JPS61275028A - Driving force distribution controller for four-wheel drive vehicle - Google Patents

Driving force distribution controller for four-wheel drive vehicle

Info

Publication number
JPS61275028A
JPS61275028A JP9486185A JP9486185A JPS61275028A JP S61275028 A JPS61275028 A JP S61275028A JP 9486185 A JP9486185 A JP 9486185A JP 9486185 A JP9486185 A JP 9486185A JP S61275028 A JPS61275028 A JP S61275028A
Authority
JP
Japan
Prior art keywords
rotational speed
driving force
force distribution
wheels
rear wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9486185A
Other languages
Japanese (ja)
Other versions
JPH0572300B2 (en
Inventor
Shuji Torii
修司 鳥居
Tomio Shindo
神藤 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9486185A priority Critical patent/JPS61275028A/en
Publication of JPS61275028A publication Critical patent/JPS61275028A/en
Publication of JPH0572300B2 publication Critical patent/JPH0572300B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the drivability of a car in the case where each effective diameter of both front and rear tires differs, by installing a function which controls each driving force distribution ratio of front and rear wheels on the basis of a revolving speed difference between these front and rear wheels. CONSTITUTION:One side revolving speed N1 of front wheels or rear wheels and the other revolving speed N2 are detected by both first and second revolving speed detecting devices 11 and 12. A compensation factor A making a speed difference DELTAN (DELTAN=N1-A.N2) is calculated by a subtracting device 13 from the revolving speed A.N2 compensated by a compensating device 17 and the other side revolving speed N2. Therefore, in case of setting tires different in specifications as well as when tire air pressure drops or when chains are set to two wheels on the one side, etc., a slip is accurately detected. And, driving force distribution is controlled via a desired value setting device 14 and a driving force distributing device 15, thus car drivability is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は4輪駆動車の駆動力配分制御装置に係り、特
に、前輪に伝達する動力と後輪に伝達する動力との駆動
力配分比を前輪と後輪との回転速度差に基づいて制御す
る嶌区動力配分制御装置に藺・する。
Detailed Description of the Invention (Industrial Application Field) This invention relates to a driving force distribution control device for a four-wheel drive vehicle, and particularly relates to a driving force distribution ratio between the power transmitted to the front wheels and the power transmitted to the rear wheels. This is applied to a power distribution control system that controls the power distribution based on the difference in rotational speed between the front and rear wheels.

(゛従来の技術) 従来の4輪駆動車の駆動力配分制御装置としては、例え
ば、特開昭57’ −2052’33号公報2こ記載さ
れたようなものが知られている。この4輪駆動車の駆動
力配分制御装置は、前輪と後輪とめ回転数差が所定値以
上の場合にクラッチを継いで所定期間4輪駆動とすると
ともに、この所定期間よりも長い一定期間内におけるク
ラッチの切換動作回数を記憶し、この切換動作回数が所
定数以上になった時にクラッチを継ぎ続けるようにして
、クラッチを保護するものである。
(Prior Art) As a conventional driving force distribution control device for a four-wheel drive vehicle, there is known, for example, the one described in Japanese Unexamined Patent Publication No. 57'-2052'33. This driving force distribution control device for a four-wheel drive vehicle engages the clutch when the difference in rotational speed between the front wheels and the rear wheels is equal to or greater than a predetermined value, and applies four-wheel drive for a predetermined period of time. The clutch is protected by storing the number of times the clutch is switched, and when the number of times the clutch is switched exceeds a predetermined number, the clutch is continued to be engaged.

(この発明が解決しようとする問題点)しかしながら、
このような従来の4輪駆動車の駆動力配分制御装置にあ
っては、前輪と後輪との回転速度差をスリップ(対路面
相対回転)として検知し、この検知された回転速度差に
基づいてスリップの大小により2輪駆動と4輪駆動との
切換制御を行うよう構成されているため、車両に異なる
仕様のタイヤを装着した場合等に前輪と後輪との回転速
度差も変化し、2輪駆動と4輪駆動との切換制御をスリ
ップに対応させて正確に行うことができないという問題
点があった。すなわち、例えば、テンパータイヤを装着
した場合、前後の一方の2輪のみにチェーン装着した場
合、タイヤの空気圧が低下またはばらついた場合車両の
前後重量配分のアンバランス等で前後のタイヤの有効径
が異なる場合あるいは旋回走行をして前後のタイヤの軌
跡が異なる場合等に前後輪の回転速度差も変化するため
、単に前後輪の回転速度差のみからではスリップを正確
に検知することはできないという問題点があった。
(Problem to be solved by this invention) However,
In such conventional driving force distribution control devices for four-wheel drive vehicles, the rotational speed difference between the front wheels and the rear wheels is detected as slip (relative rotation with respect to the road surface), and based on this detected rotational speed difference, Since the system is configured to perform switching control between two-wheel drive and four-wheel drive depending on the magnitude of slip, the difference in rotational speed between the front and rear wheels will also change when tires with different specifications are installed on the vehicle. There is a problem in that switching control between two-wheel drive and four-wheel drive cannot be performed accurately in response to slip. For example, if tempered tires are installed, if chains are installed on only one of the front and rear wheels, if the tire air pressure decreases or fluctuates, the effective diameter of the front and rear tires may change due to an imbalance in the front and rear weight distribution of the vehicle, etc. The problem is that it is not possible to accurately detect slip simply from the difference in rotational speed between the front and rear wheels, as the difference in rotational speed between the front and rear wheels also changes when the wheels are different or when the trajectories of the front and rear tires are different due to turning. There was a point.

