FR2974891A1 - DEVICE AND SYSTEM FOR TRANSFERRING HEAT. - Google Patents
DEVICE AND SYSTEM FOR TRANSFERRING HEAT. Download PDFInfo
- Publication number
- FR2974891A1 FR2974891A1 FR1153726A FR1153726A FR2974891A1 FR 2974891 A1 FR2974891 A1 FR 2974891A1 FR 1153726 A FR1153726 A FR 1153726A FR 1153726 A FR1153726 A FR 1153726A FR 2974891 A1 FR2974891 A1 FR 2974891A1
- Authority
- FR
- France
- Prior art keywords
- fluid
- phase
- heat transfer
- heating means
- reservoir
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
- F28D15/043—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure forming loops, e.g. capillary pumped loops
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Dispositif de transfert de la chaleur comprenant : un premier réservoir (R1) pour stocker un fluide diphasique (LC), équipé d'un premier moyen de chauffage (MC1) et connecté à une source froide (SF) par une première résistance thermique (RTH1) ; un deuxième réservoir (R2) pour stocker ledit fluide diphasique, équipé d'un deuxième moyen de chauffage (MC2) et connecté à ladite ou une autre source froide par une deuxième résistance thermique (RTH2) ; et un conduit fluidique (CF) pouvant être traversé par ledit fluide diphasique, reliant lesdits premier et deuxième réservoirs, ledit conduit comprenant au moins : un évaporateur (EV) pouvant être connecté thermiquement à une source chaude (PC, O) ayant une température supérieure à celle de ladite source froide ; un premier (C1) et un deuxième (C2) condenseur, situés de part et d'autre dudit évaporateur et pouvant être connectés thermiquement à ladite source froide. Système de transfert de la chaleur comprenant au moins un tel dispositif. Procédé de refroidissement ou pré-refroidissement d'un objet au moyen d'un tel dispositif ou système.Heat transfer device comprising: a first reservoir (R1) for storing a two-phase fluid (LC), equipped with a first heating means (MC1) and connected to a cold source (SF) by a first thermal resistance (RTH1 ); a second reservoir (R2) for storing said two-phase fluid, equipped with a second heating means (MC2) and connected to said or another cold source by a second thermal resistance (RTH2); and a fluidic conduit (CF) traversable by said two-phase fluid, connecting said first and second reservoirs, said conduit comprising at least: an evaporator (EV) thermally connectable to a hot source (PC, O) having a higher temperature to that of said cold source; a first (C1) and a second (C2) condenser, located on either side of said evaporator and can be thermally connected to said cold source. Heat transfer system comprising at least one such device. A method of cooling or pre-cooling an object using such a device or system.
Description
DISPOSITIF ET SYSTEME DE TRANSFERT DE LA CHALEUR L'invention porte sur un dispositif et un système, en particulier cryogénique, de transfert de la chaleur, ainsi que sur un procédé de refroidissement ou pré-refroidissement d'un objet au moyen d'un tel dispositif ou d'un tel système. Le dispositif et le système de l'invention permettent notamment de réaliser un lien thermique de grande conductivité thermique entre une source froide et un objet à refroidir (source chaude). Le contrôle de la température d'un objet à refroidir et/ou dégageant de la chaleur nécessite l'utilisation d'un lien thermique reliant l'objet à une « source froide » qui, en fonction de différentes contraintes technologiques, peut être éloignée. A basse température, c'est-à-dire à une température inférieure à la température ambiante, le contrôle de la température de l'objet nécessite deux fonctions thermiques essentielles, à savoir : - permettre le refroidissement de l'objet, initialement à température ambiante, jusqu'à sa température de fonctionnement, c'est-à-dire la température requise pour le bon fonctionnement de l'objet ; c'est la fonction « pré refroidissement » ; Maintenir sa température par un transfert de chaleur vers 20 la source froide à la température de fonctionnement ; c'est la fonction « stabilisation thermique ». Dans certaines applications, en particulier dans le domaine spatial, il est intéressant de disposer aussi d'une fonction supplémentaire d'« interrupteur thermique », qui consiste à interrompre le transfert de chaleur 25 par une action extérieure. Un transfert de la chaleur sur une distance pouvant atteindre plusieurs mètres peut être réalisé grâce à différents dispositifs. Le plus simple d'entre eux et le plus utilisé, la tresse métallique, fonctionne par simple conduction de la chaleur dans un solide à 30 forte conductivité thermique. L'inconvénient majeur d'un tel dispositif réside dans le fait qu'il présente une masse importante, et cela d'autant plus que l'on souhaite obtenir une faible résistance thermique. Par ailleurs, un gradient thermique entre la source froide et l'objet à refroidir ne peut pas être évité. En outre, la fonction « interrupteur thermique » ne peut pas être assurée. Les dispositifs convectifs, exploitant la circulation d'un fluide mû par une pompe, apparaissent donc beaucoup plus attractifs dans de nombreuses applications, notamment cryogéniques. Dans la plupart des cas, pour des raisons de fiabilité, de masse et d'encombrement, on souhaite éviter l'utilisation de pompes mécaniques dans lesquelles des éléments mécaniques sont en mouvement les uns par rapport aux autres. On préfère donc un pompage sans pièce mobiles. De plus, on exploite généralement des systèmes diphasiques, dans lesquels le transfert de chaleur est réalisé par évaporation d'un liquide côté objet et condensation de la vapeur côté source froide. Ce type de système fonctionne dans son principe, sans aucune différence de température et permet un important transfert de chaleur par changement de phase liquide/vapeur en raison de l'importance de la chaleur latente de changement de phase, ce qui fait son intérêt. Quatre types principaux de lien thermique fonctionnent sur ce principe : le thermosiphon, le caloduc « simple », la boucle fluide et le caloduc oscillant. Il s'agit de dispositifs passifs, c'est-à-dire que le fluide circule sans action extérieure.. Dans un thermosiphon, le fluide diphasique circule sous l'effet des forces gravitaires induites par la différence de densité entre le liquide et la vapeur. Le système peut être un simple canal où le liquide descendant et la vapeur montant circulent à contre courant, ou une boucle avec un canal liquide et un canal vapeur. Dans tous les cas, l'objet doit être situé plus bas que la source froide, ce qui constitue une contrainte parfois inacceptable. En outre, de par son principe, le thermosiphon ne fonctionne pas en microgravité et ne convient donc pas aux applications spatiales. Le caloduc « simple », et la boucle fluide permettent de s'affranchir de ces contraintes en exploitant le « pompage capillaire » engendré par la courbure d'un ménisque liquide s'évaporant au sein d'une structure capillaire. Le caloduc « simple » est un tube contenant une structure capillaire, communément appelée « mèche », en contact thermique avec les parois internes du tube. Le liquide est localisé uniquement dans la mèche et s'écoule du condenseur vers l'évaporateur. La vapeur produite retourne à contre-courant vers le condenseur, dans un canal aménagé au centre du tube. The invention relates to a device and a system, in particular a cryogenic system for transferring heat, and to a method for cooling or pre-cooling an object by means of such a device. device or such a system. The device and the system of the invention make it possible in particular to achieve a thermal bond of high thermal conductivity between a cold source and an object to be cooled (hot source). Controlling the temperature of an object to cool and / or releasing heat requires the use of a thermal link connecting the object to a "cold source" which, depending on different technological constraints, may be remote. At low temperature, that is to say at a temperature below room temperature, the control of the temperature of the object requires two essential thermal functions, namely: - allow the cooling of the object, initially at temperature ambient, up to its operating temperature, that is to say the temperature required for the proper functioning of the object; it is the function "pre-cooling"; Maintaining its temperature by heat transfer to the cold source at the operating temperature; it is the function "thermal stabilization". In some applications, particularly in the space field, it is interesting to have also an additional function of "thermal switch", which is to interrupt the heat transfer 25 by an external action. A transfer of heat over a distance of up to several meters can be achieved through different devices. The simplest of them and the most used, the metallic braid, works by simple conduction of heat in a solid with high thermal conductivity. The major disadvantage of such a device lies in the fact that it has a large mass, and all the more so that it is desired to obtain a low thermal resistance. Moreover, a thermal gradient between the cold source and the object to be cooled can not be avoided. In addition, the function "thermal switch" can not be ensured. The convective devices, exploiting the circulation of a fluid moved by a pump, therefore appear much more attractive in many applications, including cryogenic. In most cases, for reasons of reliability, mass and size, it is desired to avoid the use of mechanical pumps in which mechanical elements are moving relative to each other. Pumping without moving parts is therefore preferred. In addition, two-phase systems are generally used in which heat transfer is achieved by evaporation of an object-side liquid and condensation of the cold source side vapor. This type of system works in principle, without any difference in temperature and allows a significant heat transfer by liquid / vapor phase change due to the importance of the latent heat of phase change, which is of interest. Four main types of thermal link work on this principle: the thermosiphon, the "simple" heat pipe, the fluid loop and the oscillating heat pipe. These are passive devices, that is to say that the fluid circulates without external action. In a thermosiphon, the two-phase fluid circulates under the effect of gravitational forces induced by the density difference between the liquid and the liquid. steam. The system may be a single channel where the descending liquid and the rising vapor circulate against the current, or a loop with a liquid channel and a steam channel. In all cases, the object must be located lower than the cold source, which is a sometimes unacceptable constraint. In addition, by its principle, the thermosiphon does not work in microgravity and is therefore not suitable for space applications. The "simple" heat pipe and the fluid loop make it possible to overcome these constraints by exploiting the "capillary pumping" generated by the curvature of a liquid meniscus evaporating within a capillary structure. The "simple" heat pipe is a tube containing a capillary structure, commonly called "wick", in thermal contact with the inner walls of the tube. The liquid is located only in the wick and flows from the condenser to the evaporator. The steam produced flows back to the condenser in a channel arranged in the center of the tube.
