FR2958584A1 - METHOD FOR ALLOYING A SLIDE OF A COUPLER. - Google Patents

METHOD FOR ALLOYING A SLIDE OF A COUPLER. Download PDF

Info

Publication number
FR2958584A1
FR2958584A1 FR1001533A FR1001533A FR2958584A1 FR 2958584 A1 FR2958584 A1 FR 2958584A1 FR 1001533 A FR1001533 A FR 1001533A FR 1001533 A FR1001533 A FR 1001533A FR 2958584 A1 FR2958584 A1 FR 2958584A1
Authority
FR
France
Prior art keywords
slip
threshold
coupler
counter
axles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR1001533A
Other languages
French (fr)
Other versions
FR2958584B1 (en
Inventor
Francois Foussard
Alessandro Monti
Nicolas Romani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR1001533A priority Critical patent/FR2958584B1/en
Priority to FR1058318A priority patent/FR2958585B1/en
Priority to PCT/FR2011/050822 priority patent/WO2011128565A1/en
Publication of FR2958584A1 publication Critical patent/FR2958584A1/en
Application granted granted Critical
Publication of FR2958584B1 publication Critical patent/FR2958584B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • B60K17/346Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear the transfer gear being a differential gear
    • B60K17/3462Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear the transfer gear being a differential gear with means for changing distribution of torque between front and rear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/184Preventing damage resulting from overload or excessive wear of the driveline
    • B60W30/186Preventing damage resulting from overload or excessive wear of the driveline excessive wear or burn out of friction elements, e.g. clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/14Central differentials for dividing torque between front and rear axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/18Four-wheel drive vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/02Clutches
    • B60W2510/0241Clutch slip, i.e. difference between input and output speeds
    • B60W2510/025Slip change rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • B60W2520/263Slip values between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/12Differentials

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

Procédé d'alerte de glissement d'un coupleur apte à répartir un couple entre deux essieux (2AV, 2AR) d'un véhicule motorisé à quatre roues motrices (1a, 1b, 1c, 1d) montées sur les deux essieux caractérisé en ce que l'on détermine le glissement représentant la différence de vitesse des deux essieux uniquement lorsque certaines conditions de roulage (C_roulage) sont réalisées pendant une durée paramétrable (MinTime).Method of warning of the sliding of a coupler capable of distributing a torque between two axles (2AV, 2AR) of a four-wheel drive motor vehicle (1a, 1b, 1c, 1d) mounted on the two axles, characterized in that the slip representing the difference in speed of the two axles is determined only when certain running conditions (C_roulage) are achieved for a configurable duration (MinTime).

Description

Procédé d'alerte de glissement d'un coupleur Method of alerting the sliding of a coupler

La présente invention concerne, d'une manière générale, les véhicules à quatre roues motrices équipés d'un système de commande de répartition du couple moteur entre un premier essieu et un deuxième essieu capable en outre d'assurer le pilotage d'un coupleur monté entre les deux essieux. Dans ces véhicules, le couple moteur est réparti entre le premier essieu et le deuxième essieu, la somme des couples transmis aux deux essieux étant constante. Le premier essieu est relié à un arbre de transfert auquel est solidarisé le deuxième essieu au moyen dudit coupleur. Seul le premier essieu reçoit en permanence un couple, le deuxième essieu est plus ou moins solidarisé par le coupleur piloté par le système de commande de répartition. Ainsi, le niveau de couple transmis sur chacun des essieux peut être ajusté par le système de commande en fonction, par exemple, d'un mode de fonctionnement du véhicule. Dans un premier mode de fonctionnement, le couple moteur est intégralement transmis au premier essieu et aucun couple n'est transmis au deuxième essieu. Dans un deuxième mode de fonctionnement, une première partie fixe du couple moteur est transmise au premier essieu et une deuxième partie fixe du couple moteur est transmise au deuxième essieu. Dans un troisième mode de fonctionnement les couples transmis aux deux essieux sont constamment ajustés en fonction des conditions de roulage du véhicule. Dans les véhicules à quatre roues motrices peut en outre survenir un phénomène de glissement. Le glissement correspond à une différence de vitesse de rotation entre les essieux avant et arrière. Le glissement peut être un phénomène normal, dans le cas par exemple d'un changement de vitesse. Il peut être aussi la conséquence d'une différence de rayon de roulement, dans le cas par exemple d'une mauvaise monte pneumatique ou d'une crevaison. Le glissement est alors permanent et il peut entraîner l'échauffement et/ou la détérioration du coupleur. En effet, le coupleur est un système de transmission mécanique qui peut à titre d'exemple de réalisation être composé de plusieurs disques baignant dans de l'huile les uns solidarisés à un arbre relié au deuxième essieu les autres à l'arbre de transfert. Dans le cas d'un fonctionnement normal, lorsqu'il y a une différence de vitesse entre l'arbre de transfert et l'arbre relié au deuxième essieu, les disques cisaillent l'huile dont la température augmente puis se dilate et s'épaissit. La pression sur les disques augmente et ils finissent par s'entraîner mutuellement. Ainsi, la différence de vitesse entre les deux arbres décroît et la température de l'huile et du coupleur diminue. Par contre, en présence d'un glissement permanent, les disques continuent de cisailler l'huile qui s'échauffe jusqu'à une possible détérioration du coupleur. La demande de brevet JP4103433 décrit un système de commande de la distribution de couple dans un véhicule à quatre roues motrices. Ce système comprend un embrayage de répartition de couple, ainsi que des moyens de détection de glissement, de la vitesse du véhicule et de la différence de diamètre des pneus des quatre roues motrices. Le système permet de diminuer le glissement en utilisant l'embrayage de répartition de couple tout en tenant compte, le cas échéant, d'une différence de diamètre des pneus. La demande de brevet JP61275028 décrit un système permettant d'augmenter la manoeuvrabilité d'un véhicule à quatre roues motrices dont les roues n'ont pas exactement le même diamètre. Ce système est muni de détecteurs de vitesse des roues avant et arrière, d'un dispositif de répartition des forces d'entraînement des roues avant et arrière, d'un système de soustraction et d'un dispositif compensateur. Il est ainsi possible de déterminer une différence de vitesse de rotation entre les roues avant et arrière en tenant compte d'un facteur de compensation relatif à une différence de diamètre. Le ratio entre les couples transmis sur l'essieu avant et arrière est alors contrôlé à partir de la différence de vitesse de rotation. The present invention relates, in a general manner, to four-wheel drive vehicles equipped with a system for controlling the distribution of the engine torque between a first axle and a second axle capable furthermore of controlling a mounted coupler. between the two axles. In these vehicles, the engine torque is distributed between the first axle and the second axle, the sum of the torque transmitted to the two axles being constant. The first axle is connected to a transfer shaft which is secured to the second axle by means of said coupler. Only the first axle permanently receives a torque, the second axle is more or less secured by the coupler controlled by the distribution control system. Thus, the torque level transmitted on each of the axles can be adjusted by the control system as a function, for example, of a vehicle operating mode. In a first mode of operation, the engine torque is fully transmitted to the first axle and no torque is transmitted to the second axle. In a second mode of operation, a first fixed portion of the engine torque is transmitted to the first axle and a second fixed portion of the engine torque is transmitted to the second axle. In a third mode of operation the couples transmitted to the two axles are constantly adjusted according to the driving conditions of the vehicle. In four-wheel drive vehicles can further occur a slip phenomenon. The slip corresponds to a difference in speed of rotation between the front and rear axles. Sliding can be a normal phenomenon, in the case for example of a change of speed. It may also be the consequence of a difference in rolling radius, in the case for example of a bad tire mounts or a puncture. The sliding is then permanent and it can lead to heating and / or deterioration of the coupler. Indeed, the coupler is a mechanical transmission system which may, as an exemplary embodiment, be composed of several oil-bathed discs secured to a shaft connected to the second axle and the others to the transfer shaft. In the case of normal operation, when there is a difference in speed between the transfer shaft and the shaft connected to the second axle, the discs shear the oil whose temperature increases and then expands and thickens . The pressure on the discs increases and they end up training each other. Thus, the speed difference between the two shafts decreases and the temperature of the oil and the coupler decreases. On the other hand, in the presence of a permanent slip, the discs continue to shear the oil which heats up until a possible deterioration of the coupler. Patent application JP4103433 discloses a control system of the torque distribution in a four-wheel drive vehicle. This system includes a torque distribution clutch, as well as slip detection means, vehicle speed and the difference in tire diameter of the four-wheel drive. The system makes it possible to reduce slippage by using the torque distribution clutch while taking into account, if necessary, a difference in tire diameter. Patent application JP61275028 describes a system for increasing the maneuverability of a four-wheel drive vehicle whose wheels do not have exactly the same diameter. This system is equipped with front and rear wheel speed sensors, a front and rear wheel drive force distribution device, a subtraction system and a compensating device. It is thus possible to determine a rotation speed difference between the front and rear wheels taking into account a compensation factor relating to a difference in diameter. The ratio between the torque transmitted on the front and rear axle is then controlled from the difference in speed of rotation.