(問題点を解決するための手段) この発明にかかる4輪駆動車の駆動力配分制御装置は、
前述した問題点を解決することを目的としてなされたも
ので、第1図に示すように、前輪または後輪の一方の車
輪の回転速度N、を検出する第1回転速度検知手段11
と、前輪または後輪の他方の車輪の回転速度N2を検出
する第2回転速度検知手段12と、車両が直進惰行状態
にあることを検出する惰走検知手段16と、第2回転速
度検知手段12が検出した他方の車輪の回転速度Ntに
補正係数Aを乗じて回転速度補正値A −N、を算出す
る補正手段17と、第1回転速度検知手段11が検出し
た一方の車輪の回転速度N1および補正手段17が算出
した回転速度補正値A −NZから前後輪の回転速度差
ΔNを算出する減算手段13と、惰走検知手段16が車
両が直進惰行状態にあることを検知した時減算手段13
により算出される回転速度差ΔNが零となるように補正
手段17の補正係数Aを決定する補正値決定手段18と
、減算手段13により算出された回転速度差ΔNに応じ
た目標駆動力配分比を決定する目標値決定手段14と、
前輪と後輪との駆動力配分比が目標値決定手段14によ
り決定された目標駆動力配分比となるように前輪または
後輪の少なくとも一方へ機関から伝達する駆動力を変更
する駆動力配分手段15と、を有している。
(Means for solving the problem) A driving force distribution control device for a four-wheel drive vehicle according to the present invention includes:
This was made with the aim of solving the above-mentioned problem, and as shown in FIG.
, a second rotational speed detection means 12 that detects the rotational speed N2 of the other front wheel or rear wheel, a coasting detection means 16 that detects that the vehicle is in a straight coasting state, and a second rotational speed detection means a correction means 17 that calculates a rotation speed correction value A - N by multiplying the rotation speed Nt of the other wheel detected by the first rotation speed detection means 11 by a correction coefficient A; and a rotation speed of one wheel detected by the first rotation speed detection means 11; Subtraction means 13 that calculates the rotation speed difference ΔN between the front and rear wheels from N1 and the rotation speed correction value A - NZ calculated by the correction means 17, and subtraction when the coasting detection means 16 detects that the vehicle is in a straight coasting state. Means 13
a correction value determining means 18 that determines the correction coefficient A of the correcting means 17 so that the rotation speed difference ΔN calculated by target value determining means 14 for determining;
driving force distribution means for changing the driving force transmitted from the engine to at least one of the front wheels or the rear wheels so that the driving force distribution ratio between the front wheels and the rear wheels becomes the target driving force distribution ratio determined by the target value determining means 14; 15.

(作用) この発明にかかる4輪駆動車の駆動力配分制御装置によ
れば、車両が直進惰行状態にある時に前後輪の回転速度
差ΔNを零とするように決定された補正係数Aで他方の
車輪の回転速度N2を補正し、この補正された回転速度
A −NZと一方の車輪の回転速度N、とから前後輪の
回転速度差ΔN(ΔN = N +  A−N z )
を算出する。このため、例えば、異なる仕様のタイヤを
装着した場合、タイヤの空気圧が低下した場合あるいは
前後の一方の2輪にタイヤを装着した場合等にあっても
、前後輪の回転速度差ΔNすなわちスリップを正確に検
知することが可能となり、2輪駆動と4輪駆動との切換
制御を正確にスリップに対応させて行い車両の走行性能
を向上させることができる。
(Function) According to the driving force distribution control device for a four-wheel drive vehicle according to the present invention, when the vehicle is in a straight coasting state, the correction coefficient A is determined to make the rotational speed difference ΔN between the front and rear wheels zero, and the other Correct the rotational speed N2 of the wheels, and calculate the rotational speed difference ΔN between the front and rear wheels from the corrected rotational speed A - NZ and the rotational speed N of one wheel (ΔN = N + A-N z ).
Calculate. Therefore, for example, even if tires with different specifications are installed, the tire air pressure decreases, or tires are installed on one of the front and rear wheels, the difference in rotational speed ΔN between the front and rear wheels, that is, slippage, will be reduced. Accurate detection becomes possible, and switching control between two-wheel drive and four-wheel drive can be performed accurately in response to slippage, thereby improving the driving performance of the vehicle.

(実施例) 以下、この発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図から第5図は、この発明にかかる4輪駆動車の駆
動力配分制御装置の一実施例を示す図である。なお、こ
の実施例は、前置エンジン後輪駆動車をベースとする4
輪駆動車に適用したものを示す。
2 to 5 are diagrams showing an embodiment of a driving force distribution control device for a four-wheel drive vehicle according to the present invention. This embodiment is based on a front-engine, rear-wheel drive vehicle.
Shows what is applied to wheel drive vehicles.

まず、第2図により概要を説明すると、21はエンジン
(機関)、22はエンジン21と一体に組み付けられた
トランスミッション(変速機)であり、トランスミッシ
ョン22の出力軸は前後輪の駆動力配分を変更可能なト
ランスファ(駆動力配分手段)23を介して後輪プロペ
ラシャフト24Rおよび前輪プロペラシャフト24Fに
連結されている。後輪プロペラシャフト24Rは、後輪
差動装置25Rおよび左右のアクスル26RL、26R
Rを介して左右の後輪27RL、27RRに連結され、
同様に、前輪プロペラシャフト24Fは、前輪差動装置
25Fおよび左右のアクスル26FL、26FRを介し
て左右の前輪27FL、27FRに連結されている。
First, to explain the outline with reference to Figure 2, 21 is an engine (engine), 22 is a transmission (transmission) assembled integrally with the engine 21, and the output shaft of the transmission 22 changes the driving force distribution between the front and rear wheels. It is connected to a rear wheel propeller shaft 24R and a front wheel propeller shaft 24F via a possible transfer (driving force distribution means) 23. The rear wheel propeller shaft 24R is connected to the rear wheel differential device 25R and the left and right axles 26RL, 26R.
Connected to the left and right rear wheels 27RL and 27RR via R,
Similarly, the front wheel propeller shaft 24F is connected to left and right front wheels 27FL and 27FR via a front wheel differential 25F and left and right axles 26FL and 26FR.

