FR2954430A1 - STRUCTURAL ELEMENT FOR ENERGY ABSORPTION IN COMPOSITE MATERIAL - Google Patents

STRUCTURAL ELEMENT FOR ENERGY ABSORPTION IN COMPOSITE MATERIAL Download PDF

Info

Publication number
FR2954430A1
FR2954430A1 FR0959200A FR0959200A FR2954430A1 FR 2954430 A1 FR2954430 A1 FR 2954430A1 FR 0959200 A FR0959200 A FR 0959200A FR 0959200 A FR0959200 A FR 0959200A FR 2954430 A1 FR2954430 A1 FR 2954430A1
Authority
FR
France
Prior art keywords
section
structural element
cross
profile
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0959200A
Other languages
French (fr)
Other versions
FR2954430B1 (en
Inventor
Jean Mathieu Guimard
Michel Bermudez
Didier Mesnage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Group SAS
Original Assignee
European Aeronautic Defence and Space Company EADS France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Aeronautic Defence and Space Company EADS France filed Critical European Aeronautic Defence and Space Company EADS France
Priority to FR0959200A priority Critical patent/FR2954430B1/en
Priority to PCT/EP2010/069886 priority patent/WO2011073315A1/en
Publication of FR2954430A1 publication Critical patent/FR2954430A1/en
Application granted granted Critical
Publication of FR2954430B1 publication Critical patent/FR2954430B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • F16F7/124Vibration-dampers; Shock-absorbers using plastic deformation of members characterised by their special construction from fibre-reinforced plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/06Frames; Stringers; Longerons ; Fuselage sections
    • B64C1/061Frames
    • B64C1/062Frames specially adapted to absorb crash loads

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

L'invention est relative à un élément structural (2) apte à reprendre des efforts de compression statique selon un axe Z. Il comporte deux profilés (21, 22) en matériau composite fibreux, s'étendant selon l'axe Z, lesdits deux profilés étant solidarisés entre eux, au niveau d'une zone de jonction (25), par des fibres, dites fibres transversales (26), placées perpendiculairement à une interface entre lesdits deux profilés et perpendiculairement à l'axe Z, de sorte qu'un choc selon l'axe Z provoque un délaminage desdites fibres transversales afin d'absorber l'énergie.The invention relates to a structural element (2) capable of taking up static compression forces along an axis Z. It comprises two sections (21, 22) of fibrous composite material, extending along the Z axis, said two profiles being joined together, at a junction zone (25), by fibers, called transverse fibers (26), placed perpendicular to an interface between said two sections and perpendicular to the Z axis, so that shock along the Z axis causes delamination of said transverse fibers to absorb energy.

Description

La présente invention concerne un élément structural apte à reprendre des efforts de compression statique, plus particulièrement destiné à entrer dans la constitution d'une structure primaire d'aéronef. De plus, l'élément est conçu pour absorber l'énergie dissipée lors d'un effort de compression brutal lorsqu'il est sollicité à des niveaux supérieurs à des charges statiques, en particulier lors d'un choc consécutif à un accident tel qu'un atterrissage ou un amerrissage brutal sollicitant la structure primaire de l'aéronef selon son axe vertical (crash à composante verticale). Le fuselage d'un aéronef comprend principalement une structure constituée d'un revêtement renforcé intérieurement par des cadres de renfort et des lisses. Les cadres de renforts sont positionnés suivant des sections du fuselage sensiblement perpendiculaires à un axe longitudinal de celui-ci et les lisses s'étendent essentiellement suivant cet axe longitudinal. Les cadres de renfort supportent des traverses, généralement droites et s'étendant horizontalement, dans un repère aéronef, perpendiculairement à l'axe longitudinal, sur lesquelles sont fixés des planchers. Lors d'un crash à composante principale verticale, la partie inférieure du fuselage est, en général, la première zone de l'aéronef soumise à des impacts et participe donc de manière essentielle à l'absorption de l'énergie cinétique initiale. La certification des aéronefs, en particulier des avions de transport civil, impose des critères de comportement du fuselage dans différentes situations de crash, afin d'améliorer les chances de survie des passagers en cas d'accident. The present invention relates to a structural element adapted to take up static compression forces, more particularly intended to enter into the constitution of an aircraft primary structure. In addition, the element is designed to absorb the energy dissipated during a sudden compressive force when it is stressed at levels higher than static loads, especially during a crash resulting from an accident such as a landing or a ditching landing soliciting the primary structure of the aircraft along its vertical axis (vertical component crash). The fuselage of an aircraft mainly comprises a structure consisting of a lining reinforced internally by reinforcement frames and rails. The reinforcement frames are positioned along sections of the fuselage substantially perpendicular to a longitudinal axis thereof and the rails extend substantially along this longitudinal axis. The reinforcing frames support sleepers, generally straight and extending horizontally, in an aircraft landmark, perpendicular to the longitudinal axis, on which are fixed floors. During a vertical main component crash, the lower part of the fuselage is, in general, the first zone of the aircraft subjected to impacts and therefore plays an essential role in the absorption of the initial kinetic energy. The certification of aircraft, in particular civil transport aircraft, imposes fuselage behavior criteria in different crash situations, in order to improve the chances of survival of passengers in the event of an accident.