Ces systèmes utilisent une commande de la répartition du couple pour diminuer le glissement mais rien n'est prévu pour protéger le coupleur efficacement dans le cas d'un glissement permanent. Ils ne permettent pas non plus de s'affranchir des glissements résultant de conditions de roulage spécifiques. Ils ne proposent pas de système de commande de la répartition du couple intégré dans le système de gestion des quatre roues motrices qui permette d'alerter l'utilisateur du véhicule d'un glissement permanent du coupleur. La présente invention a pour objet un procédé de commande de répartition de couple pour un véhicule motorisé à quatre roues motrices qui soit capable de protéger efficacement le coupleur dans le cas d'un glissement permanent et en particulier, de préserver le coupleur d'un échauffement dû à un glissement permanent. La présente invention a également pour objet de protéger le coupleur dans le cas d'un glissement permanent provoqué par une mauvaise monte, par une différence de diamètre des roues, une crevaison lente, un sur ou sous gonflage. L'invention a pour objet de détecter un glissement permanent et de le discriminer d'un glissement normal ou d'un glissement lié à des conditions de roulage spécifiques. La présente invention a également pour objet de protéger le coupleur sans inutilement arrêter le fonctionnement du mode "quatre roues motrices" suivant un compromis entre la protection du coupleur et la disponibilité du mode "quatre roues motrices" optimum et réglable. L'invention a encore pour objet un véhicule à quatre roues motrices muni d'un calculateur et d'un coupleur piloté de tel sorte qu'il soit protégé dans le cas d'un glissement permanent. Selon un premier aspect, il est proposé un procédé d'alerte de glissement d'un coupleur apte à répartir un couple entre deux essieux d'un véhicule motorisé à quatre roues motrices montées sur les deux essieux. Selon une caractéristique générale de ce procédé, on détermine le glissement représentant la différence de vitesse des deux essieux uniquement lorsque certaines conditions de roulage sont réalisées pendant une durée paramétrable. Selon un autre mode de mise en oeuvre également préféré, on incrémente un compteur à chaque occurrence de glissement détecté. These systems use a control of the distribution of the torque to reduce the slip but nothing is planned to protect the coupler effectively in the case of a permanent slip. They also do not allow to overcome slippage resulting from specific driving conditions. They do not propose a control system for the torque distribution integrated in the four-wheel drive management system which makes it possible to alert the user of the vehicle of permanent sliding of the coupler. The present invention relates to a torque distribution control method for a motorized four-wheel drive vehicle that is capable of effectively protecting the coupler in the case of permanent sliding and in particular, to preserve the coupling of a heating due to a permanent slip. The present invention also aims to protect the coupler in the case of permanent slip caused by improper mounting, a difference in wheel diameter, a slow puncture, over or under inflation. The object of the invention is to detect a permanent slip and to discriminate it from a normal slip or slip related to specific driving conditions. The present invention also aims to protect the coupler without unnecessarily stopping the operation of the "four-wheel drive" mode according to a compromise between the protection of the coupler and the availability of the mode "four-wheel drive" optimum and adjustable. The invention further relates to a four-wheel drive vehicle provided with a computer and a coupler controlled so that it is protected in the case of a permanent slip. According to a first aspect, there is provided a slip warning method of a coupler capable of distributing a torque between two axles of a motorized four-wheel drive vehicle mounted on the two axles. According to a general characteristic of this method, the slip representing the difference in speed of the two axles is determined only when certain driving conditions are achieved for a configurable duration. According to another embodiment, which is also preferred, a counter is incremented at each occurrence of slip detected.

Selon une autre mise en oeuvre, on adresse une alerte à un utilisateur du véhicule lorsque le compteur atteint un premier seuil paramétrable MaxCounter. Selon une autre mise en oeuvre, on lève l'alerte lorsque le compteur devient inférieur ou égal à un deuxième seuil paramétrable Mincounter. Selon encore une autre mise en oeuvre, on lève l'alerte lorsque le compteur est remis à zéro au démarrage du véhicule. Selon une autre mise en oeuvre, on teste si la valeur moyenne du glissement Gmoy au cours de ladite durée paramétrable MinTime est supérieure à un troisième seuil MinWheelSlip et si l'amplitude de la variation du glissement Gmax-Gmin au cours de ladite durée paramétrable MinTime est inférieure à un quatrième seuil MaxDeltaSlip, on incrémente le compteur si les deux tests sont vérifiés. According to another implementation, an alert is sent to a user of the vehicle when the counter reaches a first configurable threshold MaxCounter. According to another implementation, it raises the alert when the counter becomes less than or equal to a second parameterizable threshold Mincounter. According to yet another implementation, it raises the alert when the counter is reset to the start of the vehicle. According to another implementation, it is tested whether the average value of the slip Gmoy during said configurable duration MinTime is greater than a third threshold MinWheelSlip and if the amplitude of the variation of the slip Gmax-Gmin during said configurable duration MinTime is less than a fourth threshold MaxDeltaSlip, the counter is incremented if the two tests are checked.

Ainsi il n'est pas tenu compte d'aléas entraînant une variation importante de glissement; seul le glissement stabilisé lié à un dimensionnement mécanique problématique tel qu'une différence de rayon de roulement entre les roues avant et arrière est détecté. Selon une mise en oeuvre, on teste si la valeur moyenne du glissement Gmoy au cours de ladite durée paramétrable MinTime est inférieure à un cinquième seuil égal audit troisième seuil moins une constante MinWheelSlip-Constant, et on décrémente le compteur uniquement lorsque la valeur moyenne du glissement est inférieure au cinquième seuil et l'amplitude de la variation du glissement Gmax- Gmin au cours de ladite durée paramétrable MinTime est inférieure à un quatrième seuil. Ainsi, on ne déclenche la décrémentation que dans le cas où le glissement est dans une phase stabilisée, en deçà de la valeur du deuxième seuil. On évite ainsi une décrémentation liée à une situation de conduite particulière ou à la présence de bruits de mesure. Dans le cas d'un glissement permanent oscillant, on évite une succession de phases d'incrémentation et de décrémentation qui rendrait la détection du glissement oscillant impossible. Thus, it is not taken into account hazards causing a significant variation in slip; only the stabilized sliding linked to a problematic mechanical dimensioning such as a difference in rolling radius between the front and rear wheels is detected. According to one implementation, it is tested whether the average value of the slip Gmoy during said configurable duration MinTime is less than a fifth threshold equal to said third threshold minus a constant MinWheelSlip-Constant, and the counter is decremented only when the average value of the slip is less than the fifth threshold and the magnitude of the slip variation Gmax-Gmin during said configurable duration MinTime is less than a fourth threshold. Thus, the decrementation is only triggered in the case where the slip is in a stabilized phase, below the value of the second threshold. This avoids a decrement related to a particular driving situation or the presence of measurement noise. In the case of an oscillating permanent sliding, a succession of incrementation and decrementation phases is avoided which would make the detection of oscillating sliding impossible.

Selon encore un autre aspect du procédé, on incrémente ou on décrémente un compteur en fonction du glissement déterminé et on supprime tout transfert de couple vers l'un ou l'autre des essieux lorsque la valeur moyenne du glissement au cours deladite durée MinTime dépasse un seuil et lorsque ledit compteur 36 atteint un premier seuil MaxCounter. Selon un autre objet, il est proposé un véhicule motorisé à quatre roues motrices montées sur deux essieux comprenant un arbre de transfert relié au premier essieu et un coupleur piloté capable de transférer une partie du couple depuis l'arbre de transfert vers le deuxième essieu, des moyens de détermination des vitesses respectives des deux essieux et un système de commande de répartition du couple capable de déterminer une valeur de glissement représentant la différence de vitesse entre les deux essieux et de piloter le coupleur Selon une caractéristique générale de ce mode de réalisation, le système de commande de répartition de couple est configuré pour informer l'utilisateur par alerte selon le procédé d'alerte de glissement d'un coupleur de l'invention. L'invention sera mieux comprise à l'étude de la description détaillée d'un mode de réalisation pris à titre d'exemple non limitatif et illustré par les dessins annexés sur lesquels : la figure 1 représente schématiquement un véhicule motorisé à quatre roues motrices; la figure 2 représente schématiquement les principaux éléments du système de commande du fonctionnement du véhicule; la figure 3 représente schématiquement les principaux aspects d'un logiciel implanté dans le calculateur du véhicule et permettant la protection du coupleur. Sur la figure 1 sont illustrés schématiquement les principaux éléments d'un véhicule motorisé Ve à quatre roues motrices avec une transmission permanente du couple moteur sur l'essieu avant 2AV. Ce type de véhicule a été choisi à titre d'exemple. Le moteur du véhicule peut être un moteur thermique 3, un moteur électrique ou une combinaison hybride. La transmission permanente du couple moteur pourrait également être exercée sur l'essieu arrière 2AR. Le véhicule comprend quatre roues la, lb, 1c, 1d, montées respectivement sur un essieu avant 2AV, et un essieu arrière 2AR. Le véhicule comporte également un volant de direction 4 relié à une colonne de direction 5. Le véhicule comprend, en outre, une boîte de vitesses 6 transmettant le couple du moteur 3 à l'essieu avant 2AV et à une boîte de transfert avant 7. Un arbre de transfert 8, entraîné par la boite de transfert 7 est relié par un coupleur 9 à une boîte de transfert de pont arrière 10 de façon à transférer un couple en provenance de la boite de vitesse 6 à l'essieu arrière 2AR. According to yet another aspect of the method, a counter is incremented or decremented as a function of the determined slip and any transfer of torque towards one or other of the axles is eliminated when the average value of the sliding during said duration MinTime exceeds one threshold and when said counter 36 reaches a first threshold MaxCounter. According to another object, there is provided a motorized four-wheel drive vehicle mounted on two axles comprising a transfer shaft connected to the first axle and a controlled coupler capable of transferring a part of the torque from the transfer shaft to the second axle, means for determining the respective speeds of the two axles and a torque distribution control system capable of determining a slip value representing the difference in speed between the two axles and driving the coupler. According to a general characteristic of this embodiment, the torque distribution control system is configured to inform the user by warning according to the slip alert method of a coupler of the invention. The invention will be better understood on studying the detailed description of an embodiment taken by way of nonlimiting example and illustrated by the accompanying drawings in which: Figure 1 schematically shows a motorized four-wheel drive vehicle; Figure 2 schematically shows the main elements of the control system of the operation of the vehicle; Figure 3 schematically shows the main aspects of a software implanted in the vehicle computer and allowing the protection of the coupler. In Figure 1 are schematically illustrated the main elements of a Ve motorized four-wheel drive with a permanent transmission of the engine torque on the front axle 2AV. This type of vehicle was chosen as an example. The vehicle engine may be a heat engine 3, an electric motor or a hybrid combination. Permanent transmission of the engine torque could also be exerted on the 2AR rear axle. The vehicle comprises four wheels 1a, 1b, 1c, 1d, respectively mounted on a front axle 2AV, and a rear axle 2AR. The vehicle also comprises a steering wheel 4 connected to a steering column 5. The vehicle further comprises a gearbox 6 transmitting the torque of the engine 3 to the front axle 2AV and to a front transfer case 7. A transfer shaft 8, driven by the transfer box 7 is connected by a coupler 9 to a rear axle transfer box 10 so as to transfer torque from the gearbox 6 to the rear axle 2AR.