トランスファ23は、第3図に示すように、2つの部材
28a、28bをボルト29により接合して成るトラン
スファケース28内に、トランスミッション22の出力
軸と連結した入力軸30が回転自在に収納され、また、
後輪プロペラシャフト24Rと連結した後輸出力軸31
がベアリング32により回転自在に支持されている。こ
れら入力軸30および後輸出力軸31は、それぞれが略
パイプ状の継手部材33に同軸的にスプライン結合して
、該継手部材33を介し一体回転するよう接続している
。継手部材33は、その外周部に後述する油圧式の摩擦
多板クラッチ49のドラム44が設けられ、また、トラ
ンスファケース28にボルト34aにより固定さた筒状
のベアリングホルダ34に回転自在に挿通している。
As shown in FIG. 3, in the transfer 23, an input shaft 30 connected to the output shaft of the transmission 22 is rotatably housed in a transfer case 28 formed by joining two members 28a and 28b with bolts 29. Also,
Rear export force shaft 31 connected to rear wheel propeller shaft 24R
is rotatably supported by a bearing 32. The input shaft 30 and the rear export force shaft 31 are each coaxially spline-coupled to a substantially pipe-shaped joint member 33 and connected to rotate integrally through the joint member 33. The coupling member 33 is provided with a drum 44 of a hydraulic multi-disc clutch 49 to be described later on its outer periphery, and is rotatably inserted into a cylindrical bearing holder 34 fixed to the transfer case 28 with bolts 34a. ing.

入力軸30には図中左方に第1中空軸38が回転自在に
外挿し、また、図中右方に第1中空軸38とスプライン
結合した第2中空軸39がニードルベアリング43を介
して回転自在に外挿している。第1中空軸38は、その
外周上にカウンタギア40aと噛合したドライブギア3
8aが一体に形成されている。
A first hollow shaft 38 is rotatably inserted into the input shaft 30 on the left side of the figure, and a second hollow shaft 39 spline-coupled with the first hollow shaft 38 is attached on the right side of the figure via a needle bearing 43. Rotatably extrapolated. The first hollow shaft 38 has a drive gear 3 meshed with a counter gear 40a on its outer periphery.
8a is integrally formed.

このカウンタギア40aは、トランスファケース28に
ベアリング41を介し回転自在に支持されたカウンタシ
ャフト40に一体に形成され、前輪プロペラシャフト2
4Fと連結した前輸出力軸に設けられたドリブンギア4
2と噛合している。第2中空軸39は一体に形成されて
径方向外方へ突出するハブ39aを有し、このハブ39
aと前述したドラム44との間に摩擦多板クラッチ49
が取り付けられている。
This counter gear 40a is integrally formed with a counter shaft 40 rotatably supported by the transfer case 28 via a bearing 41, and is integrally formed with the front wheel propeller shaft 2.
Driven gear 4 installed on the front export force shaft connected to 4F
It meshes with 2. The second hollow shaft 39 has a hub 39a that is integrally formed and projects radially outward.
A friction multi-disc clutch 49 is provided between the drum 44 and the drum 44 described above.
is installed.

摩擦多板クラッチ49は、ドラム44の内周壁にスプラ
イン結合した複数のドライブプレート45と、第2中空
軸39のハブ39aにスプライン結合してドライブプレ
ート45と軸方向交互に配列された複数のドリブンプレ
ート46と、ドラム44および継手部材33にそれぞれ
内外の両側面が液密的かつ軸方向の摺動自在に摺接して
油室47を画成する略環状のピストン48と、継手部材
33に取り付けられたリテーナ52とピストン48との
間に縮装されてピストン48を油室47側へ付勢するス
プリング53と、を備え゛ている。油室47は、継手部
材33に形成された第1油路35a、ベアリングホルダ
34に形成された第2油路35bおよびトランスファケ
ース28↓こ形成された第3油路35cを介してトラン
スファケース28の油圧ボー)35dに連通している。
The friction multi-disc clutch 49 includes a plurality of drive plates 45 spline-coupled to the inner peripheral wall of the drum 44, and a plurality of drive plates spline-coupled to the hub 39a of the second hollow shaft 39 and arranged alternately in the axial direction with the drive plates 45. A substantially annular piston 48 whose inner and outer surfaces are in liquid-tight and axially slidable contact with the plate 46 and the drum 44 and the joint member 33 to define an oil chamber 47, and which is attached to the joint member 33. A spring 53 is compressed between the retainer 52 and the piston 48 and urges the piston 48 toward the oil chamber 47. The oil chamber 47 is connected to the transfer case 28 via a first oil passage 35a formed in the joint member 33, a second oil passage 35b formed in the bearing holder 34, and a third oil passage 35c formed in the transfer case 28↓. (hydraulic bow) 35d.

