FR2973263A1 - ELABORATION OF TRANSPARENT ELECTRODES IN METALLIZED CARBON NANOTUBES - Google Patents

ELABORATION OF TRANSPARENT ELECTRODES IN METALLIZED CARBON NANOTUBES Download PDF

Info

Publication number
FR2973263A1
FR2973263A1 FR1100907A FR1100907A FR2973263A1 FR 2973263 A1 FR2973263 A1 FR 2973263A1 FR 1100907 A FR1100907 A FR 1100907A FR 1100907 A FR1100907 A FR 1100907A FR 2973263 A1 FR2973263 A1 FR 2973263A1
Authority
FR
France
Prior art keywords
carbon nanotubes
inclusive
substrate
layer
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1100907A
Other languages
French (fr)
Other versions
FR2973263B1 (en
Inventor
Aubin Karell Saint
Caroline Celle
Jean Pierre Simonato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Priority to FR1100907A priority Critical patent/FR2973263B1/en
Priority to PCT/IB2012/051453 priority patent/WO2012131578A1/en
Priority to EP12715189.2A priority patent/EP2691960A1/en
Publication of FR2973263A1 publication Critical patent/FR2973263A1/en
Application granted granted Critical
Publication of FR2973263B1 publication Critical patent/FR2973263B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

L'invention se rapporte à un procédé de formation d'une couche électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible sur la surface d'un substrat. Le substrat est en un matériau non conducteur électriquement, et comprend les étapes suivantes : a) dépôt, sur la surface, de nanotubes de carbone, de préférence monoparoi et de type métallique, à une densité comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par µm de surface, de préférence comprise entre 1, inclus, et 10, inclus, nanotubes de carbone par µm surface, et b) formation, par galvanoplastie, sur la surface externe des nanotubes de carbone déposés à l'étape a) d'une couche de métal ayant une épaisseur comprise entre 0,1, inclus, et 10, inclus nm. L'invention trouve application dans le domaine de la fabrication d'électrodes, en particulier.The invention relates to a method of forming an electrically conductive and transparent layer in the visible wavelength domain on the surface of a substrate. The substrate is made of an electrically nonconductive material, and comprises the following steps: a) deposition, on the surface, of carbon nanotubes, preferably single-walled and of metal type, at a density of between 0.1, inclusive, and 40 , inclusive, carbon nanotubes per μm surface area, preferably between 1, inclusive, and 10, inclusive, carbon nanotubes per μm area, and b) formation, by electroplating, on the outer surface of the carbon nanotubes deposited on the surface. step a) of a metal layer having a thickness of between 0.1, inclusive, and 10, inclusive nm. The invention finds application in the field of electrode manufacture, in particular.

Description

L'invention se rapporte à un procédé de formation d'une couche électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible sur la surface d'un substrat. Elle se rapporte également au dispositif obtenu par ce procédé, en particulier une électrode. Les couches minces ou films conducteurs et transparents sont utilisés dans de nombreux domaines tels que le domaine du photovoltaïque, des écrans tactiles, en particulier à cristaux liquides (LCD), ou des diodes organiques émettrices de lumière (OLED). The invention relates to a method of forming an electrically conductive and transparent layer in the visible wavelength domain on the surface of a substrate. It also relates to the device obtained by this method, in particular an electrode. Thin films or conductive and transparent films are used in many fields such as the field of photovoltaics, touch screens, in particular liquid crystal displays (LCD), or organic light emitting diodes (OLEDs).

A l'heure actuelle, ces couches ou films sont le plus souvent en oxyde d'indium/oxyde d'étain (ITO) car ce dernier a une faible résistance électrique associée à une transmittance élevée dans le domaine des longueurs d'onde du visible. Cependant, les films ou couches minces constitués de ce type d'oxyde sont plutôt fragiles et ont un problème d'apparition de fissures, ce qui restreint leur utilisation dans des applications où les substrats, sur lesquels ils sont déposés, sont non flexibles. De plus, l'ITO est un matériau de plus en plus rare et de plus en plus cher. Ainsi, il a été proposé d'utiliser des nanotubes de carbone (CNTS). At present, these layers or films are most often made of indium oxide / tin oxide (ITO) because the latter has a low electrical resistance associated with a high transmittance in the visible wavelength range. . However, films or thin layers made of this type of oxide are rather fragile and have a cracking problem, which restricts their use in applications where the substrates on which they are deposited are non-flexible. In addition, ITO is a material increasingly rare and increasingly expensive. Thus, it has been proposed to use carbon nanotubes (CNTS).

Les nanotubes de carbone ont d'excellentes propriétés mécaniques, électroniques et thermiques. Ils peuvent, en théorie, permettre d'obtenir une densité de courant de 4.109 A/cm2, ce qui est 1000 fois plus important que la conductivité du cuivre. L'utilisation des nanotubes de carbone sous forme de films minces (réseau 2D) permet d'obtenir une conduction uniforme sur tout le réseau des nanotubes et les procédés de fabrication utilisés à l'heure actuelle permettent d'envisager de réaliser des dépôts de nanotubes de carbone sur de grandes surfaces. Les nanotubes de carbone sous forme de réseau 2D sont donc très utilisés sous forme de film transparent conducteur. Carbon nanotubes have excellent mechanical, electronic and thermal properties. They can, in theory, allow to obtain a current density of 4.109 A / cm2, which is 1000 times greater than the conductivity of copper. The use of carbon nanotubes in the form of thin films (2D network) makes it possible to obtain uniform conduction over the entire network of nanotubes and the manufacturing processes used at present make it possible to envisage making nanotube deposits. carbon on large surfaces. Carbon nanotubes in the form of a 2D network are therefore widely used in the form of transparent conductive film.

Néanmoins, bien que les performances électriques des nanotubes de carbone soient supérieures aux performances intrinsèques du matériau lui-même (carbone), les réseaux de nanotubes présentent au final des performances plus faibles car les contacts, entre les CNTs, induisent des résistances électriques significatives. Le contrôle de leur densité surfacique permet de maîtriser la transparence du réséau ainsi déposé, mais au détriment de leur conductivité électrique. Nevertheless, although the electrical performance of carbon nanotubes is greater than the intrinsic performance of the material itself (carbon), the nanotube networks ultimately have lower performance because the contacts between the CNTs induce significant electrical resistances. The control of their surface density makes it possible to control the transparency of the deposited network, but to the detriment of their electrical conductivity.