Le véhicule comprend également un calculateur 11 capable notamment de piloter le coupleur 9, un dispositif de commande de mode 12 et une unité 13 de contrôle du moteur 3 capable de contrôler le fonctionnement du moteur 3 (notamment pour déterminer le couple exercé par le moteur et pour estimer le rapport de vitesse engagé). Le véhicule comprend également quatre capteurs de vitesse de roues 14a, 14b, 14c, 14d, un sur chacune des roues la, lb, lc, ld. Le calculateur 11 est relié à chacun des capteurs de vitesse de roues 14a...14d par des connexions 16a...16d permettant l'échange d'informations. Le calculateur 11 est également relié au dispositif de commande de mode 12 par une connexion 16e, à l'unité de contrôle moteur 13 par une connexion 16f et au coupleur 9 par une connexion 16g. La connexion électrique 16g permet également la circulation d'un courant de commande pour fermer le coupleur piloté 9. Une unité d'affichage du tableau de bord 15 est également reliée par une connexion 16h au calculateur 11 afin d'afficher au conducteur du véhicule notamment le mode de fonctionnement quatre roues motrices utilisé. Le véhicule à quatre roues motrices peut, en effet, fonctionner selon trois types de mode de fonctionnement distincts. The vehicle also comprises a computer 11 capable in particular of controlling the coupler 9, a mode control device 12 and a control unit 13 of the engine 3 capable of controlling the operation of the engine 3 (in particular for determining the torque exerted by the engine and to estimate the gear ratio engaged). The vehicle also includes four wheel speed sensors 14a, 14b, 14c, 14d, one on each of the wheels 1a, 1b, 1c, 1d. The computer 11 is connected to each of the wheel speed sensors 14a ... 14d by connections 16a ... 16d allowing the exchange of information. The computer 11 is also connected to the mode control device 12 via a connection 16e, to the motor control unit 13 via a connection 16f and to the coupler 9 via a connection 16g. The electrical connection 16g also allows the circulation of a control current to close the controlled coupler 9. A display unit of the instrument panel 15 is also connected by a connection 16h to the computer 11 in order to display the driver of the particular vehicle the mode of operation four-wheel drive used. The four-wheel drive vehicle can, in fact, operate in three different types of operating mode.

Dans un premier mode de fonctionnement, la boîte de vitesses 6 entraîne l'essieu avant 2AV, le coupleur 9 est ouvert et ne transfère aucun couple à la boîte de transfert de pont arrière 10. Ce mode est dit mode "4x2", seules les deux roues la et lb de l'essieu avant étant entraînées. Dans un deuxième mode de fonctionnement, la boîte de vitesses 6 entraîne l'essieu avant 2AV et l'arbre de transfert 8 entraîne le coupleur 9 qui est maintenu totalement fermé. Le coupleur 9 entraîne donc la boîte de transfert de pont arrière 10 de telle sorte qu'une partie maximale du couple moteur est transférée à l'essieu arrière 2AR. Ce mode, est dit " quatre roues motrices tout terrain". Dans un troisième mode de fonctionnement, la boîte de vitesses 6 entraîne l'essieu avant 2AV et l'arbre de transfert 8 entraîne le coupleur 9 qui est piloté par le courant du calculateur 11 de façon à être plus ou moins fermé en fonction du couple demandé par chacun des essieux. Ainsi une partie variable du couple moteur est transférée à l'essieu arrière 2AR. Ce mode est dit " quatre roues motrices automatique". Les différents modes de fonctionnement dépendent de l'état du coupleur 9. La fermeture du coupleur piloté 9 est commandée par le calculateur 11 via la connexion 16g. Ainsi, le niveau de couple transmis depuis l'arbre de transfert 8 vers la boîte de transfert du pont arrière 10 est commandé par le calculateur 11. A cet effet, le calculateur 11 reçoit des informations concernant: -le fonctionnement du moteur 3 par l'unité de contrôle moteur 13 via la liaison 16f; -la volonté du conducteur du véhicule par le dispositif de commande de mode 12 qui peut être actionné par le conducteur. Ces informations sont transmises au calculateur 11 via la liaison 16e; et -la vitesse de rotation des quatre roues la...ld déterminée par les quatre capteurs de vitesse de roues 14a...14d. Ces informations sont transmises au calculateur 11 via les quatre liaisons 16a...16d. En fonction de toutes ces informations, le calculateur 11 est capable de choisir le mode de fonctionnement approprié. Le calculateur 11 est également capable de communiquer au conducteur du véhicule des informations concernant le mode de fonctionnement actif via l'unité d'affichage du tableau de bord 15 et la liaison 16h. Dans le cas où le mode sélectionné est le mode automatique, le calculateur 11 est capable de déterminer le serrage approprié à appliquer au coupleur 9. Les liaisons 16a...16g auxquelles il a été fait référence peuvent, à titre d'exemple de réalisation, être des branches d'un bus de type CAN (Controller Area Network selon un terme anglo-saxon bien connu de l'homme du métier). In a first mode of operation, the gearbox 6 drives the front axle 2AV, the coupler 9 is open and does not transfer any torque to the rear axle transfer box 10. This mode is called "4x2" mode, only the two wheels la and lb of the front axle being driven. In a second mode of operation, the gearbox 6 drives the front axle 2AV and the transfer shaft 8 drives the coupler 9 which is kept completely closed. The coupler 9 therefore drives the rear axle transfer box 10 so that a maximum portion of the engine torque is transferred to the rear axle 2AR. This mode is called "four wheel drive all terrain". In a third mode of operation, the gearbox 6 drives the front axle 2AV and the transfer shaft 8 drives the coupler 9 which is driven by the current of the computer 11 so as to be more or less closed depending on the torque requested by each axle. Thus a variable portion of the engine torque is transferred to the rear axle 2AR. This mode is called "automatic four-wheel drive". The various operating modes depend on the state of the coupler 9. The closing of the controlled coupler 9 is controlled by the computer 11 via the connection 16g. Thus, the level of torque transmitted from the transfer shaft 8 to the transfer box of the rear axle 10 is controlled by the computer 11. For this purpose, the computer 11 receives information concerning: the operation of the engine 3 by the motor control unit 13 via the link 16f; the will of the driver of the vehicle by the mode control device 12 which can be actuated by the driver. This information is transmitted to the computer 11 via the link 16e; and the rotational speed of the four wheels la ... ld determined by the four wheel speed sensors 14a ... 14d. This information is transmitted to the computer 11 via the four links 16a ... 16d. Based on all this information, the computer 11 is able to choose the appropriate operating mode. The computer 11 is also capable of communicating to the driver of the vehicle information concerning the active mode of operation via the display unit of the control panel 15 and the link 16h. In the case where the selected mode is the automatic mode, the computer 11 is able to determine the appropriate clamping to be applied to the coupler 9. The links 16a ... 16g to which reference has been made can, by way of exemplary embodiment. , be branches of a bus type CAN (Controller Area Network according to an Anglo-Saxon term well known to those skilled in the art).

Selon l'invention, le calculateur 11 peut en outre émettre en fonction des informations reçues, un signal de commande pour complètement ouvrir le coupleur 9 de façon à éviter un échauffement et ou une usure excessive du coupleur 9 en cas de glissement permanent. According to the invention, the computer 11 can further transmit according to the received information, a control signal to completely open the coupler 9 so as to avoid heating and or excessive wear of the coupler 9 in case of permanent slip.