この摩擦多板クラッチ49は、油圧ポート35dから第
1、第2、第3油路35a、35b、35Cを経て油室
47に高圧の圧油が供給されると、ピストン48がスプ
リング53の弾性力に抗し図中左動してドライブプレー
ト45とドリブンプレート46とを摩擦接触させ、継手
部材33と第2中空軸39との間すなわち入力軸30と
前輸出力軸との間を接続する。
In this friction multi-disc clutch 49, when high-pressure oil is supplied from the hydraulic port 35d to the oil chamber 47 via the first, second, and third oil passages 35a, 35b, and 35C, the piston 48 is moved by the elasticity of the spring 53. It moves to the left in the figure against the force to bring the drive plate 45 and the driven plate 46 into frictional contact, thereby connecting between the joint member 33 and the second hollow shaft 39, that is, between the input shaft 30 and the front export force shaft. .

なお、30aは入力軸30に形成された第1潤滑油路、
31aは後輸出力軸31に形成された第2潤滑油路、3
9bは第2中空軸39に形成された第1タラツチ潤滑油
路、39cは第2中空軸39のハブ39aに形成された
第2クラツチ潤滑油路、44aはドラム44に形成され
た第3クラツチ潤滑油路であり、第1および第2潤滑油
路30a、31aはニードルベアリング43等へ潤滑油
を供給し、また、第1、第2および第3クラツチ潤滑油
路39b、39c、44aは摩擦多板クラッチ49のド
ライブプレート45とドリブンプレート46との摺接部
へ潤滑油を供給する。また、36は速度検知用のビニオ
ンである。
Note that 30a is a first lubricating oil passage formed in the input shaft 30;
31a is a second lubricating oil passage formed in the rear export force shaft 31;
9b is a first clutch lubricating oil passage formed in the second hollow shaft 39, 39c is a second clutch lubricating oil passage formed in the hub 39a of the second hollow shaft 39, and 44a is a third clutch lubricating oil passage formed in the drum 44. The first and second lubricating oil passages 30a and 31a supply lubricating oil to the needle bearing 43, etc., and the first, second and third clutch lubricating oil passages 39b, 39c and 44a supply lubricating oil to the needle bearing 43, etc. Lubricating oil is supplied to the sliding contact portion between the drive plate 45 and the driven plate 46 of the multi-plate clutch 49. Further, 36 is a binion for speed detection.

50は高圧の圧油を発生する圧油源であり、圧油源50
は電磁弁54を介して前述の油圧ボート35dに連絡さ
れている。電磁弁54は、制御装置51に結線されたソ
レノイド54aを有し、ソレノイド54aに通電される
電流値および油圧ボー) 35 dの油圧に応じた開度
で油圧ポート35dと圧油源50との間を連通ずる。す
なわち、この電磁弁54は、例えばソレノイド54aの
電磁力と油圧ボート35dの油圧とに応動するスプール
を有し、このスプールの動きで油室47へ供給される油
圧(クラッチ圧)を変更する。
50 is a pressure oil source that generates high pressure oil;
is connected to the aforementioned hydraulic boat 35d via a solenoid valve 54. The solenoid valve 54 has a solenoid 54a connected to the control device 51, and connects the hydraulic port 35d and the pressure oil source 50 with an opening degree according to the current value energized to the solenoid 54a and the hydraulic pressure of 35d. communicate between. That is, the solenoid valve 54 has a spool that responds to, for example, the electromagnetic force of the solenoid 54a and the oil pressure of the hydraulic boat 35d, and the movement of this spool changes the oil pressure (clutch pressure) supplied to the oil chamber 47.

制御装置51は、ワンチップマイコン等を有するもので
、前輪回転速度検知器(第2回転速度検知器)55、後
輪回転速度検知器(第1回転速度検知器)56、舵角検
知器57、ニュートラルスイッチ58およびブレーキス
イッチ59が結線されている。前輪回転速度検知器55
はトランスファ23の前輸出力軸の回転数等を検出して
前輪27FL、27FRの回転速度Nfを表示する信号
を出力し、同様に、後輪回転速度検知器56はトランス
ファ23の後輸出力軸の回転数等を検出して後輪27R
L、27RRの回転速度Nrを表示する信号を出力する
。舵角検知器57は、舵角θを検出して舵角θを表示す
る信号を出力し、ニュートラルスイッチ58は、トラン
スミ、ツション22が中立位置に操作されているか否か
を検出してトランスミッション22が中立位置にある時
論理信号Tを出力し、また、ブレーキスイッチ59はブ
レーキペダルが踏み込み操作されたブレーキ作動中か否
かを検出してブレーキ作動時に論理信号Bを出力する。
The control device 51 includes a one-chip microcomputer, etc., and includes a front wheel rotation speed detector (second rotation speed detector) 55, a rear wheel rotation speed detector (first rotation speed detector) 56, and a steering angle detector 57. , a neutral switch 58, and a brake switch 59 are connected. Front wheel rotation speed detector 55
detects the rotation speed of the front export force shaft of the transfer 23 and outputs a signal indicating the rotation speed Nf of the front wheels 27FL and 27FR. Detects the rotation speed etc. of the rear wheel 27R.
A signal indicating the rotational speed Nr of L, 27RR is output. The steering angle detector 57 detects the steering angle θ and outputs a signal indicating the steering angle θ, and the neutral switch 58 detects whether the transmission 22 is operated to a neutral position and outputs a signal indicating the steering angle θ. When the brake switch 59 is in the neutral position, it outputs a logic signal T, and the brake switch 59 detects whether or not the brake pedal is depressed and is in operation, and outputs a logic signal B when the brake is operated.