A contrario, lorsque l'on augmente la densité en nanotubes du réseau de nanotubes de carbone, la conductivité électrique est augmentée, mais la transmittance dans le visible du film formé diminue. Pour résoudre ce problème, différentes solutions ont été proposées. Une première solution a été proposée dans la demande de brevet US 2010/0038251 Al, qui consiste à créer un réseau bidimensionnel de nanotubes de carbone dont seules les jonctions entre les nanotubes de carbone sont recouvertes d'un métal. Dans ce document, la densité de nanotubes de carbone dans le réseau est très élevée, ce qui résulte en une transmittance faible des longueurs d'onde du visible. En effet, la transmittance atteinte avec ce réseau de nanotubes de carbone est de 85%. Une deuxième solution a été proposée dans la demande de brevet US 2010/0266838 Al. On the other hand, when increasing the nanotube density of the carbon nanotube network, the electrical conductivity is increased, but the transmittance in the visible of the formed film decreases. To solve this problem, different solutions have been proposed. A first solution has been proposed in US patent application 2010/0038251 A1, which consists in creating a two-dimensional network of carbon nanotubes of which only the junctions between the carbon nanotubes are covered with a metal. In this document, the density of carbon nanotubes in the network is very high, which results in a low transmittance of visible wavelengths. Indeed, the transmittance reached with this network of carbon nanotubes is 85%. A second solution has been proposed in patent application US 2010/0266838 A1.

Cette solution consiste à créer un réseau bidimensionnel d'un mélange de nanotubes de carbone et de nanofils métalliques, en particulier de nanofils d'or. Cependant, cette solution présente l'inconvénient de nécessiter la synthèse de nanofils d'or, ce qui implique l'utilisation d'une grande quantité de métal et est coûteux. Une troisième solution a été proposée par Feng et al., Appl. Phys. Lett., 97, 083101 (2010). Cette solution consiste à fonctionnaliser la surface des nanotubes de carbone avec du palladium par un procédé de dépôt sans courant ("electroless plating"). This solution consists in creating a two-dimensional network of a mixture of carbon nanotubes and metal nanowires, in particular gold nanowires. However, this solution has the disadvantage of requiring the synthesis of gold nanowires, which involves the use of a large amount of metal and is expensive. A third solution has been proposed by Feng et al., Appl. Phys. Lett., 97, 083101 (2010). This solution consists of functionalizing the surface of the carbon nanotubes with palladium by an electroless plating process.

Cette méthode consiste à mettre en présence les nanotubes de carbone purifiés et un sel de palladium afin de réduire les cations de palladium à la surface des nanotubes de carbone. Mais, ici les nanotubes de carbone sont recouverts de manière non- continue avec un métal, dans le cas présent, du palladium. De plus, il faut au préalable créer à la surface des nanotubes de carbone des groupements chimiques pouvant réagir avec les cations du palladium. De plus, Feng et al. observent que l'ajout de palladium, à partir de certaines quantités, n'améliore pas la conductivité des nanotubes de carbone recouverts de Pd. Il semblerait que cela provienne du fait qu'à partir d'un certain point un équilibre s'établit entre la solution contenant les cations de palladium, ce qui fait que le dépôt de palladium sur la surface des nanotubes s'arrête. L'invention vise à pallier les inconvénients de l'art antérieur en proposant un procédé de formation d'une couche mince ayant une transmittance très élevée dans le domaine des longueurs d'onde du visible, qui est simple à mettre en oeuvre, et qui ne nécessite pas la création de nanofils métalliques. A cet effet, l'invention propose un procédé de formation d'une couche électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible, c'est-à-dire ayant une transmittance supérieure ou égale à 85 % de ces ondes, sur au moins une surface d'un substrat, caractérisé en ce que : le substrat est en un matériau non conducteur électriquement, et en ce qu'il comprend les étapes suivantes : a) dépôt, sur au moins une surface du substrat, de nanotubes de carbone à une densité comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par µm2 de surface, de préférence comprise entre 1, inclus, et 10, inclus, nanotubes de carbone par µm2 surface, et b) formation, par galvanoplastie, sur la surface externe des nanotubes de carbone déposés à l'étape a), d'une couche de métal ayant une épaisseur comprise entre 0,1, inclus, et 10 inclus nm. This method involves bringing purified carbon nanotubes and a palladium salt together to reduce palladium cations on the surface of the carbon nanotubes. But, here the carbon nanotubes are covered non-continuously with a metal, in this case palladium. In addition, it is first necessary to create on the surface of the carbon nanotubes chemical groups that can react with the palladium cations. In addition, Feng et al. observe that the addition of palladium, from certain quantities, does not improve the conductivity of carbon nanotubes covered with Pd. This appears to be due to the fact that from a certain point an equilibrium is established between the solution containing the palladium cations, so that the deposition of palladium on the surface of the nanotubes stops. The aim of the invention is to overcome the drawbacks of the prior art by proposing a method of forming a thin layer having a very high transmittance in the visible wavelength range, which is simple to implement, and which does not require the creation of metal nanowires. For this purpose, the invention proposes a method for forming an electrically conductive and transparent layer in the visible wavelength range, that is to say having a transmittance greater than or equal to 85% of these waves. on at least one surface of a substrate, characterized in that: the substrate is made of an electrically nonconductive material, and in that it comprises the following steps: a) deposition, on at least one surface of the substrate, of carbon nanotubes with a density of between 0.1, inclusive, and 40, inclusive, carbon nanotubes per μm2 of surface, preferably between 1, inclusive, and 10, inclusive, carbon nanotubes per μm2 area, and b) forming, by electroplating, on the outer surface of the carbon nanotubes deposited in step a), a metal layer having a thickness of between 0.1, inclusive, and 10 inclusive nm.

