-03-06 2007-09-13 Johnson Matthey Plc Tracer method and apparatus
FR2922106A1 (en) * 2007-10-16 2009-04-17 Univ Claude Bernard Lyon I Eta USE OF NANOPARTICLES BASED ON LANTHANIDES AS RADIOSENSITIZING AGENTS.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623842A (en) 1969-12-29 1971-11-30 Exxon Research Engineering Co Method of determining fluid saturations in reservoirs
US4299709A (en) 1979-05-09 1981-11-10 Texaco Inc. Tracer fluids for enhanced oil recovery
US4231426A (en) 1979-05-09 1980-11-04 Texaco Inc. Method of using tracer fluids for enhanced oil recovery
FR2867180B1 (en) 2004-03-02 2006-06-16 Univ Claude Bernard Lyon HYBRID NANOPARTICLES COMPRISING A HEART OF LN203 CARRIERS OF BIOLOGICAL LIGANDS AND PROCESS FOR THEIR PREPARATION
US20100272651A1 (en) 2009-04-22 2010-10-28 Tufts University Method for assessing potential for tumor development and metastasis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102023A1 (en) * 2006-03-06 2007-09-13 Johnson Matthey Plc Tracer method and apparatus
FR2922106A1 (en) * 2007-10-16 2009-04-17 Univ Claude Bernard Lyon I Eta USE OF NANOPARTICLES BASED ON LANTHANIDES AS RADIOSENSITIZING AGENTS.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INSTITUE FOR ENERGY TECHNOLOGY: "New functional tracers based on nanotechnology and radiotracer generators", INTERNET CITATION, 17 September 2007 (2007-09-17), pages 1 - 23, XP002588385, Retrieved from the Internet <URL:http://www.ife.no/departments/reservoir_and_exploration_tech/files/nanostrategi-rele2007-2009/fss_download/Attachmentfile> [retrieved on 20100714] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109937470A (en) * 2016-11-07 2019-06-25 应用材料公司 The method and apparatus of nano particle of the detection and analysis from semiconductor chamber component
CN109937470B (en) * 2016-11-07 2023-05-16 应用材料公司 Method and apparatus for detecting and analyzing nanoparticles from semiconductor chamber components

Also Published As

Publication number Publication date
FR2976967B1 (en) 2015-05-01
US20150001385A1 (en) 2015-01-01
WO2012175669A1 (en) 2012-12-27
EP2723827A1 (en) 2014-04-30

Similar Documents

Publication Publication Date Title
FR2976967A1 (en) TRACER FLUIDS WITH MEMORY EFFECT FOR THE STUDY OF A PETROLEUM FACILITY
EP2813287A2 (en) Nano-tracers for marking injection water in oil fields
FR2954796A1 (en) USE OF NANOPARTICLES FOR THE MARKING OF PETROLEUM FIELD INJECTION WATER
CA2558033C (en) Hybrid nanoparticles including an ln2o3 core and having bioligands, and method for preparing same
Crawford et al. Materials for the photoluminescent sensing of rare earth elements: challenges and opportunities
US7807265B2 (en) Partially passivated quantum dots, process for making, and sensors therefrom
WO2013156866A2 (en) Fluorescent nano-sensors for oil and gas reservoir characterization
Agenet et al. Fluorescent nanobeads: a first step toward intelligent water tracers
EP3298100A1 (en) Method for exploitation of a subterranean formation by injection of a fluid comprising an additive tagged by a luminescent semiconductor nanocrystal
WO2014091144A2 (en) Fluorescent tracers for marking oilfield injection waters
Agenet et al. Fluorescent nanobeads: a new generation of easily detectable water tracers
Pazini et al. Synthesis of core-shell fluorescent silica nanoparticles with opposite surface charges for transport studies of nanofluids in porous media
Mansouri et al. Experimental investigation of the effect of smart water and a novel synthetic nanocomposite on wettability alteration, interfacial tension reduction, and EOR
EP3234061B1 (en) Nano-inhibitors
OA16798A (en) Tracer fluids with a memory effect for the study of an oil deposit.
Murugesan et al. Multicolor Fluorescent Silica Nanoparticles as Tracers for Production and Well Monitoring
Spitzmüller et al. Nanoparticle-based tracing techniques in geothermal reservoir: Advances, challenges and prospects
Manhat Understanding the emission from semiconductor nanoparticles
EP3446116B1 (en) Method for detecting and quantifying additives used in the enhanced recovery of oil and shale gas
OA16688A (en)
Gramatges Synthesis and characterization of fluorescent silica nanoparticles with potential application in transport and adsorption studies in porous medium
Lechevallier Synthesis and characterization of lanthanide-based luminescent nanoparticles: toward new bio-labels
Liu et al. Synthesis of Multicolor Fluorescent Silica Nanoparticle Tracer and Investigation it Transport Characteristics in Sandstone Reservoirs
Zhu et al. Study on the interaction between cadmium sulphide nanoparticles and proteins by resonance Rayleigh scattering spectra

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

ST Notification of lapse

Effective date: 20180228