制御装置51は入力する信号を演算処理して電磁弁54
のソレノイド54aを通電する。この制御装置51は、
減算手段、目標値決定手段、惰走検知手段、補正手段お
よび補正値決定手段に相当し、また、舵角検知器57、
ニュートラルスイッチ58およびブレーキスイッチ59
は惰走検知手段に相当する。
The control device 51 performs arithmetic processing on input signals and controls the solenoid valve 54.
The solenoid 54a is energized. This control device 51 is
It corresponds to a subtraction means, a target value determination means, a coasting detection means, a correction means, and a correction value determination means, and also includes a steering angle detector 57,
Neutral switch 58 and brake switch 59
corresponds to coasting detection means.

次に、作用を説明する。Next, the effect will be explained.

この4輪駆動車の駆動力配分制御装置は、車両が直進惰
行状態にある時に前後輪の回転速度差ΔNを零とするよ
うな補正係数Aを算出し、検出する前後輪の回転速度N
 f −、N rをこの補正係数Aにより補正して前後
輪の回転速度差ΔNを求め、この回転速度差ΔNすなわ
ちスリップに基づいて前後輪の駆動力配分Rを制御する
。したがって、異なる仕様のタイヤを装着した場合等に
あっても正確にスリップを検出して駆動力配分Rを制御
することができ、車両の走行性能を向上させることがで
きる。
This driving force distribution control device for a four-wheel drive vehicle calculates a correction coefficient A that makes the rotational speed difference ΔN between the front and rear wheels zero when the vehicle is coasting in a straight line, and adjusts the rotational speed N of the front and rear wheels to be detected.
The rotation speed difference ΔN between the front and rear wheels is determined by correcting f − and N r using the correction coefficient A, and the driving force distribution R between the front and rear wheels is controlled based on this rotation speed difference ΔN, that is, the slip. Therefore, even when tires with different specifications are installed, slip can be accurately detected and driving force distribution R can be controlled, and the driving performance of the vehicle can be improved.

以下、第4図のフローチャートを参照して詳細に説明す
る。このフローチャートに示す一連の処理は、制御装置
51において所定周期で繰り返し実行される。まず、ス
テップP1において補正係数Aに初期値1を設定し、続
くステップP2およびステップP3で、前輪回転速度検
知器55および後輪回転速度検知器56の出力信号から
それぞれ前輪回転速度N〔と後輪回転速度Nrとを読み
込む。
The process will be explained in detail below with reference to the flowchart shown in FIG. A series of processes shown in this flowchart are repeatedly executed in the control device 51 at predetermined intervals. First, in step P1, an initial value of 1 is set for the correction coefficient A, and in subsequent steps P2 and P3, the front wheel rotation speed N [and the rear wheel rotation speed Read the wheel rotation speed Nr.

続くステップP4では、下式(1)により前後輪の回転
速度差ΔNを算出する。
In the following step P4, the rotational speed difference ΔN between the front and rear wheels is calculated using the following equation (1).

ΔN=N r −A −N f      −・・−A
llそして、次のステップP、においては、ニュートラ
ルスイッチ58の出力信号からトランスミッション22
が中立位置に操作された状態にあるか否かを判断しくク
ラッチの断状態を検知しても可)、トランスミッション
22が中立位置にあればステップP6へ進み、トランス
ミッション22が中立位置になければステップpHへ進
む。
ΔN=N r -A -N f -...-A
In the next step P, the output signal of the neutral switch 58 is used to determine the transmission 22.
If the transmission 22 is in the neutral position, proceed to step P6; if the transmission 22 is not in the neutral position, proceed to step P6. Proceed to pH.

ステップP6では、ブレーキスイッチ59の出力信号か
らブレーキ作動中か否かを判断し、ブレーキ作動中であ
ればステップP’l lへ進み、ブレーキ作動中で無け
ればステップP7へ進む。ステップP7においては、舵
角検知器57の出力信号から舵角θが零か否かすなわち
車両が直進状態にあるか否かを判断し、車両が直進状態
になければステップP、へ進み、車両が直進状態にあれ
ばステップP8へ進む。これらステップP2、ステップ
P。
In step P6, it is determined from the output signal of the brake switch 59 whether or not the brake is being applied. If the brake is being applied, the process proceeds to step P'll; if the brake is not being applied, the process proceeds to step P7. In step P7, it is determined from the output signal of the steering angle detector 57 whether the steering angle θ is zero, that is, whether the vehicle is in a straight-ahead state. If the vehicle is not in a straight-ahead state, the process proceeds to step P, where the vehicle If the vehicle is traveling straight, the process advances to step P8. These step P2, step P.

およびステップP、は、車両が直進惰行状態になるか否
かを判断している。ステップPaでは、ステップP4で
算出した回転速度差ΔNを零とみなし、次のステップP
、において、回転速度差ΔNを零とみなした場合 の仮の補正係数A0を次式(2)により算出する。
In step P, it is determined whether the vehicle is in a straight coasting state. In step Pa, the rotational speed difference ΔN calculated in step P4 is regarded as zero, and the next step P
In , a temporary correction coefficient A0 is calculated using the following equation (2) when the rotational speed difference ΔN is regarded as zero.

なお、式(2)の分母および分子における1の加算は、
分母が零になることを禁止するためのものである。
Note that addition of 1 in the denominator and numerator of formula (2) is
This is to prevent the denominator from becoming zero.

そして、続くステップP1゜で補正係数Aを値A0に置
換する。したがって、例えばタイヤの空気圧が後発的に
変化したような場合でも、回転速度差ΔNを正確に算出
することができる。
Then, in the following step P1°, the correction coefficient A is replaced with the value A0. Therefore, even if, for example, the tire air pressure changes late, it is possible to accurately calculate the rotational speed difference ΔN.