De préférence, le substrat est en un matériau choisi parmi le verre, le silicium, le quartz, les polymères transparents. Les polymères transparents utilisables sont le polyéthylène théréphtalate (PET), le polynaphtalate d'éthylène (PEN), le polycarbonate (PC), et le polymethacrylate de méthyle (PMMA). Dans un premier mode de mise en oeuvre du procédé de l'invention, l'étape a) comprend les étapes suivantes : al) préparation d'une suspension de nanotubes de carbone dans un solvant, a2) dépôt à la tournette, par tirage, par filtration, par trempage, ou par nébulisation, de préférence par nébulisation, de ladite dispersion sur la surface du substrat, et a3) élimination du solvant. Lorsque l'étape a2) est une étape de dépôt par filtration, la dispersion est filtrée à travers une membrane sur laquelle les nanotubes sont retenus. Ces nanotubes sont alors déposés sur la surface du substrat par transfert. La dispersion de nanotubes de carbone peut, de plus, comprendre un agent filmogène et/ou un agent tensio actif. Dans un second mode de mise en oeuvre du procédé de l'invention, l'étape de dépôt a) est une étape de synthèse des nanotubes de carbone directement sur la surface du substrat. Dans tous les cas, de préférence, l'étape b) est une étape de formation d'une couche en un métal choisi parmi l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le praséodyme (Pr), et les mélanges de deux au moins de ceux-ci, de préférence choisi parmi l'argent ou l'or. Egalement dans tous les cas, le procédé de l'invention peut, de plus, comprendre une étape de dopage des nanotubes de carbone par trempage du substrat obtenu à l'étape a) dans une solution contenant le dopant ou un précurseur du dopant, de préférence un précurseur du dopant, de préférence SOC12 ou HNO3. Preferably, the substrate is made of a material chosen from glass, silicon, quartz and transparent polymers. The transparent polymers that can be used are polyethylene terephthalate (PET), ethylene polynaphthalate (PEN), polycarbonate (PC), and polymethyl methacrylate (PMMA). In a first embodiment of the process of the invention, step a) comprises the following steps: a1) preparation of a suspension of carbon nanotubes in a solvent, a2) spin coating, by pulling, by filtering, dipping, or nebulizing, preferably by nebulization, said dispersion on the surface of the substrate, and a3) removing the solvent. When step a2) is a deposition step by filtration, the dispersion is filtered through a membrane on which the nanotubes are retained. These nanotubes are then deposited on the surface of the substrate by transfer. The dispersion of carbon nanotubes may, in addition, comprise a film-forming agent and / or a surfactant. In a second embodiment of the process of the invention, the deposition step a) is a step of synthesizing the carbon nanotubes directly on the surface of the substrate. In all cases, preferably, step b) is a step of forming a layer of a metal chosen from aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni ), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W) ), gold (Au), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), praseodymium (Pr), and mixtures of at least two of these, preferably selected from silver or gold. Also in all cases, the method of the invention may further comprise a step of doping the carbon nanotubes by soaking the substrate obtained in step a) in a solution containing the dopant or a dopant precursor, preferably a precursor of the dopant, preferably SOC12 or HNO3.

L'invention propose également un substrat en un matériau non électriquement conducteur recouvert sur au moins une de ses surfaces d'une couche de nanotubes de carbone, à une densité de nanotubes de carbone comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par µm2 de surface, de préférence comprise entre 0,1, inclus, et 10, inclus, nanotubes de carbone par µm2 de surface, lesdits nanotubes de carbone étant métallisés en surface avec une couche en un métal ayant une épaisseur comprise entre 0,1, inclus, et 10, inclus, nanomètres, et ladite couche en un métal étant en contact avec la surface. De préférence, dans le dispositif de l'invention, le substrat est en un matériau choisi parmi le verre, le silicium, le quartz et les polymères transparents. Quant au métal, il est de préférence choisi parmi l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le praséodyme (Pr), et les mélanges et alliages de deux au moins de ceux-ci. De préférence, le métal est choisi parmi l'argent ou l'or. Dans le dispositif de l'invention la couche formée sur le substrat 15 comprend avantageusement des nanotubes de carbone dopés. L'invention propose encore une électrode caractérisée en ce qu'elle comprend un dispositif selon l'invention. Enfin, l'invention propose un procédé de fabrication d'une électrode caractérisé en ce qu'il comprend une étape de formation d'une couche électriquement 20 conductrice et transparente dans le domaine des longueurs d'onde du visible, sur au moins une surface d'un substrat, par le procédé selon l'invention. Dans tous les modes de mise en oeuvre et de réalisation de l'invention, de préférence, les nanotubes de carbone sont des nanotubes de carbone monoparoi et de type métallique. 25 L'invention sera mieux comprise et d'autres avantages et caractéristiques de celle-ci apparaîtront plus clairement à la lecture de la description explicative qui suit qui est faite aux figures annexées dans lesquelles : - la figure 1 représente schématiquement une vue en perspective d'un substrat revêtu d'une couche, selon l'invention, transparente dans le domaine des 30 longueurs d'onde du visible et du proche infrarouge et électriquement conductrice, constituée de nanotubes de carbone recouverts sélectivement d'une couche de métal, et obtenue par le procédé selon l'invention, et - la figure 2 représente schématiquement une vue en coupe d'un nanotube de carbone revêtu d'un métal et constituant la couche transparente dans le domaine des longueurs d'onde du visible et du proche infrarouge et électriquement conductrice après traitement par le procédé selon l'invention. The invention also proposes a substrate made of a non-electrically conductive material covered on at least one of its surfaces with a layer of carbon nanotubes, at a carbon nanotube density of between 0.1, inclusive, and 40, inclusive, carbon nanotubes per μm2 of surface, preferably between 0.1, inclusive, and 10, inclusive, carbon nanotubes per μm2 of surface, said carbon nanotubes being metallized on the surface with a layer made of a metal having a thickness between 0.1, inclusive, and 10, inclusive, nanometers, and said layer of a metal being in contact with the surface. Preferably, in the device of the invention, the substrate is made of a material chosen from glass, silicon, quartz and transparent polymers. As for the metal, it is preferably chosen from aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium ( Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W), gold (Au), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), praseodymium (Pr), and mixtures and alloys of at least two of these. Preferably, the metal is selected from silver or gold. In the device of the invention the layer formed on the substrate 15 advantageously comprises doped carbon nanotubes. The invention also proposes an electrode characterized in that it comprises a device according to the invention. Finally, the invention proposes a method of manufacturing an electrode characterized in that it comprises a step of forming an electrically conductive and transparent layer in the visible wavelength domain, on at least one surface of a substrate, by the method according to the invention. In all the embodiments and embodiments of the invention, preferably, the carbon nanotubes are single-wall carbon nanotubes and metal-type nanotubes. The invention will be better understood and other advantages and features thereof will appear more clearly on reading the explanatory description which follows, which is given in the appended figures in which: FIG. 1 schematically represents a perspective view of a substrate coated with a layer, according to the invention, transparent in the visible and near-infrared wavelength range and electrically conductive, consisting of carbon nanotubes selectively coated with a metal layer, and obtained by the method according to the invention, and - Figure 2 shows schematically a sectional view of a carbon nanotube coated with a metal and constituting the transparent layer in the wavelength range of visible and near infrared and electrically conductive after treatment by the method according to the invention.