Pour les aéronefs dont la structure du fuselage est réalisée à partir d'éléments structuraux (cadres de renfort, revêtement, lisses, traverses) en matériau métallique, une quantité importante de l'énergie cinétique initiale est absorbée par la déformation plastique des éléments de la structure métallique elle-même. Une solution connue consiste à affaiblir une zone de cadre afin de forcer une localisation d'absorption par plastification dans cette zone. La structure assure ainsi de manière passive la fonction d'absorption d'énergie du fait des caractéristiques intrinsèques des alliages métalliques mis en oeuvre et d'une conception adaptée. La structure peut comporter également des éléments structuraux, par exemple des rotules dites plastiques, entre le plancher et le cadre inférieur. Vis à vis des sollicitations nominales, les éléments structuraux agissent comme des raidisseurs. En cas de sur-sollicitation, par exemple lors d'un accident, lesdits éléments structuraux se déclenchent et se dégradent générant ainsi une absorption d'énergie. La partie inférieure du fuselage est donc conçue afin de répondre principalement aux sollicitations rencontrées lors de l'exploitation commerciale normale de l'aéronef. L'amélioration constante de la performance des aéronefs stimule aujourd'hui la réalisation de plus en plus fréquente d'éléments structuraux en matériaux composites pour la structure du fuselage de l'aéronef, en raison de l'allègement de masse que ces matériaux composites permettent d'obtenir pour de telles structures. Cependant, au contraire des éléments structuraux en matériaux métalliques qui disposent d'un important domaine de déformation plastique avant rupture, les matériaux composites n'ont pratiquement pas de domaine plastique avant rupture. En revanche, ils disposent, de par la nature de chacun de leurs constituants et de leur agencement, de propriétés non négligeables d'absorption d'énergie (par endommagement au sens large, tel que par exemple par délaminages, frottements, ...). Une structure de fuselage (cadre de fuselage, peaux, lisses...), réalisée en matériau composite, se comporte donc très différemment d'une structure de fuselage en matériau métallique, vis à vis de l'absorption d'énergie et en fin de sollicitation, avant ou après une rupture. Un élément particulier nommé « Z-strut » ou « bielle » est fixé entre le plancher et un cadre inférieur par des fixations de type rivet. Cet élément initialement métallique participe également à l'absorption d'énergie en cas de crash par sa déformation plastique naturelle. Une solution mixte métallique/composite connue de bielle absorbante, telle que par exemple celle décrite dans la demande de brevet allemand DE 10 2006 056 440.5, consiste à fixer sur les bielles verticales en matériau composite, placées entre le plancher et les cadres inférieurs, un dispositif métallique dont la constitution permet de déclencher la ruine de la bielle sous une intensité de sollicitation prédéfinie supérieure à l'intensité de sollicitations nominales en service (cette fonction est assurée par l'utilisation de fixations métalliques calibrées pour rompre à un niveau de cisaillement donné). Les dispositifs sont conçus de sorte à usiner les bielles en matériau composite dans un socle métallique sur leur longueur et à absorber l'énergie libérée lors du crash. Vis à vis des sollicitations nominales, les bielles verticales agissent comme des barres élastiques. En cas de sur-sollicitation, par exemple lors d'un accident, lesdits dispositifs métalliques se déclenchent et les bielles s'effondrent tout en se dégradant. Ce phénomène étant irréversible, celui-ci dissipe de l'énergie. Il s'effectue, du reste, à effort sensiblement constant excepté lors de l'initiation et en fin de course lorsque le plancher finit par heurter la partie inférieure du fuselage. Cependant, ce phénomène progressif de destruction du matériau de la poutre, qui permet en théorie l'effondrement progressif sur lui-même est difficilement maîtrisable et prédictible, même dans des conditions de laboratoire. De plus le pic de déclenchement peut s'avérer être trop élevé pour respecter le passage des efforts statiques classiques, conduisant ainsi à une impossiblité de déclencher l'absorption ou encore à rompre. De plus, la présence de fixations calibrées devant supporter les efforts classiques d'un aéronef en