ステップpHにおいては、回転速度差ΔNが所定値ΔN
0より小さいか否かを判断し、回転速度差ΔNが所定値
ΔN0より小さければステップP1゜へ進み、回転速度
差ΔNが所定値ΔNo以上であればステップPI3へ進
む。ステップPI2では下式(3)に基づき回転速度差
ΔNに応じた電流値iを算出し、同様に、ステップP1
3では下式(4)に基づき回転速度差ΔNに応じた電流
値iを算出する。
At the step pH, the rotational speed difference ΔN is a predetermined value ΔN
It is determined whether or not it is smaller than 0. If the rotational speed difference ΔN is smaller than a predetermined value ΔN0, the process proceeds to step P1°, and if the rotational speed difference ΔN is greater than or equal to the predetermined value ΔNo, the process proceeds to step PI3. In step PI2, a current value i according to the rotational speed difference ΔN is calculated based on the following formula (3), and similarly, in step P1
In step 3, a current value i according to the rotational speed difference ΔN is calculated based on the following equation (4).

i=a  ・ ΔN            ・・・・
・・(3)i=a・ΔN0+b・ (ΔN−ΔN、)・
・・・・・(4) これらステップP1□およびステップPI3においては
、第5図に示すように、電磁弁54のソレノイド54a
へ通電する電流値すなわち前後輪の駆動力配分比を回転
速度差ΔNに応じて決定する。そして、次のステップP
14においては、ステップP、z、P1、で決定された
電流iを電磁弁54のソレノイド54aへ通電する。し
たがって、電磁弁54は電流iに応じた開度で摩擦多板
クラッチ49の油室47を圧油源50に連通し、クラッ
チ圧Pが電流iに応じた値となる。この結果、摩擦多板
クラ・7チ49を介し前輪27FL、27FRへ伝達さ
れる駆動力はクラッチ圧Pすなわち電流iに応じた値と
なり、前後輪の駆動力配分比が回転速度差ΔNに応じて
制御される。
i=a・ΔN・・・・
...(3) i=a・ΔN0+b・ (ΔN−ΔN,)・
(4) In these steps P1□ and PI3, as shown in FIG.
The current value to be energized, that is, the driving force distribution ratio between the front and rear wheels is determined according to the rotational speed difference ΔN. And the next step P
In step 14, the current i determined in steps P, z, and P1 is applied to the solenoid 54a of the electromagnetic valve 54. Therefore, the electromagnetic valve 54 communicates the oil chamber 47 of the friction multi-disc clutch 49 with the pressure oil source 50 at an opening degree that corresponds to the current i, and the clutch pressure P becomes a value that corresponds to the current i. As a result, the driving force transmitted to the front wheels 27FL and 27FR via the friction multi-plate clutch 7ch 49 has a value corresponding to the clutch pressure P, that is, the current i, and the driving force distribution ratio between the front and rear wheels corresponds to the rotational speed difference ΔN. controlled by

このように、この4輪駆動車の駆動力配分制御装置によ
れば、車両が直進惰行状態になると前後輪の回転速度差
ΔNを零にするような補正係数を算出し、以後、この補
正係数により求められた回転速度差ΔNに基づき前後輪
の駆動力配分比を制御するため、後発的にタイヤの特性
を異ならしめることが起きても回転速度差ΔNを正確に
検出することができるようになり、この正確な回転速度
差に基づき駆動力配分比を制御することで走行性能の向
上を図ることができる。
As described above, according to this driving force distribution control device for a four-wheel drive vehicle, a correction coefficient is calculated that makes the rotational speed difference ΔN between the front and rear wheels zero when the vehicle is in a straight coasting state, and from then on, this correction coefficient is Since the driving force distribution ratio between the front and rear wheels is controlled based on the rotational speed difference ΔN determined by By controlling the driving force distribution ratio based on this accurate rotational speed difference, driving performance can be improved.

なお、上述した実施例では油圧式の摩擦多板クラッチを
有するトランスファが装着されたパートタイム式の4輪
駆動車に適用したものを示すがドグクラッチを有するト
ランスファが装着されたパートタイム式の4輪駆動車あ
るいは差動制限装置付中央差動装置が装着されたフルタ
イム式の4輪駆動車等にも本発明が適用できることは言
うまでも無い。
The above-mentioned embodiments are applied to a part-time 4-wheel drive vehicle equipped with a transfer having a hydraulic multi-disc clutch, but it is also applicable to a part-time 4-wheel drive vehicle equipped with a transfer having a dog clutch. It goes without saying that the present invention can also be applied to drive vehicles or full-time four-wheel drive vehicles equipped with a central differential with a differential limiting device.