Tout comme dans le cas du thermosiphon, la fonction « interrupteur thermique » ne peut être réalisée simplement ; en revanche, un fonctionnement fiable en micro gravité est possible. Plutôt utilisé en géométrie rectiligne pour homogénéiser la température d'un objet, son intégration dans un système complexe de contrôle thermique peut être problématique, car nécessitant des géométries non rectilignes. En outre, le caloduc ne convient pas au transport de la chaleur sur des longues distances (plusieurs mètres) en raison des pertes de charge importantes engendrées par l'écoulement du liquide dans la mèche poreuse et par les interactions visqueuses entre le liquide et la vapeur (pertes d'entrainement). As in the case of the thermosiphon, the function "thermal switch" can not be carried out simply; however, reliable operation in micro gravity is possible. Rather used in rectilinear geometry to homogenize the temperature of an object, its integration in a complex system of thermal control can be problematic, because requiring non-rectilinear geometries. In addition, the heat pipe is not suitable for transporting heat over long distances (several meters) because of the significant head losses caused by the flow of liquid in the porous wick and the viscous interactions between the liquid and the vapor (training losses).
La boucle fluide, communément appelée LHP (de l'anglais « Loop Heat Pipe », littéralement « caloduc à boucle ») ou CPL (de l'anglais « Capillary Pumped Loop », littéralement boucle à pompage capillaire), permet de surmonter les inconvénients précités du caloduc « simple ». Elle fonctionne sur la base du même principe que ce dernier, mais la structure capillaire est localisée uniquement au niveau de l'évaporateur afin de générer le pompage capillaire nécessaire à la circulation du fluide ; en outre, l'évaporateur et le condenseur sont reliés par deux tuyaux séparés pour le liquide et la vapeur. De cette manière, les pertes de charge sont moindres, le transfert thermique peut s'opérer sur des longues distances et le recours à des géométries non rectilignes s'avère moins problématique. La fonction « interrupteur thermique » peut être réalisée par un simple chauffage localisé sur la ligne liquide qui met en ébullition le liquide et provoque le désamorçage de la boucle. Une description plus détaillée du fonctionnement d'une boucle fluide peut être trouvée dans l'article de Jentung Ku « Operating Characteristics of Loop Heat Pipes », 29th International Conference on Environmental Systems, 12 15 juillet 1999, Denver, Etats-Unis. The fluid loop, commonly known as the Loop Heat Pipe (LHP) or CPL (Capillary Pumped Loop), overcomes the disadvantages mentioned above of the "simple" heat pipe. It operates on the basis of the same principle as the latter, but the capillary structure is located only at the evaporator to generate the capillary pumping necessary for the circulation of the fluid; in addition, the evaporator and the condenser are connected by two separate pipes for the liquid and the steam. In this way, the pressure losses are lower, the heat transfer can take place over long distances and the use of non-rectilinear geometries is less problematic. The function "thermal switch" can be achieved by simple heating localized on the liquid line that boils the liquid and causes the defusing of the loop. A more detailed description of the operation of a fluid loop can be found in Jentung Ku's article "Operating Characteristics of Loop Heat Pipes", 29th International Conference on Environmental Systems, July 12, 1999, Denver, USA.
L'utilisation des boucles fluides à des températures cryogéniques pose le problème du pré-refroidissement de l'objet (« source chaude ») en contact thermique avec l'évaporateur. En effet, pour que le pompage capillaire s'amorce, il est nécessaire que la mèche soit gorgée du fluide cryogénique à l'état liquide. Mais, dans une boucle fluide, la mèche se trouve seulement dans l'évaporateur, c'est-à-dire dans la partie « chaude » du dispositif. Un pré-refroidissement est donc nécessaire pour permettre le mouillage de la mèche. Plusieurs solutions ont été proposées pour réaliser des LHP ou CPL cryogéniques. 10 Un premier concept de CPL cryogénique, appelé CCPL (de l'anglais « Cryogenic Capillary Pumped Loop », boucle cryogénique à pompage capillaire) est décrit dans l'article de D. Bugby et B. Marland « Flight results from the Cryogenic Capillary Pumped Loop (CCPL) Flight Experiment on STS-95 » SAE paper No. 981814, 28th International Conference on 15 Environmental Systems, July 13-16, 1998, Danvers, Etats-Unis. Dans ce dispositif, le pré-refroidissement est réalisé par l'expulsion vers l'évaporateur d'un liquide cryogénique contenu dans un réservoir froid via une ligne de réservoir pré-refroidie dans un échangeur thermique (« condenser spool »). Cette expulsion est réalisée par un chauffage électrique sur le réservoir. 20 L'arrivée de liquide vers l'évaporateur provoque son refroidissement et fini par le remplir de liquide. Le système est alors prêt à être amorcé. Un autre concept consiste à insérer dans la boucle principale une pompe capillaire secondaire en connexion hydraulique avec un condenseur secondaire lié thermiquement à la source froide. L'application 25 d'un chauffage électrique sur la pompe secondaire génère la circulation du fluide et par conséquent l'alimentation en liquide de l'évaporateur principal, qui conduit à son pré-refroidissement. Ce concept est décrit par les publications suivantes : D. Khruslatev, « Cryogenic loop heat pipes as flexible 30 thermal links for cryocoolers », Proc. 12th Cyocoolers Conference, pp. 709-716 (2003) ; - Q. Mo et J.T. Liang, "A novel design and experimental study of a cryogenic loop heat pipe with high heat transfer capability" IJHMT 49, pp 770-776(2006) ; et - Q. Mo, J.T. Liang et C. Jinghui, « Investigation of the 5 effects of three key parameters on the heat transfer capability of a CLHP », Cryogenics 47 pp. 262-266 (2007). Encore une autre solution consiste à utiliser un circuit secondaire comprenant une ligne fluide secondaire, un condenseur, un réservoir diphasique et une pompe capillaire secondaire. Par simple 10 application d'une puissance électrique sur la pompe secondaire, ce circuit permet le pré-refroidissement de la boucle, en particulier le remplissage en liquide de l'évaporateur principal. Cette solution est décrite dans l'article de J. Yun, E. Kroliczek et L. Crawford « Development of a Cryogenic Loop Heat pipe (CLHP) for Passive Optical Bench Cooling Applications », 32nd ICES 15 2002, SAE paper n° 2002-01-2507, San Antonio, Texas, 2002, ainsi que dans le brevet US 7,004,240. Un concept similaire est celui de la « boucle fluide cryogénique avancée » (« cryogenic advanced LHP ») : T.T.Hoang, D. Khruslatev et J. Ku, « Cryogenic advanced loop heat pipe in temperature 20 range of 20-30K » Proc. 12th International heat pipe conference, (2002), pp. 201-205 ; US 2003/0159808 ; WO 03/054469, 3 juillet, 2003. Encore une autre possibilité consiste à utiliser la gravité pour amorcer la boucle. L'article de H. Pereira, F. Haug, P. Silva, J. Wu, et T. Koettig, «Cryogenic loop heat pipe for the cooling of small particule detectors 25 at CERN », Cryogenic Engineering Conf., 28 juin - 2 juillet 2009, Tucson, Etats-Unis, décrit un LHP où la ligne liquide est placée au dessus de l'évaporateur ; de cette façon, un « pompage gravitaire » permet l'amorçage et assiste le pompage capillaire en fonctionnement normal. Bien entendu, ce principe n'est pas adapté aux applications spatiales. 30 Un autre dispositif diphasique passif de transfert de la chaleur est le caloduc oscillant, dit aussi PHP de l'anglais « Pulsating Heat Pipe ». Ce dispositif est constitué par un simple tube, de diamètre inférieure à la longueur capillaire, formant plusieurs boucles ou ondulations et rempli d'un fluide diphasique constitué par du liquide, formant des « bouchons liquides », et de la vapeur, formant des bulles. Une extrémité de chaque boucle ou ondulation est mise en contact thermique avec une source chaude et l'extrémité opposée avec une source froide. Dans ces conditions une instabilité se crée, provoquant un mouvement oscillatoire des bouchons liquides et des bulles. Il en résulte un transfert thermique extrêmement efficace. Le capillaire peut être fermé à ses deux extrémités (PHP « ouvert »), ou bien se reboucler sur lui-même (PHP « fermé », plus efficace). The use of fluid loops at cryogenic temperatures poses the problem of pre-cooling the object ("hot source") in thermal contact with the evaporator. Indeed, for the capillary pumping to begin, it is necessary that the wick is drenched with the cryogenic fluid in the liquid state. But, in a fluid loop, the wick is only in the evaporator, that is to say in the "hot" part of the device. Pre-cooling is necessary to allow wetting of the wick. Several solutions have been proposed to produce cryogenic LHP or CPL. A first concept of cryogenic LC, called the Cryogenic Capillary Pumped Loop (CCPL), is described in the article by D. Bugby and B. Marland "Flight Results from the Cryogenic Capillary Pumped" Loop (CCPL) Flight Experiment on STS-95 SAE paper No. 981814, 28th International Conference on 15 Environmental Systems, July 13-16, 1998, Danvers, USA. In this device, the pre-cooling is carried out by the expulsion to the evaporator of a cryogenic liquid contained in a cold reservoir via a pre-cooled tank line in a heat exchanger ("condenser spool"). This expulsion is achieved by electric heating on the tank. The liquid inlet to the evaporator causes it to cool and eventually fill with liquid. The system is ready to boot. Another concept is to insert in the main loop a secondary capillary pump in hydraulic connection with a secondary condenser thermally bonded to the cold source. The application of electric heating to the secondary pump generates the circulation of the fluid and consequently the supply of liquid to the main evaporator, which leads to its pre-cooling. This concept is described by the following publications: D. Khruslatev, "Cryogenic loop heat pipes and flexible thermal links for cryocoolers", Proc. 12th Cyocoolers Conference, pp. 709-716 (2003); Q. Mo and J. T. Liang, "A novel design and experimental study of a cryogenic loop heat pipe with high heat transfer capability" IJHMT 49, pp 770-776 (2006); and Q. Mo, J. T. Liang and C. Jinghui, "Investigation of the effects of three key parameters on the heat transfer capability of HPLC", Cryogenics 47 pp. 262-266 (2007). Yet another solution is to use a secondary circuit comprising a secondary fluid line, a condenser, a diphasic reservoir and a secondary capillary pump. By simple application of electrical power to the secondary pump, this circuit allows the pre-cooling of the loop, in particular the liquid filling of the main evaporator. This solution is described in the article by J. Yun, E. Kroliczek and L. Crawford "Development of a Cryogenic Loop Heat Pipe (CLHP) for Passive Optical Bench Cooling Applications", 32nd ICES 15 2002, SAE Paper No. 2002- 01-2507, San Antonio, Texas, 2002, as well as in US Patent 7,004,240. A similar concept is that of the "advanced cryogenic fluid loop" (cryogenic advanced LHP): T.T.Hoang, D. Khruslatev and J. Ku, "Cryogenic advanced loop heat pipe temperature range 20-30K" Proc. 12th International heat pipe conference, (2002), pp. 201-205; US 2003/0159808; WO 03/054469, July 3, 2003. Yet another possibility is to use gravity to initiate the loop. The article by H. Pereira, F. Haug, P. Silva, J. Wu, and T. Koettig, "Cryogenic loop heat pipe for the cooling of small particle detectors 25 at CERN", Cryogenic Engineering Conf., June 28 - July 2, 2009, Tucson, USA, describes an LHP where the liquid line is placed above the evaporator; in this way, a "gravity pumping" allows the priming and assists the capillary pumping in normal operation. Of course, this principle is not suitable for space applications. Another passive biphasic heat transfer device is the oscillating heat pipe, also known as the "Pulsating Heat Pipe" PHP. This device consists of a single tube, of diameter less than the capillary length, forming several loops or corrugations and filled with a two-phase fluid consisting of liquid, forming "liquid plugs", and steam, forming bubbles. One end of each loop or ripple is in thermal contact with a hot source and the opposite end with a cold source. Under these conditions instability is created, causing an oscillatory movement of the liquid plugs and bubbles. This results in extremely efficient heat transfer. The capillary can be closed at both ends (PHP "open"), or else loop back on itself (PHP "closed", more efficient).