Sur la figure 2, sont illustrés schématiquement les principaux éléments du système de commande du fonctionnement du véhicule. Les éléments déjà illustrés sur la figure 1 portent les mêmes références. On retrouve sur la figure 2 le calculateur 11 relié par la connexion 16g au coupleur 9 et le dispositif de commande de mode 12 relié au calculateur 11; Le bus de connexion 16 permet d'assurer les liaison entre le calculateur 11, l'unité de contrôle 13 du moteur 3 et le. reste des organes de contrôle et de commande du véhicule représenté sous la forme d'un unique bloc 20. On compte parmi ces organes, par exemple, un système de freinage ABS et un système de contrôle de trajectoire AYC (Active Yaw Control selon un terme anglo-saxon bien connu de l'homme du métier). Le calculateur 11 peut recevoir du bloc 20, des informations relatives aux conditions de roulage: -des informations relatives au freinage du véhicule: Système de freinage ABS, frein de stationnement, pédale de frein. -des informations relatives au fonctionnement du système de contrôle de trajectoire AYC. Le calculateur 11 peut ensuite par exemple envoyer un signal de commande d'ouverture au coupleur via la connexion électrique 16g en fonction des conditions de roulage, de la volonté du conducteur et de l'état du coupleur. Sur la figure 3, sont illustrées schématiquement sous forme de bloc les sous fonctions d'un logiciel de décision d'ouverture du coupleur 9. Le programme peut être intégré dans le calculateur 11. Dans l'exemple illustré, un premier bloc de traitement 31 reçoit en entrée des variables relatives au fonctionnement du véhicule. Le bloc de traitement 31 reçoit notamment: -des variables notées ACF. Elles sont relatives à l'état des assistants de conduite et de freinage. Les variables ACF peuvent être transmises par un ou plusieurs programmes de gestion du freinage et d'assistance à la conduite situés par exemple au sein du calculateur 11. Parmi les variables ACF, on peut compter: -une variable binaire signalant l'utilisation de l'ABS (Anti Blocage Système); -une variable binaire signalant l'utilisation du contrôle de trajectoire AYC;. - une variable binaire signalant l'utilisation de l'antipatinage (ASR Accelaration Slip Regulation selon un terme anglo-saxon bien connu de l'homme du métier); - une variable binaire signalant l'utilisation de la régulation du couple d'inertie du moteur (MSR MotorSchleppmomentRegler selon un terme allemand bien connu de l'homme du métier); et -une variable signalant l'utilisation du freinage par le conducteur que ce soit par la pédale ou par le frein parking (frein à main). A partir des variables ACF, le bloc de traitement 31 détermine si à la fois aucun assistant de conduite (AYC, MSR, ASR), aucun système d'assistance au freinage (ABS) et aucun freinage n'est actif. Si c'est le cas il renvoie à un bloc de détection 32 la valeur binaire ACF OK avec la valeur 1. Le bloc de traitement 31 reçoit également des variables V, G, Cm relatives respectivement à la vitesse du véhicule, au glissement entre les deux essieux et au couple fourni par le moteur aux deux essieux. Les variables V et G sont fournies par les quatre capteurs de vitesse de roues 14a, 14b, 14e, 14d tandis que la variable Cm est fournie par l'unité de contrôle 13 du moteur 3. Plus précisément, la vitesse V du véhicule Ve est estimée à partir de la moyenne des vitesses fournies par les deux capteurs de vitesse de roue arrière 14c et 14d. Le glissement entre les deux essieux est estimé à partir de la différence entre deux vitesses de rotation, celle de l'essieu avant 2AV et celle de l'essieu arrière 2AR. La vitesse de rotation de l'essieu avant peut, à titre d'un exemple de réalisation, être déterminée en faisant la moyenne des vitesses fournies par les deux capteurs de roues avant 14a, 14b. De manière similaire, la vitesse de rotation de l'essieu arrière peut être déterminée en faisant la moyenne des vitesses fournies par les deux capteurs de roues arrière 14c et 14d. Enfin, le couple moteur Cm est estimé par l'unité de contrôle 13 du moteur 3. L'unité de contrôle 13 renvoie également une estimation du rapport de vitesse engagé. A partir des variables V et G, le bloc de traitement 31 calcule le glissement exprimé en pourcentage par rapport à la vitesse du véhicule %G, il transmet alors cette valeur à un bloc de calcul 33. À partir de la variable Cm et de l'estimation du rapport de vitesse engagée, le bloc de traitement 31 détermine le couple exercé par le moteur sur l'essieu avant Cm AV, il transmet alors cette valeur au bloc de détection 32. Le bloc de traitement 31 reçoit aussi des variables DISP relatives à la disponibilité et la validité des informations d'entrée, elles sont utilisées pour la détection de défauts des capteurs ou des informations d'entrée. Parmi les variables DISP, on compte par exemple, les variables suivantes: -une variable binaire d'état de la détermination du couple moteur; -une variable binaire d'état de la détection de l'engagement d'une vitesse; -une variable binaire d'état de la détection de la position de la pédale d'accélération; - une variable binaire d'état de la détection de l'ABS; -une variable binaire d'état de la détection du contrôle de trajectoire (AYC); -une variable binaire d'état de la détection de l'antipatinage (ASR); - une variable binaire d'état de la détection de la régulation du couple d'inertie du moteur (MSR). Le bloc de traitement 31 détermine également si les capteurs de vitesse 14a, 14b, 14c, 14d sont en état de marche et si les informations 10 qu'ils transmettent sont en état de marche. A partir de ces variables et de ces informations, le bloc de traitement 31 détermine si tous les capteurs fonctionnent et toutes les variables requises sont disponibles et valides. Le cas échéant, il transmet à un bloc d'activation 35 une valeur binaire, DISP_OK, 15 relative à la disponibilité des informations. Le bloc de détection 32 reçoit, outre les variables transmises par le bloc de traitement 31, ACF_OK et Cm_AV, des variables V, POS et BV. La variable V correspond à la variable V en entrée du bloc de traitement 31. La variable POS est une variable décimale dont la 20 valeur exprime la position de la pédale d'accélération. Cette information est, par exemple, fournie par l'unité de contrôle 13 du moteur 3. La variable BV est une variable binaire qui prend la valeur 1 si le rapport de vitesse est bien enclenché dans la boîte de vitesse 6. Cette information est, par exemple, fournie par l'unité de contrôle 13 25 du moteur 3. A partir des variables reçues, le bloc de détection 32 est configuré pour détecter si les conditions de roulage pour calculer un glissement permanent sont satisfaites. Si les conditions ne sont pas satisfaites alors le bloc de calcul 33 n'est pas activé. Cela permet de ne 30 réaliser la détection de glissement que lorsque les conditions de roulage sont satisfaites. Ainsi, ne sont pas pris en compte pour la détection du glissement permanent, des glissements normaux dus à des circonstances particulières telles que: le passage d'un rapport de vitesse, la conduite lors d'un virage, le freinage, le fonctionnement d'un assistant de conduite, le lever de pied de la pédale d'accélérateur, le véhicule en pleine accélération. Le cas échéant le bloc de détection 32 transmet au bloc de calcul 33 une variable C_roulage égale à 1. Pour que le bloc de détection 32 émette une variable C_roulage il faut que toutes les conditions ci-dessous soient respectées: - la variable ACF_OK soit égale à 1, cela permet d'éviter que le calcul de glissement permanent intervienne dans le cas où le véhicule est en freinage ou alors qu'un assistant de conduite ou de freinage est actif. - la variable V soit supérieure à un premier seuil, cela permet d'éviter que le calcul de glissement permanent intervienne dans le cas où le véhicule est en virage. - la variable Pos soit supérieure à un deuxième seuil: cela permet d'éviter le calcul de glissement permanent si des levers de pied du conducteur interviennent. - la variable BV soit égale à 1: cela permet d'éviter que le calcul de glissement permanent intervienne alors que le véhicule est en train de changer de vitesse. - la variable Cm_AV soit inférieure à un troisième seuil: cela permet d'éviter que le calcul de glissement permanent intervienne alors que le véhicule est en pleine accélération. Les trois seuils auxquels il est fait référence sont paramétrables. Cela permet d'adapter les conditions pour la détection d'un glissement permanent en fonction de la conduite du conducteur ou du terrain de roulage. Par exemple, la vitesse minimum à partir de laquelle il est prévu une détection de glissement peut être remontée dans le cas d'une conduite sportive. Le bloc d'activation 35 reçoit, outre la variable DISP_OK, une variable de sécurité Sec et une variable de mise en service ON. La variable Sec est binaire, elle vaut 1 si aucun défaut de la part d'autres calculateurs ou programmes n'est détecté. La variable ON est également binaire elle vaut 1 si la fonction d'alerte de glissement permanent est mise en service. A partir de ces informations, le bloc d'activation 35 renvoie au bloc de calcul 33 une variable d'activation Etat 35. Cette variable vaut 1 si les variables DISP OK, Sec et ON ont la valeur L A titre optionnel, le bloc d'activation 35 peut recevoir une valeur du dispositif de commande de mode 12. Le cas échéant, il renvoie une valeur Etat 35 égale à 1 uniquement lorsque le mode quatre roues motrices automatique est sélectionné par le conducteur du véhicule. Le bloc de calcul 33 reçoit, outre les variables C_roulage, %G et Etat 35, une variable V. La variable V correspond à la vitesse V en entrée du bloc de traitement 31. A partir de la variable %G et de la vitesse V, le bloc de calcul 33 calcule des variables de vitesse Vmin, Vmax, Vmoy et de glissement Gmin, Gmax, Gmoy du véhicule. Les valeurs Gmin, Gmax, Gmoy correspondent respectivement à la valeur de glissement minimum, maximum et moyen pendant une durée paramétrable MinTime. Les valeurs Vmin, Vmax, Vmoy correspondent respectivement à la vitesse du véhicule minimum, maximum et moyenne au cours de la durée MinTime. Ces calculs sont réalisés par le bloc de calcul 33 uniquement lorsque les valeurs binaires C_roulage et Etat 35 sont égales à 1. In Figure 2, are schematically illustrated the main elements of the control system of the operation of the vehicle. The elements already illustrated in FIG. 1 bear the same references. FIG. 2 shows the computer 11 connected by the connection 16g to the coupler 9 and the mode control device 12 connected to the computer 11; The connection bus 16 provides links between the computer 11, the control unit 13 of the engine 3 and the. the vehicle control and control elements are represented in the form of a single block 20. Among these devices are, for example, an ABS braking system and an AYC (Active Yaw Control) trajectory control system according to a term Anglo-Saxon well known to those skilled in the art). The computer 11 can receive from the block 20, information relating to the driving conditions: - information relating to the braking of the vehicle: ABS braking system, parking brake, brake pedal. information relating to the operation of the AYC trajectory control system. The computer 11 can then for example send an opening control signal to the coupler via the electrical connection 16g as a function of the driving conditions, the will of the driver and the state of the coupler. FIG. 3 schematically illustrates in the form of a block the subfunctions of an opening decision software of the coupler 9. The program can be integrated in the computer 11. In the illustrated example, a first processing block 31 receives as input variables relating to the operation of the vehicle. The processing block 31 notably receives: variables labeled ACF. They are related to the condition of the driving assistants and braking. The ACF variables can be transmitted by one or more brake management programs and driver assistance located for example within the computer 11. Among the variables ACF, we can count: a binary variable signaling the use of ABS (Anti Blocking System); a binary variable signaling the use of the AYC trajectory control; a binary variable signaling the use of traction control (ASR Accelaration Slip Regulation according to an Anglo-Saxon term well known to those skilled in the art); a binary variable signaling the use of the regulation of the motor inertia torque (MSR MotorSchleppmomentRegler according to a German term well known to those skilled in the art); and a variable indicating the use of braking by the driver, whether by the pedal or by the parking brake (hand brake). From the ACF variables, the processing block 31 determines whether at the same time no driving assistant (AYC, MSR, ASR), no braking assistance system (ABS) and no braking is active. If it is the case, it sends back to a detection block 32 the binary value ACF OK with the value 1. The processing block 31 also receives variables V, G, Cm relating respectively to the speed of the vehicle, the slip between the two axles and the torque provided by the two-axle engine. The variables V and G are provided by the four wheel speed sensors 14a, 14b, 14e, 14d while the variable Cm is supplied by the control unit 13 of the engine 3. More precisely, the speed V of the vehicle Ve is estimated from the average speeds provided by the two rear wheel speed sensors 14c and 14d. The slip between the two axles is estimated from the difference between two speeds of rotation, that of the front axle 2AV and that of the rear axle 2AR. The speed of rotation of the front axle may, as an exemplary embodiment, be determined by averaging the speeds provided by the two front wheel sensors 14a, 14b. Similarly, the rotational speed of the rear axle can be determined by averaging the speeds provided by the two rear wheel sensors 14c and 14d. Finally, the engine torque Cm is estimated by the control unit 13 of the engine 3. The control unit 13 also returns an estimate of the gear ratio engaged. From the variables V and G, the processing block 31 calculates the slip expressed as a percentage with respect to the vehicle speed% G, it then transmits this value to a calculation block 33. From the variable Cm and from the estimation of the gear ratio engaged, the processing block 31 determines the torque exerted by the engine on the front axle Cm AV, it then transmits this value to the detection block 32. The processing block 31 also receives relative DISP variables to the availability and validity of the input information, they are used for detection of sensor faults or input information. Among the variables DISP, there are, for example, the following variables: a binary state variable of the determination of the motor torque; a binary state variable of the detection of the commitment of a speed; a binary state variable of the detection of the position of the accelerator pedal; a binary state variable of the detection of the ABS; a binary state variable of the detection of the trajectory control (AYC); a binary state variable of the traction control detection (ASR); a binary state variable of the detection of the control of the motor inertia torque (MSR). The processing block 31 also determines whether the speed sensors 14a, 14b, 14c, 14d are in operating condition and whether the information they transmit is in working order. From these variables and information, processing block 31 determines whether all sensors are working and all required variables are available and valid. If necessary, it transmits to an activation block 35 a binary value, DISP_OK, relating to the availability of the information. The detection block 32 receives, in addition to the variables transmitted by the processing block 31, ACF_OK and Cm_AV, variables V, POS and BV. The variable V corresponds to the variable V at the input of processing block 31. The variable POS is a decimal variable whose value expresses the position of the accelerator pedal. This information is, for example, provided by the control unit 13 of the engine 3. The variable BV is a binary variable which takes the value 1 if the gear ratio is indeed engaged in the gearbox 6. This information is, for example, provided by the control unit 13 of the motor 3. From the received variables, the detection block 32 is configured to detect whether the rolling conditions for calculating a permanent slip are satisfied. If the conditions are not satisfied then the calculation block 33 is not activated. This makes it possible to perform slip detection only when the driving conditions are satisfied. Thus, for the detection of permanent slip, normal slips are not taken into account due to particular circumstances such as: the passage of a gear ratio, the driving during a turn, the braking, the operation of a driving assistant, lifting the foot of the accelerator pedal, the vehicle in full acceleration. If necessary, the detection block 32 transmits to the calculation block 33 a variable C_roulage equal to 1. In order for the detection block 32 to transmit a variable C_roulage, all the conditions below must be respected: - the variable ACF_OK is equal at 1, this prevents the calculation of permanent slip occurs in the case where the vehicle is braking or while a driving assistant or braking is active. the variable V is greater than a first threshold, which makes it possible to prevent the calculation of permanent slip from occurring in the case where the vehicle is in a turn. the variable Pos is greater than a second threshold: this makes it possible to avoid the calculation of permanent slip if the driver's foot lifts intervene. - The variable BV is equal to 1: this prevents the calculation of permanent slip occurs while the vehicle is changing speed. the variable Cm_AV is less than a third threshold: this makes it possible to prevent the calculation of permanent slip from occurring while the vehicle is in full acceleration. The three thresholds to which reference is made are configurable. This makes it possible to adapt the conditions for the detection of a permanent slip according to the driving of the driver or of the rolling ground. For example, the minimum speed from which slip detection is provided can be escalated in the case of sporty driving. The activation block 35 receives, in addition to the variable DISP_OK, a security variable Sec and a commissioning variable ON. The variable Sec is binary, it is 1 if no fault from other computers or programs is detected. The variable ON is also binary it is 1 if the permanent slip alert function is activated. From this information, the activation block 35 returns to the calculation block 33 an activation variable State 35. This variable is equal to 1 if the variables DISP OK, Sec and ON have the value LA optional title, the block of Activation 35 may receive a value from the mode control device 12. If so, it returns a state value equal to 1 only when the automatic four-wheel drive mode is selected by the driver of the vehicle. The calculation block 33 receives, in addition to the variables C_roulage,% G and state 35, a variable V. The variable V corresponds to the speed V at the input of the processing block 31. From the variable% G and the speed V , the calculation block 33 calculates speed variables Vmin, Vmax, Vmoy and slip Gmin, Gmax, Gmoy of the vehicle. The values Gmin, Gmax, Gmoy respectively correspond to the minimum, maximum and average slip value during a configurable duration MinTime. The values Vmin, Vmax, Vmoy correspond to the minimum, maximum and average vehicle speeds during the MinTime time, respectively. These calculations are performed by the calculation block 33 only when the binary values C_roulage and state 35 are equal to 1.