(発明の効果) 以上説明してきたように、この発明にかかる4輪駆動車
の駆動力配分制御装置によれば、車両が直進惰行状態に
なると補正係数を新規に算出し、この補正係数で補正し
た前後輪の回転速度差ΔNに基づき前後輪の駆動力配分
比を制御する。このため、異なる仕様のタイヤを装着し
た場合、前後の一方の2輪にチェーンを装着した場合、
タイヤの空気圧が低下またはばらついた場合、車両の前
後重量配分のアンバランス等で前後のタイヤの有効径が
異なる場合、あるいは旋回により前後のタイヤの軌跡が
異なる場合でも、正確に回転速度差ΔNを算出すること
ができるようになり、駆動力配分比の制御をスリップに
対応させて正確に行い車両の走行性能を向上させること
ができる。
(Effects of the Invention) As described above, according to the driving force distribution control device for a four-wheel drive vehicle according to the present invention, when the vehicle enters a straight coasting state, a correction coefficient is newly calculated, and correction is made using this correction coefficient. The driving force distribution ratio between the front and rear wheels is controlled based on the rotational speed difference ΔN between the front and rear wheels. Therefore, if tires with different specifications are installed, or chains are installed on one of the front and rear wheels,
Even if the tire air pressure drops or fluctuates, the effective diameter of the front and rear tires differs due to an imbalance in the front and rear weight distribution of the vehicle, or the trajectory of the front and rear tires differs due to turning, it is possible to accurately calculate the rotational speed difference ΔN. This makes it possible to accurately control the driving force distribution ratio in response to slip, thereby improving the driving performance of the vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる4輪駆動車の駆動力配分制御
装置の構成図である。第2図から第5図はこの発明にか
かる4輪駆動車の駆動力配分制御装置の一実施例を示し
、第2図は全体概略図、第3図は機構要部の断面図、第
4図はフローチャート、第5図は前後輪回転速度差ΔN
に対する電磁弁へ通電する電流値iの特性を示す図であ
る。 11.56・・・・・・第1回転速度検知手段(後輪回
転速度検知器)、 12.55・・・・・・第2回転速度検知手段(前輪回
転速度検知器)、 13・・・・・・減算手段、  。 14・・・・・・目標値決定手段、 15・・・・・・駆動力配分手段、 16・・・・・・惰走検知手段、 17・・・・・・補正手段、 1B・・・・・・補正値決定手段、 21・・・・・・エンジン(機関)、 27F L、 27F R・・・・・・前輪、27RL
 、 27RR・・・・・・後輪、49・・・・・・摩
擦多板クラッチ、 51・・・・・・制御装置、 57・・・・・・舵角検知器、 58・・・・・・ニュートラルスイッチ、59・・・・
・・プレーキスインチ。
FIG. 1 is a configuration diagram of a driving force distribution control device for a four-wheel drive vehicle according to the present invention. 2 to 5 show an embodiment of the driving force distribution control device for a four-wheel drive vehicle according to the present invention, in which FIG. 2 is an overall schematic diagram, FIG. 3 is a sectional view of the main parts of the mechanism, and The figure is a flowchart, and Figure 5 is the difference in rotational speed of front and rear wheels ΔN
FIG. 3 is a diagram showing the characteristics of the current value i applied to the electromagnetic valve. 11.56...First rotation speed detection means (rear wheel rotation speed detector), 12.55...Second rotation speed detection means (front wheel rotation speed detector), 13... ...subtraction means, . 14...Target value determining means, 15...Driving force distribution means, 16...Coasting detection means, 17...Correction means, 1B... ...Correction value determining means, 21...Engine, 27F L, 27F R...Front wheel, 27RL
, 27RR... Rear wheel, 49... Friction multi-disc clutch, 51... Control device, 57... Rudder angle detector, 58... ...neutral switch, 59...
...Play Kiss Inch.

Claims (1)

【特許請求の範囲】[Claims] 前輪または後輪の一方の車輪の回転速度を検出する第1
回転速度検知手段と、前輪または後輪の他方の車輪の回
転速度を検出する第2回転速度検知手段と、第1回転速
度検知手段および第2回転速度検知手段が検出した回転
速度から前記一方の車輪の回転速度を基準とした前後輪
の回転速度差を算出する減算手段と、該減算手段が算出
した回転速度差に応じた目標駆動力配分比を決定する目
標値決定手段と、前輪と後輪との駆動力配分比が前記目
標値決定手段により決定された目標駆動力配分比となる
ように前輪または後輪の少なくとも一方へ機関から伝達
する駆動力を変更する駆動力配分手段と、を備えた4輪
駆動車の駆動力配分制御装置において、車両が直進惰行
状態にあることを検出する惰走検知手段と、前記第2回
転速度検知手段が検出した前記他方の車輪の回転速度に
補正係数を乗じて回転速度補正値を算出する補正手段と
、前記惰走検知手段により車両が直進惰行状態にあるこ
とを検知された時、前記減算手段により算出される回転
速度差が零となるように前記補正手段の補正係数を決定
する補正値決定手段と、を設けたことを特徴とする4輪
駆動車の駆動力配分制御装置。
The first one detects the rotational speed of one of the front wheels or the rear wheels.
a rotational speed detection means, a second rotational speed detection means for detecting the rotational speed of the other of the front wheels or the rear wheels, and a rotational speed detected by the first rotational speed detection means and the second rotational speed detection means. a subtraction means for calculating a rotational speed difference between the front and rear wheels based on the rotational speed of the wheels; a target value determination means for determining a target driving force distribution ratio according to the rotational speed difference calculated by the subtraction means; driving force distribution means for changing the driving force transmitted from the engine to at least one of the front wheels or the rear wheels so that the driving force distribution ratio to the wheels becomes the target driving force distribution ratio determined by the target value determining means; A driving force distribution control device for a four-wheel drive vehicle, comprising: coasting detection means for detecting that the vehicle is in a straight coasting state; and correction to the rotational speed of the other wheel detected by the second rotational speed detection means. a correction means for calculating a rotational speed correction value by multiplying by a coefficient, and a rotational speed difference calculated by the subtraction means such that when it is detected by the coasting detection means that the vehicle is in a straight coasting state, the rotational speed difference calculated by the subtraction means becomes zero. A driving force distribution control device for a four-wheel drive vehicle, comprising: correction value determining means for determining a correction coefficient of the correction means.
JP9486185A 1985-05-01 1985-05-01 Driving force distribution controller for four-wheel drive vehicle Granted JPS61275028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9486185A JPS61275028A (en) 1985-05-01 1985-05-01 Driving force distribution controller for four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9486185A JPS61275028A (en) 1985-05-01 1985-05-01 Driving force distribution controller for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS61275028A true JPS61275028A (en) 1986-12-05
JPH0572300B2 JPH0572300B2 (en) 1993-10-12