Le principe du PHP est décrit par l'article de M. B. Shafi, A. Faghri et Y. Zhang « Analysis of heat transfer in unlooped and looped pulsating heat pipes », Int. Journ. of Numerical Methods for Heat & Fluid Flow, Vol. 12, No. 5, (2002), pp. 585 - 609 Un PHP adapté à des applications cryogéniques est décrit dans l'article de R. Chandratilleke et al., « Development of cryogenic loop heat pipe », Cryogenics 38 (1998) pp. 263-269. Bien qu'un pré-refroidissement soit nécessaire, il n'est pas évoqué par cette publication. D'une manière générale les dispositifs diphasiques de transfert de la chaleur tels que ceux décrits ci-dessus peuvent être qualifiés 20 de « passifs » lorsqu'ils accomplissent leur fonction de stabilisation thermique ; cependant, lorsqu'ils sont utilisés à des températures cryogéniques, ils nécessitent de moyens - souvent actifs - de pré- refroidissement qui en compliquent considérablement la structure et le fonctionnement et/ou qui imposent des contraintes parfois inacceptables 25 (présence d'un champ gravitationnel, agencement relatif de certains composants). L'invention vise à surmonter les inconvénients précités de l'art antérieur en proposant un dispositif cryogénique de transfert de la chaleur de structure particulièrement simple, permettant à la fois de pré-refroidir un objet, 30 de manière indépendante et y compris en contre gravité, sur de grandes distances, mais aussi d'évacuer la chaleur dégagée par l'objet une fois pré- refroidi. Ce dispositif peut être qualifié d«< actif », car il exploite des actionneurs (des sources de chaleur) pour assurer la circulation d'un fluide diphasique ; cependant, aucune partie mécanique en mouvement n'est nécessaire (sauf, dans certains modes de réalisation, des vannes). Il peut assurer seul les fonctions de pré-refroidissement et de stabilisation thermique, ou bien être utilisé uniquement pour l'étape de pré-refroidissement d'un objet, la stabilisation thermique pouvant alors être assurée par un dispositif passif conventionnel. Un objet de l'invention est donc un dispositif, notamment cryogénique, de transfert de la chaleur comprenant : 10 - un premier réservoir pour stocker un fluide diphasique, équipé d'un premier moyen de chauffage et connecté à une source froide par une première résistance thermique ; un deuxième réservoir pour stocker ledit fluide diphasique, équipé d'un deuxième moyen de chauffage et connecté à ladite ou une autre 15 source froide par une deuxième résistance thermique ; et - un conduit fluidique pouvant être traversé par ledit fluide diphasique, reliant lesdits premier et deuxième réservoirs, ledit conduit comprenant au moins : - un évaporateur pouvant être connecté thermiquement à 20 une source chaude ayant une température supérieure à celle de ladite source froide ; - un premier et un deuxième condenseur, situés de part et d'autre dudit évaporateur et pouvant être connectés thermiquement à ladite source froide ; 25 lesdits premier et deuxième moyens de chauffage et ledit conduit fluidique étant agencés de telle manière que l'activation du premier moyen de chauffage provoque l'expulsion dudit fluide diphasique dudit premier réservoir vers ledit deuxième réservoir à travers ledit conduit fluidique, et l'activation du deuxième moyen de chauffage provoque l'expulsion dudit 30 fluide diphasique dudit deuxième réservoir vers ledit premier réservoir à travers ledit conduit fluidique. Selon différents modes de réalisation de l'invention : - Le dispositif peut contenir un dit fluide diphasique en quantité au moins suffisante pour remplir, à l'état liquide, ledit conduit fluidique et une partie du volume de l'un desdits premier et deuxième réservoir, mais insuffisante pour remplir à l'état liquide les deux réservoirs et ledit conduit fluidique. - Lesdits premier et deuxième réservoir peuvent présenter une contenance supérieure à celle du conduit fluidique. De préférence, ces réservoirs peuvent présenter une même contenance. - Ledit fluide diphasique peut être un fluide cryogénique, présentant une température critique inférieure ou égale à 200K, voire à 120K. Il peut s'agir, par exemple, de l'hélium, de l'hydrogène, du néon, de l'azote ou de l'oxygène respectivement aux températures de 4,2K, 20K, 27K, 77K et 90K et dont les températures critiques sont respectivement de 5,2K, 33K, 44K, 126K et 154K. - Le dispositif peut comprendre également au moins une dite source froide, comprenant des moyens de refroidissement adaptés pour l'amener à une température permettant l'existence d'une phase liquide dudit fluide à l'intérieur desdits réservoirs. - Ledit conduit fluidique peut être connecté auxdits premier et deuxième réservoirs par des piquages respectifs réalisés aux extrémités inférieures de ces derniers. Ce mode de réalisation convient aux applications terrestres, en présence d'un champ gravitationnel. - En variante, chacun dudit premier et deuxième réservoirs peut contenir un matériau poreux conducteur de la chaleur, mouillable par la phase liquide dudit fluide ; on entend par « mouillable » un matériau avec lequel ladite phase liquide forme un angle de contact inférieur à 90°. Ce mode de réalisation convient aux applications spatiales dans un environnement de microgravité. - Ledit conduit fluidique peut être relié à un réservoir de réduction de la pression. Il s'agit là d'une caractéristique avantageusement présente dans la plupart des dispositifs fluidiques de transfert de la chaleur opérant à des températures cryogéniques. - Le dispositif de l'invention peut comprendre également un dispositif de commande adapté pour activer alternativement le premier et le deuxième moyen de chauffage, de manière à provoquer un transfert dudit fluide diphasique dudit premier réservoir audit deuxième réservoir et vice- versa. Un autre objet de l'invention est un système de transfert de la chaleur comprenant deux dispositifs tels que décrits ci-dessus, connectés thermiquement entre ladite source chaude et ladite source froide, ou des sources froides respectives, dans lequel lesdits moyens de commande sont configurés pour activer les moyens de chauffage respectifs de manière périodique et en quadrature de phase. Un autre objet de l'invention est un système de transfert de la chaleur un dispositif tel que décrit ci-dessus et un dispositif diphasique passif de transfert de la chaleur, tel qu'un caloduc à boucle fluidique ou un caloduc oscillant, connectés thermiquement entre ladite source chaude et ladite source froide, ou des sources froides respectives. Dans un mode de réalisation particulier, ledit dispositif diphasique passif de transfert de la chaleur peut être connecté auxdits premier et deuxième réservoirs par un système de vannes permettant son remplissage en fluide diphasique. The principle of PHP is described by the article by M. B. Shafi, A. Faghri and Y. Zhang "Analysis of heat transfer in unlooped and looped pulsating heat pipes", Int. Journ. of Numerical Methods for Heat and Fluid Flow, Vol. 12, No. 5, (2002), pp. 585 - 609 A PHP adapted to cryogenic applications is described in the article by R. Chandratilleke et al., "Development of Cryogenic Loop Heat Pipe", Cryogenics 38 (1998) pp. 263-269. Although pre-cooling is necessary, it is not mentioned in this publication. In general, two-phase heat transfer devices such as those described above can be qualified as "passive" when performing their thermal stabilization function; however, when used at cryogenic temperatures, they require means - often active - pre-cooling which considerably complicate the structure and operation and / or impose constraints sometimes unacceptable 25 (presence of a gravitational field relative arrangement of some components). The invention aims to overcome the aforementioned drawbacks of the prior art by providing a cryogenic heat transfer device of particularly simple structure, allowing both to pre-cool an object, independently and even against gravity over long distances, but also to evacuate the heat released by the object once pre-cooled. This device can be described as "active" because it exploits actuators (heat sources) to ensure the circulation of a two-phase fluid; however, no moving mechanical parts are necessary (except, in some embodiments, valves). It can perform alone the functions of pre-cooling and thermal stabilization, or be used only for the pre-cooling step of an object, the thermal stabilization can then be provided by a conventional passive device. An object of the invention is therefore a device, in particular a cryogenic device, for transferring heat, comprising: a first reservoir for storing a two-phase fluid, equipped with a first heating means and connected to a cold source by a first resistor thermal; a second reservoir for storing said two-phase fluid, equipped with a second heating means and connected to said one or another cold source by a second thermal resistance; and a fluid duct which can be traversed by said two-phase fluid, connecting said first and second reservoirs, said duct comprising at least: an evaporator that can be thermally connected to a hot source having a temperature greater than that of said cold source; a first and a second condenser, situated on either side of said evaporator and capable of being thermally connected to said cold source; Said first and second heating means and said fluidic conduit being arranged such that activation of the first heating means causes expulsion of said two-phase fluid from said first reservoir to said second reservoir through said fluid conduit, and activation second heating means causes expulsion of said two-phase fluid from said second reservoir to said first reservoir through said fluid conduit. According to various embodiments of the invention: the device can contain a said two-phase fluid in an amount at least sufficient to fill, in the liquid state, said fluidic conduit and a part of the volume of one of said first and second reservoir; but insufficient to fill in the liquid state the two reservoirs and said fluid conduit. - Said first and second reservoir may have a capacity greater than that of the fluidic conduit. Preferably, these tanks may have the same capacity. Said two-phase fluid may be a cryogenic fluid having a critical temperature of less than or equal to 200K or even 120K. It can be, for example, helium, hydrogen, neon, nitrogen or oxygen respectively at the temperatures of 4.2K, 20K, 27K, 77K and 90K and whose temperatures critics are respectively 5.2K, 33K, 44K, 126K and 154K. - The device may also include at least one said cold source, comprising cooling means adapted to bring it to a temperature allowing the existence of a liquid phase of said fluid inside said tanks. - Said fluid duct can be connected to said first and second tanks by respective taps made at the lower ends thereof. This embodiment is suitable for terrestrial applications, in the presence of a gravitational field. Alternatively, each of said first and second reservoirs may contain a porous heat-conducting material wettable by the liquid phase of said fluid; "Wettable" means a material with which said liquid phase forms a contact angle of less than 90 °. This embodiment is suitable for space applications in a microgravity environment. - Said fluid duct may be connected to a pressure reduction tank. This is a characteristic advantageously present in most fluidic heat transfer devices operating at cryogenic temperatures. - The device of the invention may also comprise a control device adapted to alternately activate the first and second heating means, so as to cause a transfer of said two-phase fluid from said first tank to said second tank and vice versa. Another object of the invention is a heat transfer system comprising two devices as described above, thermally connected between said hot source and said cold source, or respective cold sources, wherein said control means are configured to activate the respective heating means periodically and in quadrature phase. Another object of the invention is a heat transfer system, a device as described above and a passive two-phase heat transfer device, such as a fluidic loop heat pipe or an oscillating heat pipe, thermally connected between said hot source and said cold source, or respective cold sources. In a particular embodiment, said passive two-phase heat transfer device can be connected to said first and second tanks by a valve system enabling it to be filled with two-phase fluid.