Le bloc de calcul 33 calcule également une valeur binaire Fav relative à la réalisation de conditions requises. La valeur de Fav passe à 1 si les conditions de roulage C_roulage sont vérifiées au cours de la durée MinTime. Le bloc de calcul 33 calcule aussi une valeur binaire Etat 33 sur 2 bits correspondant à l'état sur un diagramme de flux de la sous fonction du bloc de calcul 33. La sous fonction du bloc 33 peut en effet être représentée sous la forme d'un diagramme à 4 états: -l'état -1 correspond à l'état par défaut du bloc 33. -l'état 0 correspond à un état d'initialisation. Les variables de vitesse et de glissement à calculer sont initialisées à 0. -l'état 1 est actif dès que la variable binaire C_roulage passe à 1, et est inactif dès que celle-ci repasse à 0. Tant que C_roulage reste égal à 1, on calcule les variables de vitesse et de glissement. - l'état 2 est actif si la valeur C_roulage est égale 1 pendant une durée minimum paramétrable, la variable binaire Fav passe alors de la valeur 0 à 1. C'est à l'instant d'activation de cet état 2 que sont envoyées les variables de vitesse et de glissement ainsi que la variable Fav vers un bloc de comptage 34. Le bloc de comptage 34 filtre ces variables pour commander s'il y a lieu le déclenchement d'une alerte de glissement permanent via la variable binaire Alerte. Quand la variable Alerte passe à 1, l'alerte de glissement permanent est enclenchée. C'est cette alerte qui déclenche l'ouverture du coupleur piloté 9 par le calculateur 11 via la connexion 16g. Plus précisément, le bloc de comptage 34 réalise à la fois la détection de glissement permanent, le comptage des occurrences de glissement permanent, et la génération de l'alerte. Pour cela, le bloc de comptage 34 coopère avec un compteur 36. Le compteur 36 est contrôlé par le bloc de comptage 34 pour être incrémenté (plus) à chaque occurrence de glissement permanent détectée. Quand le compteur 36 atteint un seuil paramétrable MaxCounter, la valeur de la variable Alerte passe à 1. L'incrémentation (plus) intervient dès lors que la variable Fav est égale à 1, que l'amplitude de la variation de glissement (Gmax-Gmin) au cours d'une durée MinTime est inférieure à un autre seuil paramétrable (MaxDeltaSlip) et qu'au cours de la durée MinTime le glissement moyen Gmoy est supérieur à une valeur de seuil MinWheelSlip paramétrable. Le compteur peut également être décrémenté (moins) lorsque la variable Fav est égale à 1, l'amplitude de la variation de glissement (Gmax-Gmin) est inférieure à MaxDeltaSlip au cours de la durée MinTime et le glissement moyen est inférieur à un seuil égal audit deuxième seuil moins une constante MinWheelSlip- Constant. La constante (Constant) peut avantageusement être choisie avec une valeur relative à l'hystérésis (WheelSlipHyst). The calculation block 33 also calculates a binary value Fav relating to the fulfillment of the required conditions. The value of Fav goes to 1 if the rolling conditions C_roulage are checked during the MinTime time. The calculation block 33 also calculates a binary value State 33 on 2 bits corresponding to the state on a flow diagram of the sub-function of the calculation block 33. The subfunction of the block 33 can indeed be represented in the form of a 4-state diagram: -status -1 corresponds to the default state of block 33. -status 0 corresponds to an initialization state. The speed and slip variables to be calculated are initialized to 0. the state 1 is active as soon as the binary variable C_roulage goes to 1, and is inactive as soon as it returns to 0. As long as C_roulage remains equal to 1 , velocity and slip variables are calculated. - State 2 is active if the value C_roulage is equal 1 for a configurable minimum duration, the binary variable Fav then changes from 0 to 1. It is at the moment of activation of this state 2 that are sent the speed and slip variables as well as the variable Fav towards a counting block 34. The counting block 34 filters these variables to control if necessary the triggering of a permanent slip alert via the binary variable Alert. When the Alert variable goes to 1, the permanent slip alert is triggered. It is this alert which triggers the opening of the controlled coupler 9 by the computer 11 via the connection 16g. More specifically, the counting block 34 performs both the permanent slip detection, the counting of the occurrences of permanent slip, and the generation of the alert. For this, the counting block 34 cooperates with a counter 36. The counter 36 is controlled by the counting block 34 to be incremented (plus) at each occurrence of permanent slip detected. When the counter 36 reaches a configurable threshold MaxCounter, the value of the variable Alert goes to 1. The incrementation (plus) occurs when the variable Fav is equal to 1, the amplitude of the variation of slip (Gmax- Gmin) during a MinTime time is less than another configurable threshold (MaxDeltaSlip) and that during the MinTime time the average Gmoy slip is greater than a configurable MinWheelSlip threshold value. The counter can also be decremented (minus) when the variable Fav is equal to 1, the amplitude of the slip variation (Gmax-Gmin) is less than MaxDeltaSlip during the MinTime duration and the average slip is less than a threshold equal to said second threshold minus a constant MinWheelSlip- Constant. The constant (Constant) can advantageously be chosen with a value relating to the hysteresis (WheelSlipHyst).