Dans l'invention, les nanotubes de carbone peuvent être des nanotubes de carbone monoparoi (SWCNT) ou multi-parois (MWCNT), et en particulier double-parois (DWCNT). De façon connue, selon le procédé de synthèse, les nanotubes de carbone monoparoi sont dits soit métalliques, soit semi-conducteurs et les nanotubes de carbone multi-parois sont dits métalliques. De préférence, on utilise des nanotubes de carbone monoparoi. Ces nanotubes de carbone sont produits, de manière connue en soi, par arc électrique (`arc discharge'), dépôt chimique en phase vapeur ('chemical vapour deposition' CVD) ou ablation laser (`laser ablation'). In the invention, the carbon nanotubes may be single-walled carbon nanotubes (SWCNT) or multi-walled carbon nanotubes (MWCNT), and in particular double-walled carbon nanotubes (DWCNT). In known manner, according to the synthesis method, the single-walled carbon nanotubes are said to be either metallic or semiconductors and the multi-wall carbon nanotubes are said to be metallic. Preferably, single-walled carbon nanotubes are used. These carbon nanotubes are produced, in a manner known per se, by arc discharge, chemical vapor deposition (CVD deposition) or laser ablation (laser ablation).

Les nanotubes de carbone utilisés dans l'invention ont des diamètres compris entre 1 et 200 nm et des longueurs comprises entre 1 et 3000 µm, bornes incluses. Les métaux utilisés dans l'invention, sont tous les matériaux conducteurs pouvant, en particulier constituer une électrode, en particulier une anode. The carbon nanotubes used in the invention have diameters of between 1 and 200 nm and lengths of between 1 and 3000 μm, limits included. The metals used in the invention are all conductive materials which can in particular constitute an electrode, in particular an anode.

Ces matériaux sont de façon préférentielle des matériaux comprenant au moins 90% de métal au sens chimique. Ainsi, le terme "métal" dans l'invention désigne un matériau comprenant au moins 90% de tous les métaux et leurs alliages, en particulier l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), et le plomb (Pb) et tous les mélanges d'un ou plusieurs de ces métaux, éventuellement dopés. Afin de recouvrir sélectivement de métal les nanotubes de carbone, le substrat doit être en un matériau non conducteur électriquement afin de localiser le dépôt de métal sur les chemins conducteurs en nanotubes de carbone. These materials are preferably materials comprising at least 90% of metal in the chemical sense. Thus, the term "metal" in the invention refers to a material comprising at least 90% of all metals and their alloys, in particular aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W), gold (Au), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), and lead (Pb) and all mixtures of one or more of these metals, optionally doped. In order to selectively cover the carbon nanotubes with metal, the substrate must be made of an electrically nonconductive material in order to locate the metal deposition on the carbon nanotube conducting paths.

Ainsi, le substrat pourra être en verre, en silicium, en quartz et en polymère transparent. L'invention va être décrite en référence aux figures 1 et 2. Pour obtenir un substrat, recouvert d'un réseau de nanotubes de carbone, eux-mêmes sélectivement recouverts d'une couche de métal, pour améliorer la conductivité du réseau de nanotubes formés, sans que cela soit au détriment de la transmittance du réseau de nanotubes de carbone, l'invention propose un procédé qui comprend une étape a) de dépôt, sur la surface, notée 5 en figure 1, d'un substrat, noté 1 en figure 1, en un matériau non conducteur électriquement, tel que défini ci-dessus, de nanotubes de carbone, notés 4 en figure 2, à une densité qui est comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par 1,tm2 de surface 5. De préférence, la densité des nanotubes (4) est comprise entre 1, inclus, et 10, inclus, nanotubes de carbone 4 par µm2 de surface 5. Les nanotubes de carbone 4 peuvent être soit directement synthétisés sur la surface 5, soit déposés, à partir d'une suspension de nanotubes de carbone 4 dans un solvant sur la surface 5 par un procédé à la tournette (`spin coating'), tirage (dip-coating), trempage, filtration ou nébulisation. Le solvant peut être tout solvant n'interférant ou ne détériorant ni les nanotubes de carbone ni leurs propriétés physiques et chimiques ni le substrat. Thus, the substrate may be glass, silicon, quartz and transparent polymer. The invention will be described with reference to FIGS. 1 and 2. To obtain a substrate covered with a network of carbon nanotubes, themselves selectively coated with a metal layer, to improve the conductivity of the network of nanotubes formed. , without this being to the detriment of the transmittance of the network of carbon nanotubes, the invention proposes a method which comprises a step a) of deposition, on the surface, noted in FIG. 1, of a substrate, denoted 1 in FIG. 1, in an electrically non-conductive material, as defined above, of carbon nanotubes, denoted 4 in FIG. 2, at a density which is between 0.1, inclusive, and 40, inclusive, carbon nanotubes per 1, tm2 of surface 5. Preferably, the density of the nanotubes (4) is between 1, inclusive, and 10, inclusive, carbon nanotubes 4 per μm2 of surface 5. The carbon nanotubes 4 can be either directly synthesized on the surface 5, deposited, from a suspe 4 carbon nanotubes in a solvent on the surface 5 by a spin coating process, dip-coating, soaking, filtration or nebulization. The solvent may be any solvent that does not interfere with or deteriorate the carbon nanotubes or their physical and chemical properties or the substrate.

La technique de dépôt des nanotubes de carbone sur la surface 5 est de préférence, dans l'invention, la technique de la nébulisation. Après le dépôt, les nanotubes de carbone 4 déposés sur la surface 5 forment un réseau. La seconde étape du procédé de l'invention est alors de déposer 25 sélectivement une couche de métal notée 6 en figure 2 sur le réseau de nanotubes de carbone formant la couche notée 2 en figure 1. Dans l'invention, le dépôt de la couche de métal se fait par galvanoplastie (`electro-plating'). Bien que le métal déposé sur les nanotubes de carbone 4 dépende de 30 l'application finale, dans l'invention, on utilisera préférentiellement l'argent ou l'or. L'appareil de dépôt par galvanoplastie contient une source de tension reliée à une anode et au réseau de nanotubes de carbone déposés sur le substrat, et éventuellement à une électrode de référence, et un bac servant à contenir la solution de galvanoplastie et un interrupteur. Lorsque le métal choisi est l'argent, le bain de galvanoplastie utilisé contiendra de préférence l g/L de cyanure d'argent, 45 g/L de cyanure de potassium, 30 g/L de carbonate de potassium et 10% en masse d'acide hypochlorique par rapport à la masse totale du bain. Lorsque le métal choisi est l'or, le bain de galvanoplastie comprendra de préférence 4 g/L de cyanure d'or, 40 g/L d'acide citrique et de 40 g/L de citrate de potassium. The technique for depositing carbon nanotubes on the surface 5 is preferably, in the invention, the technique of nebulization. After the deposition, the carbon nanotubes 4 deposited on the surface 5 form a network. The second step of the process of the invention is then to selectively deposit a metal layer denoted 6 in FIG. 2 on the network of carbon nanotubes forming the layer denoted 2 in FIG. 1. In the invention, the deposition of the layer metal is electro-plating. Although the metal deposited on the carbon nanotubes 4 depends on the final application, in the invention, silver or gold will preferably be used. The electroplating apparatus contains a voltage source connected to an anode and the network of carbon nanotubes deposited on the substrate, and optionally to a reference electrode, and a tray for containing the electroplating solution and a switch. When the metal chosen is silver, the electroplating bath used will preferably contain 1 g / l of silver cyanide, 45 g / l of potassium cyanide, 30 g / l of potassium carbonate and 10% by weight of potassium hydroxide. hypochlorous acid relative to the total mass of the bath. When the metal chosen is gold, the electroplating bath will preferably comprise 4 g / l of gold cyanide, 40 g / l of citric acid and 40 g / l of potassium citrate.