Un autre objet de l'invention est un système de transfert de la chaleur comprenant un dispositif tel que décrit ci-dessus, dans lequel un caloduc oscillant, connecté thermiquement entre ladite source chaude et ladite source froide, est intégré audit conduit fluidique. Un autre objet de l'invention est un procédé de refroidissement ou pré-refroidissement d'un objet, notamment à une température cryogénique, au moyen d'un dispositif tel que décrit ci-dessus, comprenant les étapes suivantes : a. Relier thermiquement ledit objet à l'évaporateur dudit dispositif, de telle sorte qu'il fonctionne comme source chaude ; b. Relier thermiquement lesdits premier et deuxième réservoirs, ainsi que lesdits premier et deuxième condenseurs, à ladite source 2974891 lo froide, de manière à provoquer un remplissage au moins partiel d'au moins ledit premier réservoir par une phase liquide dudit fluide diphasique ; c. Activer ledit premier moyen de chauffage, de telle sorte que ladite phase liquide dudit fluide diphasique s'écoule vers ledit deuxième 5 réservoir à travers ledit évaporateur, où elle s'évapore au moins partiellement en refroidissant ledit objet, et ledit deuxième condenseur, où la vapeur ainsi formée retourne à l'état diphasique ; d. Lorsque le premier réservoir est sensiblement vide de ladite phase liquide, éteindre ledit premier moyen de chauffage ; 10 e. Activer ledit deuxième moyen de chauffage, de telle sorte que ladite phase liquide dudit fluide diphasique s'écoule vers ledit premier réservoir à travers ledit évaporateur, où elle s'évapore au moins partiellement en refroidissant ledit objet, et ledit premier condenseur, où la vapeur ainsi formée retourne à l'état diphasique ; et 15 f. Lorsque le deuxième réservoir est sensiblement vide de ladite phase liquide, éteindre ledit deuxième moyen de chauffage ; les étapes c. à f. étant répétées de manière cyclique. Encore un autre objet de l'invention est un procédé de refroidissement d'un objet comprenant une étape de pré-refroidissement telle 20 que décrite ci-dessus, suivie d'une étape de stabilisation thermique au moyen d'un dispositif diphasique passif de transfert de la chaleur. D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description faite en référence aux dessins annexés donnés à titre d'exemple et qui représentent, respectivement : 25 - Les figures 1A, 1B et 1C, des schémas fonctionnels de trois dispositifs de transfert de la chaleur selon trois variantes d'un mode de réalisation de l'invention ; - Les figures 2A et 2B, deux vues en coupe d'un réservoir pour fluide cryogénique adapté pour être utilisé en conditions de microgravité ; 30 - La figure 3, le schéma fonctionnel d'un premier mode de réalisation d'un système cryogénique de transfert de la chaleur selon 2974891 li l'invention, mettant en oeuvre deux dispositifs du type représenté sur la figure 1A, connectés en parallèle entre une source chaude et une source froide ; - La figure 4, le schéma fonctionnel d'un deuxième mode de réalisation d'un système cryogénique de transfert de la chaleur selon 5 l'invention, mettant en oeuvre un dispositif du type représenté sur la figure 1A et une boucle fluide, connectés en parallèle entre une source chaude et une source froide ; La figure 5, le schéma fonctionnel d'un troisième mode de réalisation d'un système cryogénique de transfert de la chaleur selon 10 l'invention, mettant en oeuvre un dispositif du type représenté sur la figure 1A et un caloduc oscillant fermé, connectés en parallèle entre une source chaude et une source froide ; - La figure 6, le schéma fonctionnel d'un quatrième mode de réalisation d'un système cryogénique de transfert de la chaleur selon 15 l'invention, mettant en oeuvre un dispositif du type représenté sur la figure 1A auquel est intégré un caloduc oscillant ouvert ; - Les figures 7A - 7C, des schémas illustrant la structure et le fonctionnement d'un cinquième mode de réalisation d'un système cryogénique de transfert de la chaleur selon l'invention, mettant en oeuvre un 20 dispositif du type représenté sur la figure 1A et un caloduc oscillant ouvert, connectés en parallèle entre une source chaude et une source froide ; et - Les figures 8A et 8B, des résultats expérimentaux illustrant le fonctionnement d'un dispositif du type illustré sur la figure 1A. Comme le montre la figure 1A, un dispositif de transfert de la 25 chaleur selon l'invention comprend essentiellement deux réservoirs R1 et R2, de préférence ayant une même contenance, reliés entre eux par l'intermédiaire d'un conduit fluidique CF. Cet ensemble contient un fluide à l'état diphasique, liquide et vapeur. Il est constitué, dans le sens R1 vers R2 d'un premier condenseur Cl (gris foncé), d'un premier tronçon du conduit 30 fluidique, d'un évaporateur EV, d'un deuxième tronçon du conduit fluidique (gris clair), et d'un condenseur C2. Another object of the invention is a heat transfer system comprising a device as described above, in which an oscillatory heat pipe, thermally connected between said hot source and said cold source, is integrated in said fluid duct. Another object of the invention is a method of cooling or pre-cooling an object, in particular at a cryogenic temperature, by means of a device as described above, comprising the following steps: a. Thermally connecting said object to the evaporator of said device, so that it functions as a hot source; b. Thermally connecting said first and second reservoirs, as well as said first and second condensers, to said cold source 2974891 lo, so as to cause at least a partial filling of at least said first reservoir by a liquid phase of said two-phase fluid; vs. Activating said first heating means, such that said liquid phase of said two-phase fluid flows to said second tank through said evaporator, where it evaporates at least partially by cooling said object, and said second condenser, where the vapor thus formed returns to the two-phase state; d. When the first reservoir is substantially empty of said liquid phase, turn off said first heating means; 10 e. Activating said second heating means, such that said liquid phase of said two-phase fluid flows to said first tank through said evaporator, where it evaporates at least partially by cooling said object, and said first condenser, where the steam thus formed returns to the two-phase state; and f. When the second tank is substantially empty of said liquid phase, turn off said second heating means; steps c. to f. being repeated cyclically. Yet another object of the invention is a method of cooling an object comprising a pre-cooling step as described above, followed by a thermal stabilization step by means of a passive two-phase transfer device. heat. Other characteristics, details and advantages of the invention will become apparent on reading the description given with reference to the accompanying drawings given by way of example and which represent, respectively: FIGS. 1A, 1B and 1C, functional diagrams three heat transfer devices according to three variants of an embodiment of the invention; - Figures 2A and 2B, two sectional views of a reservoir for cryogenic fluid adapted for use in microgravity conditions; FIG. 3 is a block diagram of a first embodiment of a cryogenic heat transfer system according to the invention, implementing two devices of the type shown in FIG. 1A, connected in parallel between a hot spring and a cold source; FIG. 4 is a block diagram of a second embodiment of a cryogenic heat transfer system according to the invention, implementing a device of the type shown in FIG. 1A and a fluid loop, connected in FIG. parallel between a hot source and a cold source; FIG. 5, the block diagram of a third embodiment of a cryogenic heat transfer system according to the invention, implementing a device of the type shown in FIG. 1A and a closed oscillating heat pipe, connected in parallel between a hot source and a cold source; FIG. 6 is a block diagram of a fourth embodiment of a cryogenic heat transfer system according to the invention, implementing a device of the type shown in FIG. 1A, which incorporates an open oscillating heat pipe. ; FIGS. 7A-7C, diagrams illustrating the structure and operation of a fifth embodiment of a cryogenic heat transfer system according to the invention, implementing a device of the type shown in FIG. 1A; and an open oscillating heat pipe, connected in parallel between a hot source and a cold source; and FIGS. 8A and 8B, experimental results illustrating the operation of a device of the type illustrated in FIG. 1A. As shown in FIG. 1A, a heat transfer device according to the invention essentially comprises two tanks R1 and R2, preferably having the same capacity, connected to one another via a fluid conduit CF. This set contains a fluid in the two-phase state, liquid and vapor. It consists, in the direction R1 to R2 of a first condenser C1 (dark gray), a first section of the fluidic conduit, an evaporator EV, a second section of the fluid duct (light gray), and a condenser C2.