L'alerte de glissement permanent est levée lorsque la variable Alerte passe à 0. Cette variable passe à 0 lorsque le compteur 36 passe à une valeur inférieure ou égale à un seuil paramétrable MinCounter. Ce passage peut intervenir après un nombre suffisant de décrémentations successives ou bien lorsque le compteur 36 subit une remise à zéro forcée par un évènement particulier lié à l'utilisation du véhicule. On peut faire en sorte de remettre à zéro le compteur 36 à chaque démarrage (ou alternativement à chaque arrêt) du véhicule, pour que l'utilisateur ne soit pas interrompu dès le démarrage par un message d'alerte au tableau de bord consécutif au passage de la variable Alerte à 1 ou que le coupleur ne soit pas forcé dans un état ouvert à chaque démarrage. En effet, l'utilisateur a pu réaliser une intervention pour corriger (changement de pneus, réparation de crevaison etc...) le glissement permanent avant le redémarrage de celui-ci. A cette fin, le bloc de comptage 34 reçoit en entrée (ou directement le compteur 36 avec lequel il coopère), une variable Ignit passant à 1 lorsque l'évènement démarrage du véhicule, est détecté. La présence d'une telle alerte de glissement permanent propose un système de détection à la fois robuste et réactif, et propose une information à l'utilisateur avec un degré d'intrusion réduit. La possibilité d'ajustement de la taille du compteur, de la durée de moyennage du glissement, de la valeur de glissement maximum autorisé et de l'hystérésis û tous paramétrables û permettent une mise au point très précise de la stratégie d'alerte de l'utilisateur tout en assurant une durabilité et une protection du coupleur élevées. The permanent slip alert is raised when the Alert variable goes to 0. This variable goes to 0 when the counter 36 goes to a value less than or equal to a configurable threshold MinCounter. This passage can take place after a sufficient number of successive decrements or when the counter 36 undergoes a forced reset by a particular event related to the use of the vehicle. One can make sure to reset the counter 36 at each start (or alternatively at each stop) of the vehicle, so that the user is not interrupted from the start by an alert message on the dashboard following the passage the Alert variable at 1 or the coupler is not forced into an open state at each startup. Indeed, the user was able to perform an intervention to correct (tire changing, puncture repair etc ...) permanent slip before restarting it. For this purpose, the counting block 34 receives as input (or directly the counter 36 with which it cooperates), an Ignit variable passing to 1 when the vehicle start event is detected. The presence of such a permanent slip alert provides a detection system that is both robust and responsive, and provides information to the user with a reduced degree of intrusion. The ability to adjust the counter size, the slip averaging time, the maximum allowed slip value and the hysteresis - all parameterizable - allow a very precise focus of the warning strategy of the while ensuring high durability and coupler protection.

Le bloc 37 d'estimation d'une valeur de décalage estime une valeur de glissement permanent dans le temps, afin de procéder à une correction de la valeur de glissement utilisée dans les stratégies de contrôle du coupleur. Le bloc 37 d'estimation d'une valeur de décalage reçoit, sur une première entrée, une variable représentant le glissement moyen Gmoy pendant la durée paramétrable MinTime tel que calculé par le bloc de calcul 33. The block 37 for estimating an offset value estimates a permanent slip value over time, in order to carry out a correction of the slip value used in the control strategies of the coupler. The block 37 for estimating an offset value receives, on a first input, a variable representing the average slip Gmoy during the configurable duration MinTime as calculated by the calculation block 33.

Le bloc 37 reçoit en outre sur une deuxième entrée, la variable D prenant la valeur de la sortie d'une porte OU logique dont les entrées sont respectivement une variable Rev_Calc représentant l'état de réveil du calculateur et la variable Fav émise par le bloc de calcul 33. Les opérations d'estimation de la valeur de décalage sont conditionnées à la valeur prise par cette variable D de sorte que les opérations réalisées par le bloc 37 sont réalisées lorsque la variable D prend la valeur 1. Le bloc 37 comporte en outre des moyens de mémorisation formant une mémoire tampon dont la taille est paramétrable en fonction de la valeur prise par une variable T_B. La mémoire tampon reçoit des valeurs de glissement moyen Gmoy, dès lors que la variable D est égale à 1, et que l'amplitude de la variation entre deux valeurs immédiatement consécutives de glissement moyen Gmoy est inférieure à un seuil paramétrable (MaxDeltaGmoySlip). Lorsque le nombre de valeurs stockées dans la mémoire tampon atteint un seuil paramétrable MaxCounterGmoySlip, alors une moyenne arithmétique de ces valeurs de glissement moyen Gmoy stockées est calculée. Le résultat de ce calcul est alors envoyé sur la sortie G_Offset pour communiquer la valeur de décalage du glissement permanent. Avantageusement, on peut ne pas reporter directement le résultat du calcul sur la sortie GOffset, et limiter les variations entre la valeur courante présente sur la sortie GOffset et la nouvelle valeur calculée. Dans le cas où la différence entre la nouvelle valeur calculée et la valeur courante est supérieure à un seuil paramétrable MaxGOffsetVar, alors la valeur appliquée sur la sortie GOffset est égale à la valeur courante plus la valeur de seuil MaxGOffsetVar. Dans le cas où la différence entre la nouvelle valeur calculée et la valeur courante est inférieure à un seuil paramétrable MaxGOffsetVar alors la valeur appliquée sur la sortie GOffset est égale à la nouvelle valeur calculée. On obtient ainsi un filtrage des valeurs de décalage du glissement permanent G_Offset, permettant de limiter les changements de comportement du véhicule produits et/ou d'éventuels à-coups au niveau du coupleur (dus à des perturbations de boucles de régulation du coupleur). En outre, le lissage permet d'augmenter le seuil paramétrable MaxCounterGmoySlip des valeurs stockées, sans toutefois augmenter les variations des valeurs appliquées sur la sortie G Offset. The block 37 also receives on a second input, the variable D taking the value of the output of a logical OR gate whose inputs are respectively a variable Rev_Calc representing the waking state of the computer and the variable Fav emitted by the block The operations for estimating the offset value are conditioned by the value taken by this variable D so that the operations performed by the block 37 are performed when the variable D takes the value 1. The block 37 comprises in in addition to storage means forming a buffer whose size is parameterizable according to the value taken by a variable T_B. The buffer memory receives average slip values Gmoy, since the variable D is equal to 1, and the amplitude of the variation between two immediately consecutive values of average slip Gmoy is less than a parameterizable threshold (MaxDeltaGmoySlip). When the number of values stored in the buffer reaches a configurable threshold MaxCounterGmoySlip, then an arithmetic mean of these stored average Gmoy slip values is computed. The result of this calculation is then sent on the output G_Offset to communicate the offset value of the permanent slip. Advantageously, one can not directly report the result of the calculation on the output GOffset, and limit the variations between the current value present on the GOffset output and the new calculated value. In the case where the difference between the new calculated value and the current value is greater than a configurable threshold MaxGOffsetVar, then the value applied on the output GOffset is equal to the current value plus the threshold value MaxGOffsetVar. In the case where the difference between the new calculated value and the current value is less than a configurable threshold MaxGOffsetVar then the value applied to the output GOffset is equal to the new calculated value. This results in a filtering of the offset values of the permanent slip G_Offset, making it possible to limit the changes in vehicle behavior produced and / or any jolts at the coupler (due to disturbances of the coupler control loops). In addition, the smoothing makes it possible to increase the parameterizable threshold MaxCounterGmoySlip of the stored values, without however increasing the variations of the values applied on the output G Offset.