Le procédé de l'invention peut également comprendre une étape de synthèse des nanotubes de carbone 4. Il pourra également comprendre une étape de fabrication d'une dispersion de nanotubes de carbone 4. De plus, dans le procédé de l'invention, le réseau de nanotubes de carbone formé sur la surface 5, et avant métallisation peut être dopé pour améliorer le contact entre la couche de métal et les nanotubes avec un dopant ou un précurseur d'un dopant tel que SOC12 ou HNO3. Ces nanotubes dopés présentent en surface des atomes électroattracteurs (par exemple l'oxygène, le chlore) qui délocalisent les électrons du carbone. The method of the invention may also comprise a step of synthesizing carbon nanotubes 4. It may also comprise a step of manufacturing a dispersion of carbon nanotubes 4. Moreover, in the method of the invention, the network carbon nanotubes formed on the surface 5, and before metallization can be doped to improve the contact between the metal layer and the nanotubes with a dopant or a precursor of a dopant such as SOC12 or HNO3. These doped nanotubes have on the surface electroattracting atoms (for example oxygen, chlorine) which delocalise the electrons of the carbon.

L'invention propose également un dispositif qui comprend un substrat 1 revêtu sur au moins une de ses surfaces 5 d'une couche 2 transparente aux longueurs d'onde du visible et électriquement conductrice. Les longueurs d'onde du visible sont définies dans l'invention, comme des longueurs d'onde de 380 à 780 nm. Dans l'invention, électriquement conducteur correspond à une résistance par carré inférieure à 100 SZ~. Dans le dispositif de l'invention, la couche 2 est formée d'un réseau de nanotubes de carbone 7, les nanotubes de carbone 7 étant chacun constitués de nanotubes de carbone 4 recouverts d'une couche de métal 6. La densité de nanotubes de carbone 4 dans le réseau formé à la surface 5 est comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par µm2 de surface 5. 30 En dessous de entre 0,1 nanotubes de carbone par µm2 de surface 5, les nanotubes risquent de ne pas se toucher entre eux et donc de ne pas former une couche conductrice. Au-delà de 40 nanotubes de carbone par µm2 de surface 5, la couche 5 formée perd en transmittance. De préférence, la densité de nanotubes de carbone 4 formant le réseau sur la surface 5 du substrat 1 est comprise entre 1, inclus, et 40, inclus, nanotubes de carbone. En effet, à une densité de 1 nanotube de carbone par 1_tm2 de surface 10 5, on obtient une résistance par carré inférieure à 20 520. Dans le dispositif de l'invention, les nanotubes de carbone 4 sont recouverts d'une couche 6 de métal. Le métal peut être tout métal qui apparaîtra à l'homme de l'art, tel que l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le 15 zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le plomb (Pb), ou tout mélange d'un ou plus de ces métaux, éventuellement dopés ou contenant des impuretés. De préférence, le métal dont sont recouverts les nanotubes de 20 carbone 4 formant le réseau à la surface du substrat du dispositif de l'invention est l'argent ou l'or. Un dopant peut également être présent dans le réseau de nanotubes de carbone 4 déposés à la surface 5 du substrat 1. De préférence ce dopant est l'oxygène ou le chlore. Un dispositif particulièrement préféré selon l'invention est une électrode qui comprend le dispositif de l'invention. Afin de mieux faire comprendre l'invention, on va en décrire plusieurs exemples de mise en oeuvre, à titre purement illustratif et non limitatif. Exemple 1 : Dans cet exemple, le substrat est un substrat en verre sodocalcique. On procède à la fabrication de nanotubes de carbone monoparoi par la méthode par arc électrique. 25 30 On fabrique ensuite une dispersion de 0,05 g/L de nanotubes de carbone dans de la N-méthylpyrrolidone (NMP). La dispersion est passée aux ultra-sons pendant 90 min puis centrifugée 2 fois à 14 500 rpm. The invention also proposes a device which comprises a substrate 1 coated on at least one of its surfaces 5 with a layer 2 transparent to the visible and electrically conductive wavelengths. Visible wavelengths are defined in the invention as wavelengths of 380 to 780 nm. In the invention, electrically conductive corresponds to a resistance per square less than 100 SZ ~. In the device of the invention, the layer 2 is formed of a network of carbon nanotubes 7, the carbon nanotubes 7 being each constituted by carbon nanotubes 4 covered with a layer of metal 6. The density of nanotubes of carbon 4 in the network formed on the surface 5 is between 0.1, inclusive, and 40, inclusive, carbon nanotubes per μm2 of surface 5. Below 0.1 carbon nanotubes per μm2 of area 5, the nanotubes may not touch each other and therefore not form a conductive layer. Beyond 40 carbon nanotubes per μm2 of surface 5, the layer 5 formed loses transmittance. Preferably, the density of carbon nanotubes 4 forming the network on the surface 5 of the substrate 1 is between 1, inclusive, and 40, inclusive, carbon nanotubes. In fact, at a density of 1 carbon nanotube per 1 square meter of surface area, a square resistance of less than 520 is obtained. In the device of the invention, the carbon nanotubes 4 are covered with a layer 6 of metal. The metal may be any metal which will occur to those skilled in the art, such as aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W), gold (Au) ), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), lead (Pb), or any mixture of one or more of these metals possibly doped or containing impurities. Preferably, the metal covered by the carbon nanotubes 4 forming the network on the surface of the substrate of the device of the invention is silver or gold. A dopant may also be present in the network of carbon nanotubes 4 deposited on the surface 5 of the substrate 1. Preferably, this dopant is oxygen or chlorine. A particularly preferred device according to the invention is an electrode which comprises the device of the invention. To better understand the invention, we will describe several examples of implementation, purely illustrative and not limiting. Example 1: In this example, the substrate is a soda-lime glass substrate. Single-wall carbon nanotubes are produced by the electric arc method. A dispersion of 0.05 g / l of carbon nanotubes in N-methylpyrrolidone (NMP) is then made. The dispersion is sonicated for 90 minutes and then centrifuged twice at 14,500 rpm.