Le fluide diphasique LC présente une température critique inférieure à la température de fonctionnement de l'objet O à refroidir, et se trouve en partie à l'état liquide à la température de la source froide. En fonction de l'application considérée il peut s'agir par exemple d'eau, ammoniac, ou bien d'un fluide cryogénique tel que l'azote, l'oxygène, l'hydrogène, le néon ou l'hélium liquide. Le dispositif de l'invention convient particulièrement aux applications cryogéniques (températures de l'objet inférieures ou égales à 200K voire à 120K), ou plus généralement à des applications dans lesquelles l'objet à refroidir doit être amené à une température de fonctionnement inférieure à la température ambiante (conventionnellement, 20°C). La quantité de fluide diphasique contenue dans le dispositif doit être suffisante pour remplir, à l'état liquide, le conduit fluidique et au moins une partie (typiquement 50% ou 75%) du volume interne de l'un des réservoirs. En même temps, le dispositif ne doit pas être entièrement rempli de liquide, car dans ce cas aucune circulation du fluide diphasique ne pourrait se produire. Le premier condenseur Cl, qui se trouve à proximité immédiate du premier réservoir R1, est en contact thermique avec une source froide SF, présentant des moyens (par exemple un bain de fluide cryogénique ou un cryo-réfrigérateur) susceptibles d'amener sa température TF à une valeur inférieure ou égale à la température de saturation du fluide diphasique. Ainsi, ce condenseur Cl se remplit de fluide diphasique à l'état liquide. L'évaporateur EV, situé dans la partie centrale du conduit fluidique CF, est en contact thermique avec un « plan chaud » PC, qui est un élément bon conducteur thermique connecté thermiquement à un objet O à refroidir. Le plan chaud PC sert de « source chaude » ; sa température Tc est supérieure ou égale à la température de saturation du fluide diphasique. Ainsi, l'évaporateur EV contient du fluide à l'état liquide, puis diphasique, puis - éventuellement - entièrement à l'état vapeur. The two-phase fluid LC has a critical temperature lower than the operating temperature of the object O to be cooled, and is partly in the liquid state at the temperature of the cold source. Depending on the application in question it may be for example water, ammonia, or a cryogenic fluid such as nitrogen, oxygen, hydrogen, neon or liquid helium. The device of the invention is particularly suitable for cryogenic applications (object temperatures of less than or equal to 200K or even 120K), or more generally to applications in which the object to be cooled must be brought to an operating temperature of less than the ambient temperature (conventionally, 20 ° C). The quantity of two-phase fluid contained in the device must be sufficient to fill, in the liquid state, the fluidic conduit and at least a portion (typically 50% or 75%) of the internal volume of one of the reservoirs. At the same time, the device must not be completely filled with liquid, because in this case no circulation of the two-phase fluid could occur. The first condenser C1, which is in the immediate vicinity of the first tank R1, is in thermal contact with a cold source SF, having means (for example a cryogenic fluid bath or cryo-refrigerator) capable of bringing its temperature TF at a value less than or equal to the saturation temperature of the two-phase fluid. Thus, this condenser C1 is filled with two-phase fluid in the liquid state. The evaporator EV, located in the central portion of the fluidic conduit CF, is in thermal contact with a "hot plane" PC, which is a good thermal conductor element thermally connected to an object O to be cooled. The hot PC plan serves as a "hot spring"; its temperature Tc is greater than or equal to the saturation temperature of the two-phase fluid. Thus, the evaporator EV contains fluid in the liquid state, then diphasic, then - possibly - entirely in the vapor state.
Le premier réservoir R1 est connecté à la source froide par l'intermédiaire d'une première résistance thermique RTH1 ; de même, le deuxième réservoir R2 est connecté à la source froide par l'intermédiaire d'une deuxième résistance thermique RTH2. Les valeurs de ces résistances constituent des paramètres importants pour le dimensionnement du dispositif de l'invention, comme cela sera discuté plus loin. En outre, les deux réservoirs sont équipés de moyens de chauffage respectifs, MC1, MC2, par exemple des résistances électriques. Un dispositif de commande DC (ordinateur, carte à microprocesseur...) émet des signaux sMC1, sMC2 de pilotage des deux moyens de chauffage MC1 et MC2. Un réservoir « chaud » de réduction de la pression, RRP, est connecté au conduit fluidique CF. II s'agit là d'une caractéristique conventionnelle des systèmes cryogénique, destinée à éviter une montée en pression excessive lorsque le système est à température ambiante. Dans d'autres modes de réalisation, le réservoir RRP peut être absent : dans ce cas, le dispositif se trouve sous pression à température ambiante, dans le domaine supercritique ; son refroidissement est alors long, car le fluide doit se refroidir d'abord par conduction dans le gaz, avant de se condenser dans les parties froides du système. Pour décrire le fonctionnement du dispositif de la figure 1A, on considère la situation initiale dans laquelle le dispositif, à l'exclusion de l'évaporateur EV, est « froid », à la température TF. Les deux réservoirs R1 et R2 sont partiellement rempli de liquide avec un ciel de vapeur au dessus. Les deux condenseurs Cl et C2 sont totalement pleins de liquide, tandis que le reste du conduit, y compris l'évaporateur EV, est rempli de vapeur. Au début, les deux moyens de chauffage MC1, MC2 sont éteints et le système est thermalisé les réservoirs R1, R2 et les condenseurs Cl, C2 sont à la température de la source froide, TF, tandis que l'évaporateur EV se trouve à la température du plan chaud, Tc. Au temps t=to le premier moyen de chauffage MC1 est activé pour injecter de la chaleur dans le premier réservoir R1. Cela provoque l'évaporation d'une petite partie du liquide qui y est contenu, et donc une augmentation de pression qui provoque l'expulsion d'une autre partie importante de liquide dans le conduit CF vers le deuxième réservoir. Le liquide se refroidit dans le condenseur Cl. Sous l'effet de la surpression induite par le chauffage, le liquide se dirige ensuite vers l'évaporateur EV où il se réchauffe, puis s'évapore en partie ou totalement. Dans le dernier cas, la vapeur est surchauffée, c'est-à-dire que sa température est supérieure à la température de vapeur saturante TSAT à la pression qui règne dans le conduit fluidique, en sortie de EV. Ce faisant, le fluide extrait de la chaleur du plan chaud PC et de l'objet O. La vapeur (ou le fluide diphasique liquide/vapeur) sorti de l'évaporateur continue à s'écouler vers le deuxième réservoir R2. Avant d'y parvenir, cependant, elle traverse le deuxième condenseur C2, où il cède de la chaleur à la source froide en se condensant. En sortie de C2, le fluide est diphasique. La composante en phase vapeur de ce fluide, entrant dans le réservoir R2, se condense grâce à la puissance froide traversant la résistance thermique RTH2. Le liquide entrant remplit donc le réservoir R2. Au cours du temps, le premier réservoir R1 se vide de la composante liquide du fluide diphasique. Etant donné que le piquage de sortie du réservoir R1 est situé en partie basse, lorsque le niveau de liquide passe en dessous de ce piquage, le réservoir est quasiment vide. De la vapeur pure sort de RI, qui se dépressurise ; par conséquent, sa température baisse. Cette baisse de température est détectée et constitue le signal qui déclenche l'extinction de MC1 et l'allumage de MC2. A partir de ce moment, le réservoir R2, qui s'est rempli partiellement de liquide, devient le réservoir « source », tandis que R1 devient le réservoir « récupérateur ». Le débit de fluide dans CF s'inverse. R2 se vide sous l'effet de MC2. Le cycle se termine lorsque R2 est quasiment vide. Puis un nouveau cycle peut recommencer pour être répété autant que nécessaire. The first tank R1 is connected to the cold source via a first thermal resistor RTH1; likewise, the second tank R2 is connected to the cold source via a second heat resistance RTH2. The values of these resistors constitute important parameters for the dimensioning of the device of the invention, as will be discussed later. In addition, the two tanks are equipped with respective heating means, MC1, MC2, for example electrical resistors. A DC control device (computer, microprocessor card, etc.) transmits signals SMC1, SMC2 for controlling the two heating means MC1 and MC2. A "hot" pressure reduction tank, RRP, is connected to the fluidic conduit CF. This is a conventional feature of cryogenic systems, intended to prevent excessive pressure build-up when the system is at ambient temperature. In other embodiments, the RRP reservoir may be absent: in this case, the device is under pressure at room temperature, in the supercritical domain; its cooling is then long, because the fluid must cool first by conduction in the gas, before condensing in the cold parts of the system. To describe the operation of the device of FIG. 1A, consider the initial situation in which the device, excluding the evaporator EV, is "cold" at the temperature TF. The two tanks R1 and R2 are partially filled with liquid with a sky of vapor above. The two condensers C1 and C2 are completely full of liquid, while the rest of the duct, including the evaporator EV, is filled with steam. At the beginning, the two heating means MC1, MC2 are extinguished and the system is thermalized the tanks R1, R2 and the condensers C1, C2 are at the temperature of the cold source, TF, while the evaporator EV is at the temperature of the hot plane, Tc. At time t = the first heating means MC1 is activated to inject heat into the first tank R1. This causes the evaporation of a small portion of the liquid contained therein, and therefore an increase in pressure which causes the expulsion of another large portion of liquid in the conduit CF to the second reservoir. The liquid cools in the condenser C1. Under the effect of the overpressure induced by heating, the liquid then goes to the evaporator EV where it heats up and then evaporates partially or totally. In the latter case, the steam is superheated, that is to say that its temperature is higher than the saturation vapor temperature TSAT at the pressure prevailing in the fluid duct, at the outlet of EV. In doing so, the fluid extracts heat from the hot plane PC and object O. The vapor (or the two-phase liquid / vapor) leaving the evaporator continues to flow to the second tank R2. Before doing so, however, it passes through the second condenser C2, where it gives heat to the cold source by condensing. At the output of C2, the fluid is two-phase. The vapor phase component of this fluid, entering the tank R2, condenses thanks to the cold power passing through the thermal resistance RTH2. The incoming liquid thus fills the tank R2. Over time, the first reservoir R1 is empty of the liquid component of the two-phase fluid. Since the outlet tapping of the tank R1 is located in the lower part, when the liquid level passes below this tapping, the tank is almost empty. Pure steam comes from RI, which is depressurized; therefore, its temperature drops. This drop in temperature is detected and is the signal that triggers the extinction of MC1 and the ignition of MC2. From this moment, the reservoir R2, which has partially filled with liquid, becomes the reservoir "source", while R1 becomes the reservoir "recuperator". The flow rate of fluid in CF reverses. R2 empties under the effect of MC2. The cycle ends when R2 is almost empty. Then a new cycle can begin again to be repeated as much as necessary.