La sortie G_Offset ne prend des valeurs représentatives du décalage du glissement permanent G_Offset seulement lorsque la variable d'activation de sortie SActivate prend la valeur 1. Ceci se révèle particulièrement utile dans le cas de la recherche de pannes, mais aussi lorsque l'on souhaite inhiber la fonction. The output G_Offset only takes values representative of the slip offset G_Offset only when the output activation variable SActivate takes the value 1. This is particularly useful in the case of fault finding, but also when one wishes inhibit the function.

De plus, lorsqu'un évènement d'arrêt du véhicule (moteur inclus) est détecté, par exemple par l'activation de la variable Ignit à une valeur 0, la valeur de décalage du glissement permanent est enregistrée dans une mémoire non volatile accessible par le calculateur 11. Ainsi, la valeur de décalage sauvegardée est immédiatement reprise et appliquée à la sortie G_Offset lors du prochain démarrage du véhicule, bien avant que le véhicule ne se déplace et que le bloc 37 ne calcule une nouvelle valeur. Ceci améliore la réactivité globale du système notamment lorsque le filtrage de la variation de la valeur de décalage est opérationnel. In addition, when a vehicle stop event (engine included) is detected, for example by setting the Ignit variable to a value of 0, the offset value of the permanent slip is stored in a non-volatile memory accessed by the calculator 11. Thus, the saved offset value is immediately resumed and applied to the output G_Offset the next time the vehicle is started, well before the vehicle moves and the block 37 calculates a new value. This improves the overall responsiveness of the system, especially when the filtering of the variation of the offset value is operational.

L'invention telle qu'elle a été décrite permet une protection du coupleur efficace sans consommer beaucoup de ressources mémoire ni générer des interruptions de fonctionnement du mode 4x4 inutiles. L'invention permettant de détecter le glissement permanent peut aussi être appliquée à la révélation d'un problème qui crée un tel glissement permanent. Ainsi, il est possible de détecter une usure de pneus, une pression de gonflage inadaptée, ou une charge trop importante du véhicule. Les valeurs des seuils qui enclenchent des conditions de roulage favorables sont paramétrables, il est donc possible de privilégier la non interruption du mode quatre roues motrices sur la protection du coupleur ou de faire l'inverse. Par exemple, on peut dans le bloc de calcul 33 baisser la vitesse minimum ou augmenter la durée paramétrable MinTime pour favoriser la protection du coupleur. Il est ainsi possible d'ajuster le compromis protection du coupleur/disponibilité du mode quatre roues motrices. The invention as described allows efficient coupler protection without consuming a lot of memory resources or generating unnecessary 4x4 operation interruptions. The invention for detecting permanent slip can also be applied to the revelation of a problem that creates such a permanent slip. Thus, it is possible to detect tire wear, improper inflation pressure, or excessive load of the vehicle. The values of the thresholds which trigger favorable driving conditions are parameterizable, it is therefore possible to privilege the non-interruption of the four-wheel drive mode on the protection of the coupler or to do the opposite. For example, one can in the calculation block 33 lower the minimum speed or increase the configurable time MinTime to promote the protection of the coupler. It is thus possible to adjust the compromise protection of the coupler / availability of the four-wheel drive mode.

De plus selon l'invention, un double objectif d'information et de protection du coupleur est atteint. En effet, d'une part l'utilisateur peut être averti de la présence d'un glissement anormal par un signal d'alerte d'une part, afin de l'inciter à remédier au problème détecté et d'autre part, lorsque le glissement anormal subsiste dans une plage de valeurs qui ne nuit pas à court terme à la fiabilité du coupleur, de prendre en compte ce glissement anormal « supportable » afin de corriger les stratégies de contrôle du coupleur. In addition according to the invention, a dual objective of information and protection of the coupler is achieved. Indeed, on the one hand the user can be warned of the presence of abnormal slip by an alert signal on the one hand, to encourage him to remedy the problem detected and on the other hand, when the Abnormal slip remains in a range of values that does not affect the reliability of the coupler in the short term, to take into account this abnormal slip "bearable" in order to correct the control strategies of the coupler.

Claims (9)

REVENDICATIONS1. Procédé d'alerte de glissement d'un coupleur apte à répartir un couple entre deux essieux (2AV, 2AR) d'un véhicule motorisé à quatre roues motrices (la, lb, 1c, ld) montées sur les deux essieux caractérisé en ce que l'on détermine le glissement représentant la différence de vitesse des deux essieux uniquement lorsque certaines conditions de roulage (C_roulage) sont réalisées pendant une durée paramétrable (MinTime). REVENDICATIONS1. A slip warning method for a coupler capable of distributing a torque between two axles (2AV, 2AR) of a motorized four-wheel drive vehicle (la, lb, 1c, ld) mounted on the two axles, characterized in that the slip representing the difference in speed of the two axles is determined only when certain running conditions (C_roulage) are achieved for a configurable duration (MinTime). 2. Procédé d'alerte selon la revendication précédente caractérisé en ce que l'on incrémente un compteur (36) à chaque occurrence de glissement détecté. 2. Alerting method according to the preceding claim characterized in that one increments a counter (36) at each occurrence of slip detected. 3. Procédé d'alerte selon la revendication précédente caractérisé en ce qu'une alerte est adressée à un utilisateur du véhicule lorsque le compteur (36) atteint un premier seuil paramétrable (MaxCounter). 3. Alerting method according to the preceding claim characterized in that an alert is sent to a user of the vehicle when the counter (36) reaches a first parameterizable threshold (MaxCounter). 4. Procédé d'alerte selon la revendication 2 caractérisé en ce que l'alerte est levée lorsque le compteur (36) devient inférieur ou égal à un deuxième seuil paramétrable (Mincounter). 4. The alert method according to claim 2 characterized in that the alert is raised when the counter (36) becomes less than or equal to a second parameterizable threshold (Mincounter). 5. Procédé d'alerte selon l'une quelconque des revendications revendication 2 ou 4 caractérisé en ce que l'alerte est levée lorsque le compteur (36) est remis à zéro au démarrage du véhicule. 5. Alerting method according to any one of claims 2 or 4 characterized in that the alert is raised when the counter (36) is reset at start of the vehicle. 6. Procédé d'alerte selon l'une quelconque des revendications 2 ou 3 dans lequel on teste si la valeur moyenne du glissement (Gmoy) au cours de ladite durée paramétrable (MinTime) est supérieure à un troisième seuil (MinWheelSlip) et si l'amplitude de la variation du glissement (Gmax-Gmin) au cours de ladite durée paramétrable (MinTime) est inférieure à un quatrième seuil (MaxDeltaSlip), on incrémente le compteur si les deux tests sont vérifiés. 6. Alerting method according to any one of claims 2 or 3 wherein it is tested whether the average value of the slip (Gmoy) during said configurable duration (MinTime) is greater than a third threshold (MinWheelSlip) and if the amplitude of the slip variation (Gmax-Gmin) during said configurable duration (MinTime) is less than a fourth threshold (MaxDeltaSlip), the counter is incremented if the two tests are checked. 7. Procédé d'alerte selon la revendication 6 dans lequel on teste si la valeur moyenne du glissement (Gmoy) au cours de ladite durée paramétrable (MinTime) est inférieure à un cinquième seuil égal audit troisième seuil moins une constante (MinWheelSlip-Constant), eton décrémente le compteur uniquement lorsque la valeur moyenne du glissement est inférieure au cinquième seuil et l'amplitude de la variation du glissement (Gmax-Gmin) au cours de ladite durée paramétrable (MinTime) est inférieure à un quatrième seuil. 7. An alert method according to claim 6 wherein it is tested whether the average value of the slip (Gmoy) during said configurable duration (MinTime) is less than a fifth threshold equal to said third threshold minus a constant (MinWheelSlip-Constant) anddecrementing the counter only when the average value of the slip is less than the fifth threshold and the magnitude of the slip variation (Gmax-Gmin) during said configurable duration (MinTime) is less than a fourth threshold. 8. Procédé de commande de répartition du couple pour un véhicule selon la revendication 1 dans lequel on incrémente ou on décrémente un compteur (36) en fonction du glissement déterminé et en ce que l'on supprime tout transfert de couple vers l'un ou l'autre des essieux lorsque la valeur moyenne du glissement au cours deladite durée (MinTime) dépasse un seuil et lorsque ledit compteur (36) atteint un premier seuil (MaxCounter). A torque distribution control method for a vehicle according to claim 1 in which a counter (36) is incremented or decremented according to the determined slip and in that any transfer of torque to one or the other of the axles when the average value of the slip during said duration (MinTime) exceeds a threshold and when said counter (36) reaches a first threshold (MaxCounter). 9. Véhicule motorisé (Ve) à quatre roues motrices (la, lb, 1c, 1d) montées sur deux essieux (2AV, 2AR) comprenant un arbre de transfert (8) relié au premier essieu et un coupleur piloté (9) capable de transférer une partie du couple depuis l'arbre de transfert (8) vers le deuxième essieu, des moyens de détermination des vitesses respectives des deux essieux et un système de commande de répartition du couple (11) capable de déterminer une valeur de glissement représentant la différence de vitesse entre les deux essieux et de piloter le coupleur caractérisé en ce que le système de commande de répartition de couple (11) est configuré pour informer l'utilisateur par alerte selon le procédé d'alerte de glissement d'un coupleur selon l'une des revendications précédentes.25 9. Motor vehicle (Ve) with four driving wheels (la, lb, 1c, 1d) mounted on two axles (2AV, 2AR) comprising a transfer shaft (8) connected to the first axle and a controlled coupler (9) capable of transferring a part of the torque from the transfer shaft (8) to the second axle, means for determining the respective speeds of the two axles and a torque distribution control system (11) capable of determining a slip value representing the difference in speed between the two axles and to drive the coupler, characterized in that the torque distribution control system (11) is configured to inform the user by warning according to the slip warning method of a coupler according to the invention. one of the preceding claims.
FR1001533A 2010-04-12 2010-04-12 METHOD FOR ALLOYING A SLIDE OF A COUPLER. Active FR2958584B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR1001533A FR2958584B1 (en) 2010-04-12 2010-04-12 METHOD FOR ALLOYING A SLIDE OF A COUPLER.
FR1058318A FR2958585B1 (en) 2010-04-12 2010-10-13 METHOD FOR CONTROLLING A COUPLER
PCT/FR2011/050822 WO2011128565A1 (en) 2010-04-12 2011-04-11 Method for indicating slip of a coupler for distributing torque between two axles of a motorised vehicle, respective distribution control method, and vehicle comprising a system operating according to such a method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1001533A FR2958584B1 (en) 2010-04-12 2010-04-12 METHOD FOR ALLOYING A SLIDE OF A COUPLER.