Les nanotubes de carbone sont ensuite déposés sur la surface d'un substrat par nébulisation pendant 5 secondes de ladite dispersion. Ce temps, selon la densité de nanotubes de carbone peut être compris entre 5 et 300 secondes. A cet exemple, on obtient une densité de nanotubes de carbone de 5 nanotubes de carbone /µm2. A cette étape, la résistance par carré initiale du substrat revêtu sur une de ses surfaces du réseau de nanotubes de carbone à une densité de 5 NTC/µm2 est de 1,0.1 o' ohms.carré et une transmittance de 97% mesurée par spectrophotométrie UV-visible. The carbon nanotubes are then deposited on the surface of a substrate by nebulization for 5 seconds of said dispersion. This time, according to the density of carbon nanotubes can be between 5 and 300 seconds. In this example, a density of carbon nanotubes of 5 carbon nanotubes / μm2 is obtained. At this step, the initial square resistance of the coated substrate on one of its surfaces of the carbon nanotube array at a density of 5 NTC / μm2 is 1.0.1 ohms squared and a 97% transmittance measured spectrophotometrically. UV-visible.

Le substrat sur lequel sont déposés les nanotubes de carbone est ensuite introduit dans un bain de galvanoplastie contenant 1 g/L de cyanure d'argent, 45 g/L de cyanure de potassium, 30 g/L de carbonate de potassium et 10% en masse d'acide hypochlorique par rapport à la masse totale du bain. Le réseau de nanotubes de carbone est connecté à l'alimentation de l'appareil de dépôt par galvanoplastie pour servir de cathode. L'anode de l'appareil de galvanoplastie est en argent et l'électrode de référence est en Ag/AgCl. Une densité de courant de 10 mAlcm2 est utilisée. L'épaisseur de la couche d'argent déposée dans les nanotubes est de 3 nm. Le dispositif obtenu a alors une résistance carrée de 25 Qo et une transmittance de 95%. Exemple 2 : Un réseau de nanotubes de carbone monoparoi métallique est déposé 30 par nébulisation sur la surface d'un substrat en PET par nébulisation d'une dispersion des nanotubes monoparoi, comme à l'exemple 1. The substrate on which the carbon nanotubes are deposited is then introduced into an electroplating bath containing 1 g / l of silver cyanide, 45 g / l of potassium cyanide, 30 g / l of potassium carbonate and 10% of potassium carbonate. mass of hypochloric acid relative to the total mass of the bath. The carbon nanotube array is connected to the power supply of the electroplating deposit apparatus to serve as a cathode. The anode of the electroplating apparatus is silver and the reference electrode is Ag / AgCl. A current density of 10 mAlcm 2 is used. The thickness of the silver layer deposited in the nanotubes is 3 nm. The device obtained then has a square resistance of 25 Ω and a transmittance of 95%. EXAMPLE 2 A network of single-walled carbon nanotubes is deposited by nebulization on the surface of a PET substrate by nebulization of a dispersion of the single-walled nanotubes, as in Example 1.

La densité de nanotubes de carbone déposés est de 5 nanotubes de carbone /µm2. Le substrat obtenu est traité pendant 24 heures à l'acide nitrique pour oxyder les nanotubes de carbone et modifier la résistance de contact du réseau formé par ces nanotubes. Après ce traitement, la résistance carrée initiale du substrat obtenu est de 3,0.102 û0 et la transmittance de ce substrat est de 97%. On procède ensuite, comme à l'exemple 1 ou dépôt sur les nanotubes de carbone d'une couche d'argent. The density of deposited carbon nanotubes is 5 carbon nanotubes / μm2. The substrate obtained is treated for 24 hours with nitric acid to oxidize the carbon nanotubes and modify the contact resistance of the network formed by these nanotubes. After this treatment, the initial square resistance of the substrate obtained is 3.0 × 10 2 × 10 and the transmittance of this substrate is 97%. Then proceed as in Example 1 or deposit on the carbon nanotubes of a silver layer.

L'épaisseur de la couche d'argent déposée à la surface des nanotubes de carbone est de 3 nm. Le bain de galvanoplastie utilisé à cet exemple était le même que celui utilisé à l'exemple 1. Le dispositif obtenu à cet exemple a une résistance carrée de 20 12,, et une transmittance de 95%. Exemple 3 : On a utilisé une procédure équivalente aux exemples 1 et 2 pour former un réseau de nanotubes de carbone double parois sur un substrat en verre sodocalcique. The thickness of the silver layer deposited on the surface of the carbon nanotubes is 3 nm. The electroplating bath used in this example was the same as that used in Example 1. The device obtained in this example has a square resistance of 12, and a transmittance of 95%. Example 3: A procedure equivalent to Examples 1 and 2 was used to form a network of double-walled carbon nanotubes on a soda-lime glass substrate.

La densité de nanotubes de carbone à la surface du substrat était de 10 nanotubes de carbone par 1,im2. La résistance par carré initiale du substrat obtenu à cette étape était de 200 û,, et sa transmittance était de 92%. Le substrat obtenu a été alors introduit dans un bain de 25 galvanoplastie et connecté à l'alimentation de l'appareil de galvanoplastie pour servir de cathode. L'anode de l'appareil était en or et le bain de galvanoplastie contenait 4 g/L de cyanure d'or, 40 g/L d'acide citrique et 40 g/L de citrate de potassium. 30 Une densité de courant de 5 mA/cm2 est appliquée. L'épaisseur de la couche d'or déposée sur les nanotubes de carbone était de 1 nm. The density of carbon nanotubes on the surface of the substrate was 10 carbon nanotubes per 1 μm 2. The initial square resistance of the substrate obtained at this stage was 200 μm, and its transmittance was 92%. The resulting substrate was then introduced into an electroplating bath and connected to the power supply of the electroplating apparatus to serve as a cathode. The anode of the apparatus was gold and the electroplating bath contained 4 g / L of gold cyanide, 40 g / L of citric acid and 40 g / L of potassium citrate. A current density of 5 mA / cm 2 is applied. The thickness of the gold layer deposited on the carbon nanotubes was 1 nm.

Le dispositif obtenu a une résistance carrée de 150 52D et une transmittance de 92%. Les dispositifs obtenus aux exemples 1 à 3 peuvent être utilisés en tant qu'électrodes, et plus particulièrement en tant qu'anodes. The device obtained has a square resistance of 150 52D and a transmittance of 92%. The devices obtained in Examples 1 to 3 can be used as electrodes, and more particularly as anodes.