En variante, le signal déclenchant l'extinction de MC1 et l'allumage de MC2 pourrait être l'augmentation de la température du réservoir RI qui se produit après que ce dernier se soit vidé complètement de liquide. Les principaux critères de dimensionnement d'un dispositif du type représenté sur la figure 1A sont les suivants : - Une partie QJ25 Fde la puissance chauffante QRS injectée dans le réservoir source (RI ou R2, en fonction de la phase de fonctionnement) est perdue à travers la résistance thermique RTH1, RTH2. La différence QRS -QRS F sert à générer le débit de fluide m dans le conduit fluidique, et à générer par évaporation la vapeur remplaçant le liquide qui sort du réservoir source. Maximiser les résistances thermiques RTH1 et RTH2 permet de limiter la puissance perdue, et donc d'améliorer l'efficacité énergétique du dispositif, mais augmente le temps de mise en froid, c'est-à- dire le temps nécessaire pour atteindre les conditions initiales décrites plus haut. La puissance perdue RI F R2 F à travers les résistances thermiques RTH1 et RTH2 vaut : Q T'AT R1/2 F - La puissance échangée dans l'évaporateur EV vaut : QEV = m[cPL (TsAT -TF )+ hLV + cpv (Tvc - TSAT )J où m est le débit dans le circuit fluidique, CpL et cpv, respectivement, la chaleur spécifique de la phase liquide et de la phase vapeur à pression constante, hLv la chaleur latente d'évaporation, Tvc la température du fluide dans le conduit du coté du réservoir récupérateur. - Le débit m dans le circuit fluidique vaut : Pr _1 où p et p' sont, respectivement, les densités de la phase liquide et de la phase vapeur à saturation à la température des réservoirs, qui sont supposées égales. Ce débit est essentiellement imposé 20 par la valeur de puissance échangée QEV requise par l'application considérée. - Le débit m dans CF étant donné, le fluide sortant de C1/2 permet le refroidissement de l'objet. Le fluide sort de l'évaporateur EV à température T. inférieure, mais proche de T, . Le fluide, s'il est à l'état vapeur, se refroidit sur une très faible surface et se condense sur la quasi- 25 totalité de la surface froide qui est à TF.. La quasi-totalité de la puissance est échangée à travers cette surface. En première approximation QFV HcoNDSc2,1(TA,.-TF.) où HcOND et SC2/1représentent respectivement le RTH1/2 coefficient de transfert de chaleur en condensation et la surface d'échange SC2' du condenseur récupérateur C211. Cette surface est donc fondamentale dans le dimensionnement. Elle fixe la température de saturation, c'est-à-dire la température des réservoirs donc leur pression. Alternatively, the signal triggering the extinction of MC1 and the ignition of MC2 could be the increase in the temperature of the reservoir RI that occurs after the latter has emptied completely of liquid. The main criteria for dimensioning a device of the type shown in FIG. 1A are the following: a part QJ25 F of the heating power QRS injected into the source reservoir (R1 or R2, depending on the operating phase) is lost at through the thermal resistance RTH1, RTH2. The difference QRS -QRS F is used to generate the flow rate of fluid m in the fluidic conduit, and to generate by evaporation the vapor replacing the liquid leaving the source reservoir. Maximizing the thermal resistances RTH1 and RTH2 makes it possible to limit the power lost, and thus to improve the energy efficiency of the device, but increases the cooling time, ie the time necessary to reach the initial conditions. described above. The lost power RI F R2 F through the thermal resistors RTH1 and RTH2 is: Q T'AT R1 / 2 F - The power exchanged in the evaporator EV is: QEV = m [cPL (TsAT -TF) + hLV + cpv (Tvc - TSAT) where m is the flow in the fluidic circuit, CpL and cpv, respectively, the specific heat of the liquid phase and the vapor phase at constant pressure, hLv the latent heat of evaporation, Tvc the temperature of the fluid in the duct on the side of the recovery tank. - The flow m in the fluidic circuit is: Pr _1 where p and p 'are, respectively, the densities of the liquid phase and the saturation vapor phase at the temperature of the tanks, which are assumed to be equal. This flow rate is essentially imposed by the value of exchanged power QEV required by the application in question. - The flow m in CF being given, the fluid leaving C1 / 2 allows the cooling of the object. The fluid leaves the evaporator EV at lower temperature T, but close to T,. The fluid, if it is in the vapor state, cools on a very small surface and condenses on almost all of the cold surface which is at TF. Almost all of the power is exchanged through this surface. As a first approximation QFV HcoNDSc2.1 (TA, .- TF.) Where HcOND and SC2 / 1represent respectively the RTH1 / 2 heat transfer coefficient in condensation and the exchange surface SC2 'of the recovery condenser C211. This surface is therefore fundamental in sizing. It sets the saturation temperature, that is to say the temperature of the tanks and their pressure.
Les figures 1B et 1C se rapportent à des variantes du dispositif de la figure 1A. Dans le cas de la figure 1A, les deux condenseurs sont intégrés dans une même pièce, interposés entre les réservoirs et la source froide. Dans le cas de la figure 1B, les condenseurs sont indépendants entre eux, mais toujours interposés entre les réservoirs et la source froide. Figures 1B and 1C relate to variants of the device of Figure 1A. In the case of Figure 1A, the two condensers are integrated in the same room, interposed between the tanks and the cold source. In the case of Figure 1B, the condensers are independent of each other, but always interposed between the tanks and the cold source.
Dans le cas de la figure 1C, les deux condenseurs sont indépendants entre eux et des réservoirs. Les figures 8A et 8B montrent des résultats expérimentaux illustrant le fonctionnement d'un dispositif du type de la figure 1C, utilisant de l'hélium en tant que fluide diphasique et une source froide constituée par un bain cryogénique d'hélium (TF=4,3K environ). La figure 8A montre l'évolution de la température Tc du plein chaud, qui passe de 70K à 4,3K en moins d'une heure, pour une masse thermique de 400J. La figure 8B montre les fluctuations des températures TRI, TR2 des réservoirs et celles, beaucoup moins importantes, de la température TF de la source froide. In the case of Figure 1C, the two condensers are independent of each other and tanks. FIGS. 8A and 8B show experimental results illustrating the operation of a device of the type of FIG. 1C, using helium as a two-phase fluid and a cold source constituted by a cryogenic helium bath (TF = 4, About 3K). FIG. 8A shows the evolution of the temperature Tc from full heat, which goes from 70K to 4.3K in less than one hour, for a thermal mass of 400J. FIG. 8B shows the fluctuations of the temperatures TRI, TR2 of the reservoirs and those, much less important, of the temperature TF of the cold source.
L'exemple de la figure 1A se rapporte au cas d'un dispositif fonctionnant dans un champ de pesanteur. Dans ces conditions, les moyens de chauffage MC1 et MC2 se trouvent de préférence dans la partie supérieure de chaque réservoir, tandis que les piquages reliant le conduit CF aux réservoirs se trouvent dans la partie inférieure de ces derniers. Cet agencement permet d'assurer que l'augmentation de pression dans le réservoir provoque une injection de liquide, et pas de vapeur, dans le conduit CF. En l'absence de gravité (applications spatiales) se pose le problème de localiser l'interface liquide/vapeur, ce qui est nécessaire pour assurer que seulement du liquide soit injecté dans le conduit fluidique CF. La solution illustrée sur les figures 2A et 2B consiste à utiliser un matériau poreux MP, mouillable par le liquide cryogénique de manière à être gorgé par celui-ci, remplissant complètement (ou presque) chaque réservoir R. Dans l'exemple des figures 2A/2B, le moyen de chauffage MC est situé au centre du réservoir, en contact avec le matériau poreux. Lorsque ce moyen de chauffage est activé, un gradient de température se crée dans le matériau poreux, avec des températures supérieures à la température de vapeur saturante (c'est-à-dire à la température d'ébullition, ou de liquéfaction, du fluide) au centre et inférieures en périphérie. Ceci impose que la vapeur se trouve au centre, proche du chauffage, et le liquide dans la partie périphérique du réservoir. L'augmentation de la pression dans la vapeur, due à l'évaporation dans un volume clos, contraint le liquide à s'échapper par des rainures périphériques RP prévues à cet effet. L'utilisation d'un matériau poreux conducteur (métallique, par exemple) est préférable pour que le flux de chaleur aille directement à l'interface liquide/vapeurs, au lieu d'engendrer un gradient de température important qui serait sans utilité. The example of FIG. 1A relates to the case of a device operating in a gravitational field. Under these conditions, the heating means MC1 and MC2 are preferably located in the upper part of each tank, while the connections connecting the pipe CF to the tanks are in the lower part thereof. This arrangement makes it possible to ensure that the increase in pressure in the reservoir causes an injection of liquid, and no steam, into the conduit CF. In the absence of gravity (space applications) there is the problem of locating the liquid / vapor interface, which is necessary to ensure that only liquid is injected into the fluidic conduit CF. The solution illustrated in FIGS. 2A and 2B consists in using a porous material MP, wettable by the cryogenic liquid so as to be gorged by it, filling completely (or almost) each reservoir R. In the example of FIGS. 2B, the heating means MC is located in the center of the tank, in contact with the porous material. When this heating means is activated, a temperature gradient is created in the porous material, with temperatures higher than the saturated vapor temperature (ie at the boiling or liquefying temperature of the fluid). ) in the center and lower on the periphery. This requires that the steam is in the center, close to the heating, and the liquid in the peripheral part of the tank. The increase of the pressure in the vapor, due to evaporation in a closed volume, forces the liquid to escape via RP peripheral grooves provided for this purpose. The use of a conductive porous material (metal, for example) is preferable for the heat flow to go directly to the liquid / vapor interface, instead of generating a large temperature gradient that would be useless.