Family

ID=14121812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9486185A Granted JPS61275028A (en) 1985-05-01 1985-05-01 Driving force distribution controller for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPS61275028A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393596A2 (en) * 1989-04-19 1990-10-24 Nissan Motor Co., Ltd. Torque split control system for 4WD vehicle
JP2003237399A (en) * 2002-02-12 2003-08-27 Hitachi Unisia Automotive Ltd Driving force distribution control system for four-wheel drive vehicle
FR2958585A1 (en) * 2010-04-12 2011-10-14 Renault Sa METHOD FOR CONTROLLING A COUPLER
FR2958607A1 (en) * 2010-04-12 2011-10-14 Renault Sa TORQUE DISTRIBUTION CONTROL METHOD FOR A MOTORIZED MOTOR VEHICLE WITH FOUR WHEELS AND CORRESPONDING VEHICLE
WO2011128566A1 (en) 2010-04-12 2011-10-20 Renault S.A.S. Method for controlling a means for mechanically coupling the axles of a transmission system of a motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812827A (en) * 1981-07-15 1983-01-25 Hitachi Ltd Electronic four-wheel drive control unit
JPS58128929A (en) * 1982-01-28 1983-08-01 Aisin Warner Ltd Hydraulic controller for four-wheel drive transfer
JPS5926351A (en) * 1982-08-04 1984-02-10 Nippon Denso Co Ltd Antiskid unit
JPS6035650A (en) * 1983-08-09 1985-02-23 Nippon Denso Co Ltd Antiskid controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5812827A (en) * 1981-07-15 1983-01-25 Hitachi Ltd Electronic four-wheel drive control unit
JPS58128929A (en) * 1982-01-28 1983-08-01 Aisin Warner Ltd Hydraulic controller for four-wheel drive transfer
JPS5926351A (en) * 1982-08-04 1984-02-10 Nippon Denso Co Ltd Antiskid unit
JPS6035650A (en) * 1983-08-09 1985-02-23 Nippon Denso Co Ltd Antiskid controller

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0393596A2 (en) * 1989-04-19 1990-10-24 Nissan Motor Co., Ltd. Torque split control system for 4WD vehicle
JP2003237399A (en) * 2002-02-12 2003-08-27 Hitachi Unisia Automotive Ltd Driving force distribution control system for four-wheel drive vehicle
JP4531319B2 (en) * 2002-02-12 2010-08-25 日立オートモティブシステムズ株式会社 Driving force distribution control device for four-wheel drive vehicles
FR2958585A1 (en) * 2010-04-12 2011-10-14 Renault Sa METHOD FOR CONTROLLING A COUPLER
FR2958607A1 (en) * 2010-04-12 2011-10-14 Renault Sa TORQUE DISTRIBUTION CONTROL METHOD FOR A MOTORIZED MOTOR VEHICLE WITH FOUR WHEELS AND CORRESPONDING VEHICLE
WO2011128566A1 (en) 2010-04-12 2011-10-20 Renault S.A.S. Method for controlling a means for mechanically coupling the axles of a transmission system of a motor vehicle
WO2011128569A1 (en) 2010-04-12 2011-10-20 Renault S.A.S. Torque distribution control method for a four-wheel drive motor vehicle and corresponding vehicle
WO2011128565A1 (en) 2010-04-12 2011-10-20 Renault S.A.S. Method for indicating slip of a coupler for distributing torque between two axles of a motorised vehicle, respective distribution control method, and vehicle comprising a system operating according to such a method
US9156349B2 (en) 2010-04-12 2015-10-13 Renault S.A.S. Torque distribution control method for a four-wheel drive motor vehicle and corresponding vehicle

Also Published As

Publication number Publication date
JPH0572300B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
JP4267495B2 (en) Driving force control method for four-wheel drive vehicle
JP3405052B2 (en) Driving force distribution control device
JP2534730B2 (en) 4-wheel steering / Differential limiting force integrated control device
US4582159A (en) Part-time four-wheel drive system with braking force responsive control
JPH0577533B2 (en)
JP4554252B2 (en) Control method for four-wheel drive vehicle
JPS61169326A (en) Driving force distribution controller for 4 wheel drive car
JPH01145229A (en) Driving power distribution-controller for four-wheel drive vehicle
US20090248268A1 (en) Drive force transmission apparatus, control method of drive force transmission apparatus, and limited slip differential
JPH02290737A (en) Driving power distribution control device of four-wheel drive vehicle
JPS61275028A (en) Driving force distribution controller for four-wheel drive vehicle
JPH0526687B2 (en)
JPS626831A (en) Driving force distribution controller for four-wheel drive car
JPH0545455B2 (en)
JP7164044B2 (en) Driving force distribution method and driving force distribution device for front/rear wheel drive vehicle
JPS61178232A (en) Driving force transmission for four-wheel drive vehicle
JP2005289161A (en) Driving force control method of 4-wheel drive vehicle
JPS61244628A (en) Driving power distribution controller for four-wheel drive vehicle
JP3396061B2 (en) Driving force control device for four-wheel drive vehicle
JP2004359213A (en) Driving force control device of four-wheel drive vehicle
JPH0635259B2 (en) Vehicle drive system clutch control device
JP2003306051A (en) Wheel drive force distribution control system
JPS6259125A (en) Transmission torque controller for four-wheel drive car
JPH0891075A (en) Transfer device for vehicle
JPH01190538A (en) Driving force distribution control device for four-wheel drive vehicle