Claims (13)

REVENDICATIONS1. Procédé de formation d'une couche (2) électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible, sur au moins une surface (5) d'un substrat (1), caractérisé en ce que : le substrat (1) est en un matériau non conducteur électriquement, et en ce qu'il comprend les étapes suivantes : a) dépôt, sur la surface (5), de nanotubes de carbone (4), de préférence monoparoi et de type métallique, à une densité comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone (4) par 1_tm2 de surface (5), de préférence comprise entre 1, inclus, et 10, inclus, nanotubes de carbone (4) par µm2 surface (5), et b) formation, par galvanoplastie, sur la surface externe des nanotubes de carbone (4) déposés à l'étape a) d'une couche (6) de métal ayant une épaisseur comprise entre 0,1, inclus, et 10, inclus nm. REVENDICATIONS1. Method for forming an electrically conductive and transparent layer (2) in the visible wavelength range on at least one surface (5) of a substrate (1), characterized in that: the substrate (1) ) is made of an electrically non-conductive material, and in that it comprises the following steps: a) deposition, on the surface (5), of carbon nanotubes (4), preferably single-walled and of metallic type, at a density between 0.1, inclusive, and 40, inclusive, carbon nanotubes (4) per 1 tm2 of area (5), preferably between 1, inclusive, and 10, inclusive, carbon nanotubes (4) per μm2 area ( 5), and b) formation, by electroplating, on the outer surface of the carbon nanotubes (4) deposited in step a) of a layer (6) of metal having a thickness of between 0.1, inclusive, and 10, inclusive nm. 2. Procédé selon la revendication 1, caractérisé en ce que le substrat (1) est en un matériau choisi parmi le verre, le silicium, le quartz, les polymères transparents. 2. Method according to claim 1, characterized in that the substrate (1) is of a material selected from glass, silicon, quartz, transparent polymers. 3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'étape a) comprend les étapes suivantes : al) préparation d'une suspension de nanotubes de carbone (4) dans un solvant, a2) dépôt à la tournette, par tirage, par filtration, par trempage, ou par nébulisation, de préférence par nébulisation, de ladite dispersion sur la surface (5) du substrat (1), et a3) élimination du solvant. 3. Method according to claim 1 or 2, characterized in that step a) comprises the following steps: a1) preparation of a suspension of carbon nanotubes (4) in a solvent, a2) spin coating, by drawing, by filtration, by dipping, or by nebulization, preferably by nebulization, of said dispersion on the surface (5) of the substrate (1), and a3) elimination of the solvent. 4. Procédé selon la revendication 3, caractérisé en ce que la dispersion de nanotubes de carbone comprend de plus un agent filmogène et/ou un agent tensio actif. 4. Method according to claim 3, characterized in that the dispersion of carbon nanotubes further comprises a film-forming agent and / or a surfactant. 5. Procédé selon la revendication 1 ou 2, caractérisé en ce que 30 l'étape de dépôt a) est une étape de synthèse des nanotubes de carbone directement sur la surface (5). 5. Method according to claim 1 or 2, characterized in that the deposition step a) is a step of synthesizing the carbon nanotubes directly on the surface (5). 6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étape b) est une étape de formation d'une couche (6) en un métal choisi parmi l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le praséodyme (Pr), et les mélanges et alliages de deux au moins de ceux-ci, de préférence choisi parmi l'argent ou l'or. 6. Method according to any one of the preceding claims, characterized in that step b) is a step of forming a layer (6) of a metal selected from aluminum (Al), chromium (Cr) cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W), gold (Au), titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir) , Praseodymium (Pr), and mixtures and alloys of at least two thereof, preferably selected from silver or gold. 7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend de plus une étape de dopage des nanotubes (4) de carbone par trempage du substrat obtenu à l'étape a) dans une solution contenant le dopant ou. un précurseur du dopant, de préférence un précurseur du dopant, de préférence SOC12 ou HNO3. 7. Method according to any one of the preceding claims, characterized in that it further comprises a step of doping the carbon nanotubes (4) by soaking the substrate obtained in step a) in a solution containing the dopant or . a precursor of the dopant, preferably a precursor of the dopant, preferably SOC12 or HNO3. 8. Dispositif caractérisé en ce qu'il comprend un substrat (1) en un matériau non électriquement conducteur recouvert sur au moins une de ses surfaces (5) de nanotubes de carbone (4), à une densité de nanotubes de carbone comprise entre 0,1, inclus, et 40, inclus, nanotubes de carbone par µm2 de surface (5), de préférence comprise entre 0,1, inclus, et 10, inclus, nanotubes de carbone (4), de préférence monoparoi et de type métallique, par 1.1m2 de surface (5), lesdits nanotubes de carbone étant métallisés en surface avec une couche (6) en métal et ayant une épaisseur comprise entre 0,1, inclus, et 10, inclus, nanomètres, et en ce que la couche (6) est en contact avec la surface (5) du substrat (1). 8. Device characterized in that it comprises a substrate (1) of a non-electrically conductive material covered on at least one of its surfaces (5) of carbon nanotubes (4) at a density of carbon nanotubes between 0 , 1, inclusive, and 40, inclusive, carbon nanotubes per μm2 of surface (5), preferably between 0.1, inclusive, and 10, inclusive, carbon nanotubes (4), preferably single-walled and of metal type by 1.1m2 of surface (5), said carbon nanotubes being surface-metallised with a layer (6) of metal and having a thickness of between 0.1, inclusive, and 10, inclusive, nanometers, and in that the layer (6) is in contact with the surface (5) of the substrate (1). 9. Dispositif selon la revendication 8, caractérisé en ce que le substrat (1) est en un matériau choisi parmi le verre, le silicium, le quartz, les polymères transparents. 9. Device according to claim 8, characterized in that the substrate (1) is a material selected from glass, silicon, quartz, transparent polymers. 10. Dispositif selon la revendication 8 ou 9, caractérisé en ce que le métal est choisi parmi l'aluminium (Al), le chrome (Cr), le cobalt (Co), le nickel (Ni), le cuivre (Cu), le zinc (Zn), le palladium (Pd), le rhodium (Rh), le platine (Pt), l'argent (Ag), l'étain (Sn), le tungstène (W), l'or (Au), le titane (Ti), le manganèse (Mn), le cadmium (Cd), le ruthénium (Ru), l'iridium (Ir), le praséodyme (Pr), et les mélanges de deux au moins de ceux-ci, de préférence choisi parmi l'argent ou l'or. 10. Device according to claim 8 or 9, characterized in that the metal is selected from aluminum (Al), chromium (Cr), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), palladium (Pd), rhodium (Rh), platinum (Pt), silver (Ag), tin (Sn), tungsten (W), gold (Au) titanium (Ti), manganese (Mn), cadmium (Cd), ruthenium (Ru), iridium (Ir), praseodymium (Pr), and mixtures of at least two thereof, preferably selected from silver or gold. 11. Dispositif selon l'une quelconque des revendications 8 à 10, caractérisé en ce que les nanotubes sont dopés. 11. Device according to any one of claims 8 to 10, characterized in that the nanotubes are doped. 12. Electrode caractérisée en ce qu'elle comprend un dispositif selon l'une quelconque des revendications 8 à 11. 12. An electrode characterized in that it comprises a device according to any one of claims 8 to 11. 13. Procédé de fabrication d'une électrode caractérisé en ce qu'il comprend une étape de formation d'une couche (2) électriquement conductrice et transparente dans le domaine des longueurs d'onde du visible et du proche infrarouge, sur au moins une surface du substrat par le procédé selon l'une quelconque des revendications 1 à 7. 13. A method of manufacturing an electrode characterized in that it comprises a step of forming a layer (2) electrically conductive and transparent in the wavelength range of the visible and the near infrared, on at least one substrate surface by the method according to any one of claims 1 to 7.
FR1100907A 2011-03-28 2011-03-28 ELABORATION OF TRANSPARENT ELECTRODES IN METALLIZED CARBON NANOTUBES Expired - Fee Related FR2973263B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1100907A FR2973263B1 (en) 2011-03-28 2011-03-28 ELABORATION OF TRANSPARENT ELECTRODES IN METALLIZED CARBON NANOTUBES
PCT/IB2012/051453 WO2012131578A1 (en) 2011-03-28 2012-03-27 Production of transparent electrodes made from metallized carbon nanotubes
EP12715189.2A EP2691960A1 (en) 2011-03-28 2012-03-27 Production of transparent electrodes made from metallized carbon nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1100907A FR2973263B1 (en) 2011-03-28 2011-03-28 ELABORATION OF TRANSPARENT ELECTRODES IN METALLIZED CARBON NANOTUBES