Bien entendu, d'autres géométries sont possibles ; par exemple, le moyen de chauffage peut être disposé à une extrémité du réservoir et le piquage du conduit CF à l'extrémité opposée. Le dispositif de la figure 1A peut être utilisé seul comme lien thermique permettant le pré refroidissement de l'objet O, à partir d'une température arbitrairement haute vers la température de la source froide, ainsi que son maintien à basse température (stabilisation thermique). Grâce au caractère actif du dispositif, la fonction d'interrupteur thermique est réalisée très simplement : il suffit de ne pas activer les moyens de chauffage des réservoirs. Of course, other geometries are possible; for example, the heating means may be disposed at one end of the reservoir and tapping of the CF conduit at the opposite end. The device of FIG. 1A can be used alone as a thermal link allowing the pre-cooling of the object O, from an arbitrarily high temperature towards the temperature of the cold source, as well as its maintenance at low temperature (thermal stabilization) . Thanks to the active nature of the device, the thermal switch function is performed very simply: simply do not activate the tank heating means.
Le dispositif peut également constituer un composant d'un système cryogénique de transfert de la chaleur plus complexe. Un premier exemple d'un tel système est illustré sur la figure 3. Ce système est constitué par deux dispositifs selon la figure 1A, identifiés par les références Da, Db. Les différents composants de ces dispositifs sont identifiés par les lettres « a » et « b », ainsi, par exemple, « R1 a » est le premier réservoir du dispositif « a » et ainsi de suite. Les dispositifs de commande Dca, DCb émettent des signaux sMC1a/sMC2a, sMC1b/sMC2b de pilotage des quatre moyens de chauffage MC1a/MC2a, MC1b/ MC2b qui sont en « quadrature de phase », c'est-à-dire décalés temporellement d'un quart (ou de trois quarts, ce qui est équivalent) de la durée d'un cycle complet. Idéalement, les deux dispositifs sont identiques, et présentent des durées de cycle égales. Si la puissance QEV dégagée par l'objet O est constante dans le temps, la gestion des chauffages doit être telle que la somme des débits mQ + mv soit, elle aussi, constante. La température de l'objet sera alors stable. En revanche, si la puissance QEV n'est pas stable dans le temps, il est nécessaire de faire varier la somme des débits ma + mb au moyen d'une régulation adaptée. Les deux dispositifs de commande Dca, DCb peuvent être réalisés sous la forme d'un dispositif unique. Dans des systèmes selon d'autres modes de réalisation de l'invention, le dispositif de la figure 1A est utilisé pour réaliser le pré-refroidissement de l'objet O et du plan chaud PC, la fonction de stabilisation thermique étant assurée par un dispositif passif de type conventionnel connecté en parallèle entre la source froide SF et ledit plan chaud. La figure 4 montre un tel système, dans lequel la fonction de stabilisation thermique est assurée par une boucle fluide LHP comprenant un évaporateur EVc, en contact thermique avec le plan chaud PC et contenant la mèche capillaire M, une chambre de compensation CC disposée en amont dudit évaporateur, un conduit fluidique CFc connecté à une chambre chaude de réduction de la pression PRPc. Dans le système de la figure 4, le dispositif de l'invention est utilisé pour pré-refroidir le plan chaud jusqu'à une température permettant la présence de liquide dans la chambre de compensation et dans l'évaporateur de la boucle fluide LHP. Une fois amorcée, cette dernière prend le relais. The device can also be a component of a more complex cryogenic heat transfer system. A first example of such a system is illustrated in Figure 3. This system consists of two devices according to Figure 1A, identified by the references Da, Db. The different components of these devices are identified by the letters "a" and "b", thus, for example, "R1 a" is the first reservoir of the device "a" and so on. The control devices Dca, DCb emit control signals sMC1a / sMC2a, sMC1b / sMC2b of the four heating means MC1a / MC2a, MC1b / MC2b that are in "phase quadrature", that is to say, time shifted d one quarter (or three quarters, which is equivalent) of the duration of a complete cycle. Ideally, the two devices are identical, and have equal cycle times. If the QEV power released by the object O is constant over time, the management of the heaters must be such that the sum of the flow rates mQ + mv is also constant. The temperature of the object will then be stable. On the other hand, if the power QEV is not stable in time, it is necessary to vary the sum of the flow rates ma + mb by means of a suitable regulation. The two control devices Dca, DCb can be made in the form of a single device. In systems according to other embodiments of the invention, the device of FIG. 1A is used to carry out the pre-cooling of the object O and the hot plane PC, the thermal stabilization function being provided by a device passive conventional type connected in parallel between the cold source SF and said hot plane. FIG. 4 shows such a system, in which the thermal stabilization function is provided by a fluid loop LHP comprising an evaporator EVc, in thermal contact with the hot plane PC and containing the capillary wick M, a compensation chamber CC arranged upstream. said evaporator, a fluid duct CFc connected to a hot pressure reduction chamber PRPc. In the system of Figure 4, the device of the invention is used to pre-cool the hot plane to a temperature allowing the presence of liquid in the compensation chamber and in the evaporator of the fluid loop LHP. Once initiated, it takes over.
Dans le mode de réalisation de la figure 5, la fonction de stabilisation thermique après pré-refroidissement est assurée par un caloduc oscillant de type fermé, PHPF. Dans les modes de réalisation des figures 3 à 5, chaque dispositif est équipé de son propre réservoir de réduction de la pression RRP, RRPa, RRPb, RRPc, RRPd. En effet, en fonction du régime de fonctionnement du système, ces réservoirs peuvent se trouver à des températures différentes. L'utilisation d'un réservoir « chaud » commun nécessiterait l'utilisation d'un système complexe de vannes. In the embodiment of FIG. 5, the thermal stabilization function after pre-cooling is provided by a closed type heat-pump, PHPF. In the embodiments of Figures 3 to 5, each device is equipped with its own pressure reduction tank RRP, RRPa, RRPb, RRPc, RRPd. Indeed, depending on the operating regime of the system, these tanks can be at different temperatures. The use of a common "hot" tank would require the use of a complex system of valves.
Dans le système illustré par la figure 6, un caloduc oscillant ouvert PHPO est « intégré » au conduit fluidique CF d'un dispositif selon l'invention. L'évaporateur EV est donc fractionné en plusieurs régions chaudes du caloduc oscillant, alternées avec des régions froides de ce dernier. Le système fonctionne de la manière expliquée plus haut, en référence à la figure 1A, pendant la phase de pré-refroidissement ; puis les deux moyens de chauffage MC1, MC2 sont désactivés et le PHP, passif, prend le relais pour la phase de stabilisation. Ce concept est intéressant car il est plus compact de celui de la figure 5 (en particulier, un seul réservoir de réduction de la pression est nécessaire), et car le remplissage du PHP peut se faire directement à partir des réservoirs R1 et R2. Cependant, il présente aussi certaines contraintes : - premièrement, le conduit fluidique CF - ou au moins sa partie centrale, formant le caloduc oscillant - doit être de type capillaire (diamètre inférieur à quelques fois la longueur capillaire du liquide) et très long, ce qui augmente les pertes de charges. Il s'ensuit que la température du réservoir source TRS doit être plus importante que dans le cas d'un dispositif « simple » tel que celui de la figure 1A, avec l'augmentation du flux thermique de fuite qui en résulte ; deuxièmement, le caloduc oscillant doit être de type 30 ouvert, moins efficace que le PHP fermé de la figure 5. - troisièmement, il n'est pas assuré que la fraction volumique de la phase liquide sera proche de la valeur optimale de 50% pour un bon fonctionnement du PHP - quatrièmement, le grand nombre d'aller retour du conduit 5 fluidique du PHPO entre la source froide et la source chaude impose de prévoir un grand volume de réservoir. Ces inconvénients peuvent être évités, au moins en partie, grâce au système des figures 7A - 7C, dans lequel le dispositif de l'invention fait partie intégrante d'un caloduc oscillant fermé. La contrepartie est 10 l'utilisation de deux vannes à trois voies V3V1, V3V2, et donc d'éléments mécaniques ayant des parties en mouvement. Le système des figures 7A - 7C comprend un dispositif D du type illustré sur la figure 1A et un caloduc oscillant PHPF' montés en parallèle entre la source froide et le plan chaud. Les deux extrémités du caloduc 15 oscillant sont connectées au premier et au deuxième condenseur du dispositif par l'intermédiaire des vannes à trois voies V3V1, V3V2 ; de cette façon, le caloduc est bouclé sur lui-même par l'intermédiaire du conduit fluidique CF. Initialement (figure 7A) les vannes se trouvent dans une première position isolant le caloduc oscillant, qui est rempli de vapeur. Le 20 dispositif D fonctionne de la manière décrite plus haut pour pré-refroidir le plan chaud PC et l'objet O. Une fois le pré-refroidissement terminé, les vannes passent dans une deuxième position, dans laquelle elles connectent le caloduc oscillant aux deux réservoirs R1, R2 du dispositif D (figure 7B). Ainsi, 25 l'activation du moyen de chauffage du réservoir source (R1, dans ce cas) provoque l'expulsion de liquide de ce dernier et le remplissage du caloduc oscillant. Enfin (figure 7C) les vannes passent dans une troisième position dans laquelle le conduit fluidique CF du dispositif D est connectée au 30 caloduc oscillant pour former une boucle ou ondulation supplémentaire de ce dernier. Les moyens de chauffage sont inactivés et le système fonctionne de manière passive, comme un caloduc oscillant classique. In the system illustrated in FIG. 6, an open oscillating heat pipe PHPO is "integrated" into the fluidic conduit CF of a device according to the invention. The evaporator EV is thus split into several hot regions of the oscillating heat pipe, alternating with cold regions of the latter. The system operates as explained above, with reference to Fig. 1A, during the pre-cooling phase; then the two heating means MC1, MC2 are deactivated and the PHP, passive, takes over for the stabilization phase. This concept is interesting because it is more compact than that of Figure 5 (in particular, only one pressure reduction tank is necessary), and because the filling of the PHP can be done directly from the tanks R1 and R2. However, it also has certain constraints: - firstly, the fluidic duct CF - or at least its central part, forming the oscillating heat pipe - must be of capillary type (diameter less than a few times the capillary length of the liquid) and very long, this which increases the losses of charges. It follows that the temperature of the source tank TRS must be greater than in the case of a "simple" device such as that of FIG. 1A, with the increase in the resulting thermal leakage flow; secondly, the oscillating heat pipe must be of open type, less efficient than the closed PHP of FIG. 5. - thirdly, it is not assured that the volume fraction of the liquid phase will be close to the optimum value of 50% for a good PHP operation - fourthly, the large number of round-trip PHPO fluidic conduit 5 between the cold source and the hot source makes it necessary to provide a large reservoir volume. These disadvantages can be avoided, at least in part, by means of the system of FIGS. 7A-7C, in which the device of the invention forms an integral part of a closed oscillating heat pipe. The counterpart is the use of two three-way valves V3V1, V3V2, and thus mechanical elements having moving parts. The system of FIGS. 7A-7C comprises a device D of the type illustrated in FIG. 1A and an oscillating heat pipe PHPF 'connected in parallel between the cold source and the hot plane. Both ends of the oscillating heat pipe 15 are connected to the first and second condensers of the device via the three-way valves V3V1, V3V2; in this way, the heat pipe is looped on itself via the fluidic conduit CF. Initially (Fig. 7A) the valves are in a first position isolating the oscillating heat pipe, which is filled with steam. The device D operates as described above to pre-cool the hot plane PC and the object O. Once the pre-cooling is complete, the valves move to a second position, in which they connect the oscillating heat pipe to both tanks R1, R2 of the device D (Figure 7B). Thus, the activation of the heating means of the source reservoir (R1, in this case) causes the expulsion of liquid from the latter and the filling of the oscillating heat pipe. Finally (FIG. 7C) the valves pass into a third position in which the fluidic conduit CF of the device D is connected to the oscillating heat pipe to form an additional loop or corrugation thereof. The heating means are inactivated and the system operates passively, as a conventional oscillatory heat pipe.