Publications (2)

Publication Number Publication Date
FR2958584A1 true FR2958584A1 (en) 2011-10-14
FR2958584B1 FR2958584B1 (en) 2015-02-20

Family

ID=43334402

Family Applications (2)

Application Number Title Priority Date Filing Date
FR1001533A Active FR2958584B1 (en) 2010-04-12 2010-04-12 METHOD FOR ALLOYING A SLIDE OF A COUPLER.
FR1058318A Expired - Fee Related FR2958585B1 (en) 2010-04-12 2010-10-13 METHOD FOR CONTROLLING A COUPLER

Family Applications After (1)

Application Number Title Priority Date Filing Date
FR1058318A Expired - Fee Related FR2958585B1 (en) 2010-04-12 2010-10-13 METHOD FOR CONTROLLING A COUPLER

Country Status (2)

Country Link
FR (2) FR2958584B1 (en)
WO (1) WO2011128565A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023123A (en) * 2016-11-23 2019-07-16 腓特烈斯港齿轮工厂股份公司 Method for running automotive power

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111332299B (en) * 2020-03-09 2020-12-08 北京理工大学 Driving anti-skid control method and system based on multi-method fusion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3838709A1 (en) * 1987-11-23 1989-06-08 Steyr Daimler Puch Ag DRIVE ARRANGEMENT FOR A MOTOR VEHICLE
EP0336055A1 (en) * 1988-04-02 1989-10-11 Dr.Ing.h.c. F. Porsche Aktiengesellschaft System controlling power transmission to at least two axles of a motor vehicle
EP0438178A1 (en) * 1990-01-19 1991-07-24 Mazda Motor Corporation Differential control system for four-wheel drive vehicle
EP1538016A2 (en) * 2003-12-03 2005-06-08 Toyoda Koki Kabushiki Kaisha Drive power transmission control method and system for vehicle
US20050177294A1 (en) * 2004-02-09 2005-08-11 Hong Jiang Method and system for controlling a transfer case clutch to protect against excessive heat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275028A (en) * 1985-05-01 1986-12-05 Nissan Motor Co Ltd Driving force distribution controller for four-wheel drive vehicle
JP2646820B2 (en) * 1990-08-21 1997-08-27 日産自動車株式会社 Driving force distribution control device for four-wheel drive vehicle
JP4103433B2 (en) 2002-04-15 2008-06-18 松下電器産業株式会社 Dishwasher
US8095287B2 (en) * 2007-08-30 2012-01-10 Chrysler Group Llc Methods and systems for controlling an axle disconnect device for an all-wheel drive vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3838709A1 (en) * 1987-11-23 1989-06-08 Steyr Daimler Puch Ag DRIVE ARRANGEMENT FOR A MOTOR VEHICLE
EP0336055A1 (en) * 1988-04-02 1989-10-11 Dr.Ing.h.c. F. Porsche Aktiengesellschaft System controlling power transmission to at least two axles of a motor vehicle
EP0438178A1 (en) * 1990-01-19 1991-07-24 Mazda Motor Corporation Differential control system for four-wheel drive vehicle
EP1538016A2 (en) * 2003-12-03 2005-06-08 Toyoda Koki Kabushiki Kaisha Drive power transmission control method and system for vehicle
US20050177294A1 (en) * 2004-02-09 2005-08-11 Hong Jiang Method and system for controlling a transfer case clutch to protect against excessive heat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023123A (en) * 2016-11-23 2019-07-16 腓特烈斯港齿轮工厂股份公司 Method for running automotive power

Also Published As

Publication number Publication date
FR2958585B1 (en) 2012-07-20
FR2958585A1 (en) 2011-10-14
WO2011128565A1 (en) 2011-10-20
FR2958584B1 (en) 2015-02-20

Similar Documents

Publication Publication Date Title
EP2558325B1 (en) Torque distribution control method for a four-wheel drive motor vehicle and corresponding vehicle
EP2217476B1 (en) System for controlling a vehicle with determination of the speed thereof relative to the ground
EP2922719B1 (en) System and method for controlling a motor vehicle with independent rear electric machines
EP2555939B1 (en) System and method for limiting the engine torque of a four-wheel-drive vehicle
EP2895826B1 (en) Device and method for estimating the charge of a motor vehicle
WO2009060092A1 (en) System for generating an estimation of the ground speed of a vehicle from measures of the rotation speed of at least one wheel
EP2764281B1 (en) Method and system for controlling a power train depending on the temperature of a hydraulic torque converter
WO2014195605A1 (en) Method and device for estimating the wear condition of at least one motor vehicle tyre
WO2020169919A1 (en) Method and system for steering an electric axle of a trailer or semitrailer
WO2019110880A1 (en) Method for detecting a clutch slip state for a motor vehicle
EP2021216A1 (en) Device and method for controlling efforts on a vehicle comprising four driving wheels
EP2555956B1 (en) Estimation of the temperature outside a vehicle from temperature measurements under the bonnet of a vehicle
EP2555940A1 (en) Method for controlling the operation of a means of mechanically coupling the first and second axles of a motor vehicle
EP2558320B1 (en) System and method of controlling a torque transfer actuator in multiple function modes
FR2958584A1 (en) METHOD FOR ALLOYING A SLIDE OF A COUPLER.
EP2870038A1 (en) System and method for monitoring the trajectory of a vehicle
FR2958612A1 (en) METHOD FOR DIAGNOSING A MECHANICAL COUPLING MEANS OF THE FIRST AND SECOND AXLES OF A MOTOR VEHICLE
EP3947933A1 (en) Method for diagnosing a system for cooling an electrical propulsion circuit
EP2558324B1 (en) Method for controlling a means for mechanically coupling the axles of a transmission system of a motor vehicle
EP4061663B1 (en) Method of thermal diagnosis for the detection of an abnormality of the functioning of an electric circuit of a motor vehicle
FR2936204A1 (en) METHOD AND DEVICE FOR PROTECTING AN ENGINE TORQUE TRANSMISSION MEMBER TO THE WHEELS OF A MOTOR VEHICLE
FR3079192A1 (en) VEHICLE EQUIPPED WITH A HYDRAULIC DRIVER ASSISTANCE SYSTEM AND HYDRAULIC ASSISTANCE SYSTEM PROVIDED FOR THIS PURPOSE
WO2011138548A2 (en) Transmission system with neutral-shaft-type differential comprising regenerative braking device
FR3048204A3 (en) MOTOR VEHICLE WITH MECHANICAL AND HYDROSTATIC TRANSMISSION AND CONTROL METHOD THEREOF

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 6

PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

CA Change of address

Effective date: 20221121

PLFP Fee payment

Year of fee payment: 14