Publications (2)

Publication Number Publication Date
FR2973263A1 true FR2973263A1 (en) 2012-10-05
FR2973263B1 FR2973263B1 (en) 2013-08-02

Family

ID=45976451

Family Applications (1)

Application Number Title Priority Date Filing Date
FR1100907A Expired - Fee Related FR2973263B1 (en) 2011-03-28 2011-03-28 ELABORATION OF TRANSPARENT ELECTRODES IN METALLIZED CARBON NANOTUBES

Country Status (3)

Country Link
EP (1) EP2691960A1 (en)
FR (1) FR2973263B1 (en)
WO (1) WO2012131578A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116230294B (en) * 2023-02-27 2023-12-01 宁波碳源新材料科技有限公司 Secondary doped carbon nano tube transparent conductive film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061428A2 (en) * 2004-12-27 2007-05-31 The Regents Of The University Of California Components and devices formed using nanoscale materials and methods of production
US20100038251A1 (en) * 2008-08-14 2010-02-18 Snu R&Db Foundation Carbon nanotube network-based nano-composites
WO2010151244A1 (en) * 2009-06-22 2010-12-29 Hewlett-Packard Development Company, L.P. Transparent conductive material
US20110032196A1 (en) * 2009-08-07 2011-02-10 Tsinghua University Touch panel and display device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091744B1 (en) 2009-04-15 2011-12-08 한국과학기술연구원 Method for fabrication of conductive film using metal wire and conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061428A2 (en) * 2004-12-27 2007-05-31 The Regents Of The University Of California Components and devices formed using nanoscale materials and methods of production
US20100038251A1 (en) * 2008-08-14 2010-02-18 Snu R&Db Foundation Carbon nanotube network-based nano-composites
WO2010151244A1 (en) * 2009-06-22 2010-12-29 Hewlett-Packard Development Company, L.P. Transparent conductive material
US20110032196A1 (en) * 2009-08-07 2011-02-10 Tsinghua University Touch panel and display device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHINDLER A. ET AL: "Suspension-deposited carbon-nanotube networks for flexible active-matrix displays", JOURNAL OF THE SID, vol. 16, no. 5, May 2008 (2008-05-01), pages 651 - 658, XP040469863 *

Also Published As

Publication number Publication date
EP2691960A1 (en) 2014-02-05
FR2973263B1 (en) 2013-08-02
WO2012131578A1 (en) 2012-10-04

Similar Documents

Publication Publication Date Title
Xu et al. Graphene as transparent electrodes: fabrication and new emerging applications
Sepulveda-Mora et al. Figures of merit for high-performance transparent electrodes using dip-coated silver nanowire networks
EP3251468B1 (en) Heating device, especially semi-transparent
KR102430267B1 (en) Process for producing graphene-based transparent conductive electrode and product using same
JP2013522813A (en) Transparent electrodes based on a combination of transparent conductive oxides, metals, and oxides
Xu et al. Metal‐microstructure based flexible transparent electrodes and their applications in electronic devices
EP2782870A1 (en) Method for producing a graphene film
KR101905646B1 (en) Low-temperature transfer method of graphene
Wang et al. One-pot synthesis of superfine core–shell Cu@ metal nanowires for highly tenacious transparent LED dimmer
EP2734310A1 (en) Method for the functionalisation of metal nanowires and the production of electrodes
JPWO2011099594A1 (en) Semiconductor device manufacturing method, semiconductor device manufacturing apparatus, semiconductor device, and transfer member
FR2973263A1 (en) ELABORATION OF TRANSPARENT ELECTRODES IN METALLIZED CARBON NANOTUBES
US20130130020A1 (en) Electrode paste composition, electrode for electronic device using the same, and method of manufacturing the same
TW201428775A (en) Processing of copper-based nanowires for transparent conductors
EP2834848A1 (en) Method for producing a photovoltaic module with an etching step p3 and an optional step p1.
US20220162736A1 (en) Method for preparing a conductive, transparent and flexible membrane
WO2015015113A1 (en) Production of a gate electrode by dewetting silver
Durhuus et al. Selective electroless silver deposition on graphene edges
WO2014140297A1 (en) Transparent electrode and substrate for optoelectronic or plasmonic applications comprising silver
KR102500535B1 (en) Hybrid transparent conductive electrode
Rasheed et al. The effect of the annealing on the properties of ZnO/Cu/ZnO multilayer structures
KR101006456B1 (en) Method for fabrication of conductive film using sputtering and conductive film
Sethuraman et al. Controlling the electrical, optical, and morphological properties of sol–gel spin-coated indium tin oxide films
Kim et al. Transparent conductive oxide films mixed with gallium oxide nanoparticle/single-walled carbon nanotube layer for deep ultraviolet light-emitting diodes
US20100055562A1 (en) Nanowire layer adhesion on a substrate

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 5

PLFP Fee payment

Year of fee payment: 6

ST Notification of lapse

Effective date: 20171130