Dans le cas des figures 7A-7C, le conduit fluidique CF est capillaire, comme le montre l'alternance de bouchons liquides et de bulles visible sur la figure 7C ; cependant, sa longueur est bien inférieure à celle du conduit de la figure 6 (qui forme à lui seul un caloduc oscillant), par conséquent les pertes de charge sont moindres. Dans un autre mode de réalisation, non représenté, le dispositif de l'invention pourrait être utilisé pour le pré-refroidissement et le remplissage d'une boucle fluidique de type CPL ou LHP. Jusqu'ici on a toujours considéré le cas où il y a une seule source froide et un seul plan chaud/objet à refroidir. Bien entendu, il ne s'agit pas là d'une limitation essentielle: il est tout à fait possible d'utiliser, par exemple, une source froide séparée pour chaque dispositif ou réservoir, bien que cela complique la commande des moyens de chauffage. Il est également possible d'envisager des systèmes plus complexes, comprenant un ou plusieurs dispositifs selon l'invention coopérant entre eux (comme dans le cas de la figure 3) et/ou avec un ou plusieurs dispositifs de transfert de la chaleur de types différents (comme dans le cas de la figure 4 et 5). On peut aussi concevoir des dispositifs plus complexes que celui de la figure 1, comprenant plus que deux réservoirs et une pluralité de conduits fluidiques, de condenseurs et d'évaporateurs. In the case of FIGS. 7A-7C, the fluidic conduit CF is capillary, as shown by the alternation of liquid plugs and bubbles visible in FIG. 7C; however, its length is much less than that of the duct of Figure 6 (which alone forms an oscillating heat pipe), therefore the pressure losses are lower. In another embodiment, not shown, the device of the invention could be used for pre-cooling and filling a CPL or LHP type fluid loop. So far, we have always considered the case where there is only one cold source and one hot plane / object to be cooled. Of course, this is not an essential limitation: it is quite possible to use, for example, a separate heat sink for each device or tank, although this complicates the control of the heating means. It is also possible to envisage more complex systems, comprising one or more devices according to the invention cooperating with one another (as in the case of FIG. 3) and / or with one or more heat transfer devices of different types. (as in the case of Figure 4 and 5). More complex devices can also be designed than that of FIG. 1, comprising more than two reservoirs and a plurality of fluid conduits, condensers and evaporators.
Claims (16)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1153726A FR2974891B1 (en) | 2011-05-02 | 2011-05-02 | DEVICE AND SYSTEM FOR TRANSFERRING HEAT. |
EP12166179.7A EP2520889B1 (en) | 2011-05-02 | 2012-04-30 | Device and system for transferring heat |
US13/462,442 US20120279682A1 (en) | 2011-05-02 | 2012-05-02 | Heat transfer device and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1153726A FR2974891B1 (en) | 2011-05-02 | 2011-05-02 | DEVICE AND SYSTEM FOR TRANSFERRING HEAT. |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2974891A1 true FR2974891A1 (en) | 2012-11-09 |
FR2974891B1 FR2974891B1 (en) | 2013-06-14 |
Family
ID=46001022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR1153726A Expired - Fee Related FR2974891B1 (en) | 2011-05-02 | 2011-05-02 | DEVICE AND SYSTEM FOR TRANSFERRING HEAT. |
Country Status (3)
Country | Link |
---|---|
US (1) | US20120279682A1 (en) |
EP (1) | EP2520889B1 (en) |
FR (1) | FR2974891B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2984472B1 (en) * | 2011-12-20 | 2015-10-02 | Astrium Sas | PASSIVE THERMAL CONTROL DEVICE |
US20150168079A1 (en) * | 2013-12-17 | 2015-06-18 | General Electric Company | System and method for transferring heat between two units |
US10126024B1 (en) | 2014-09-26 | 2018-11-13 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Cryogenic heat transfer system |
DE102016213993A1 (en) * | 2016-07-29 | 2018-02-01 | Siemens Aktiengesellschaft | System comprising a cryogenic component electric machine and method of operating the system |
EP3343161B1 (en) * | 2016-12-28 | 2023-07-12 | Ricoh Company, Ltd. | Loop heat pipe wick, loop heat pipe, cooling device, and electronic device, and method for manufacturing porous rubber and method for manufacturing loop heat pipe wick |
CN107238450A (en) * | 2017-06-05 | 2017-10-10 | 安徽万瑞冷电科技有限公司 | A kind of cryogenic fluid transfer pipeline leakage heat test device and method |
US11051428B2 (en) * | 2019-10-31 | 2021-06-29 | Hamilton Sunstrand Corporation | Oscillating heat pipe integrated thermal management system for power electronics |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030159808A1 (en) * | 2001-12-21 | 2003-08-28 | Hoang Triem T. | Loop heat pipe method and apparatus |
US6948556B1 (en) * | 2003-11-12 | 2005-09-27 | Anderson William G | Hybrid loop cooling of high powered devices |
US7004240B1 (en) * | 2002-06-24 | 2006-02-28 | Swales & Associates, Inc. | Heat transport system |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030192674A1 (en) * | 2002-04-02 | 2003-10-16 | Mitsubishi Denki Kabushiki Kaisha | Heat transport device |
-
2011
- 2011-05-02 FR FR1153726A patent/FR2974891B1/en not_active Expired - Fee Related
-
2012
- 2012-04-30 EP EP12166179.7A patent/EP2520889B1/en not_active Not-in-force
- 2012-05-02 US US13/462,442 patent/US20120279682A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030159808A1 (en) * | 2001-12-21 | 2003-08-28 | Hoang Triem T. | Loop heat pipe method and apparatus |
US7004240B1 (en) * | 2002-06-24 | 2006-02-28 | Swales & Associates, Inc. | Heat transport system |
US6948556B1 (en) * | 2003-11-12 | 2005-09-27 | Anderson William G | Hybrid loop cooling of high powered devices |
Also Published As
Publication number | Publication date |
---|---|
US20120279682A1 (en) | 2012-11-08 |
EP2520889A1 (en) | 2012-11-07 |
FR2974891B1 (en) | 2013-06-14 |
EP2520889B1 (en) | 2013-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2520889B1 (en) | Device and system for transferring heat | |
EP0855013B1 (en) | Capillary evaporator for diphasic loop of energy transfer between a hot source and a cold source | |
EP2032440B1 (en) | Capillary pumped diphasic fluid loop passive thermal control device with heat capacity | |
EP3355019B1 (en) | Cooling device | |
EP2803085B1 (en) | Passive thermal management device | |
WO2010055253A1 (en) | Thermal control device with network of interconnected capillary heat pipes | |
EP2586057A1 (en) | Thermogenerator comprising phase-change materials | |
WO2016058966A1 (en) | Flat heat pipe with reservoir function | |
FR2936364A1 (en) | MAGNETOCALORIC ELEMENT | |
FR3002028A1 (en) | DEVICE FOR TRANSPORTING HEAT WITH A DIPHASIC FLUID | |
FR2985808A1 (en) | COOLING DEVICE SUITABLE FOR THERMAL REGULATION OF A HEAT SOURCE OF A SATELLITE, METHOD OF MAKING THE COOLING DEVICE AND SATELLITE THEREFOR | |
EP3071825B1 (en) | Device for suppling propellant to a propulsive rocket engine chamber | |
FR2783313A1 (en) | HEAT TRANSFER DEVICE | |
EP3834047A1 (en) | Device for controlling the temperature in an enclosure | |
FR3036177A1 (en) | THERMAL ENERGY STORAGE DEVICE | |
Dubois et al. | Space qualification of high capacity grooved heat pipes | |
EP2981781B1 (en) | Heat pipe comprising a cut-off gas plug | |
EP0099777B1 (en) | Heat well with temperature regulation | |
WO2024104573A1 (en) | Two-phase unidirectional heat transfer structure | |
FR2741427A1 (en) | Two-phase heat transfer circuit for refrigeration appts. | |
FR3081214A1 (en) | EVAPORATOR OF A FLUID LOOP AND FLUID LOOP COMPRISING SUCH EVAPORATOR | |
Butto | Thermal regulation in terrestrial environment using a two-phase fluid loop with capillary pumping; Regulation thermique en environnement terrestre par boucle fluide diphasique a pompage capillaire | |
Sartre et al. | Priming procedure for a two-phase water thermosyphon starting from the frozen state; Procedure de demarrage dun thermosiphon diphasique a eau a partir de letat gele | |
Figus et al. | Study of a capillary evaporator; Etude dun evaporateur capillaire | |
EP2318785A2 (en) | Magnetocaloric thermal generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |
Effective date: 20160129 |