service impose une calibration fine ou encore des marges forfaitaires pour réduire le risque d'activation prématurée. For aircraft whose fuselage structure is made from structural elements (reinforcing frames, cladding, rails, sleepers) of metallic material, a significant amount of the initial kinetic energy is absorbed by the plastic deformation of the elements of the structure. metallic structure itself. A known solution is to weaken a frame area in order to force a plastification absorption localization in this area. The structure thus passively ensures the energy absorption function because of the intrinsic characteristics of the metal alloys used and of a suitable design. The structure may also comprise structural elements, for example so-called plastic hinges, between the floor and the lower frame. With respect to the nominal loads, the structural elements act as stiffeners. In case of over-stressing, for example during an accident, said structural elements are triggered and degraded, thereby generating energy absorption. The lower part of the fuselage is designed to respond mainly to the demands encountered during the normal commercial operation of the aircraft. The constant improvement in aircraft performance is now stimulating the increasingly frequent realization of composite structural elements for the aircraft's fuselage structure, due to the mass lightening that these composite materials make possible. to obtain for such structures. However, unlike structural elements made of metallic materials that have a large area of plastic deformation before failure, the composite materials have virtually no plastic domain before failure. However, they have, by the nature of each of their constituents and their arrangement, significant properties of energy absorption (by damage in the broad sense, such as for example by delamination, friction, ...) . A fuselage structure (fuselage frame, skins, slats ...), made of composite material, therefore behaves very differently from a fuselage structure of metallic material, with respect to the absorption of energy and at the end solicitation, before or after a break. A particular element named "Z-strut" or "connecting rod" is fixed between the floor and a lower frame by rivet type fasteners. This initially metallic element also participates in the energy absorption in case of crash by its natural plastic deformation. A known composite metal / composite solution of an absorbent connecting rod, such as, for example, that described in the German patent application DE 10 2006 056 440.5, consists in fixing on the vertical connecting rods of composite material, placed between the floor and the lower frames, a metal device whose constitution allows to trigger the ruin of the rod under a predefined stress intensity higher than the intensity of nominal loads in service (this function is ensured by the use of calibrated metal fasteners to break at a given shear level ). The devices are designed to machine the composite rods in a metal base along their length and to absorb the energy released during the crash. With respect to the nominal loads, the vertical rods act as elastic bars. In case of over-solicitation, for example during an accident, said metal devices are triggered and the rods collapse while degrading. This phenomenon being irreversible, it dissipates energy. It is made, for the rest, to substantially constant effort except during the initiation and end of course when the floor eventually hit the bottom of the fuselage. However, this progressive phenomenon of destruction of the beam material, which theoretically allows progressive collapse on itself is difficult to control and predictable, even in laboratory conditions. In addition, the trigger peak may be too high to respect the passage of conventional static forces, thus leading to an impossibility of triggering the absorption or breaking. In addition, the presence of calibrated fasteners to withstand the conventional efforts of an aircraft in service imposes a fine calibration or even lump-sum margins to reduce the risk of premature activation.

D'autre part, le dispositif utilisé est métallique et rapporté sur la bielle, il est donc pénalisant en masse pour l'aéronef. La mise en oeuvre d'éléments intégrés au niveau de structures primaires d'aéronefs qui permet de concilier l'utilisation d'éléments structuraux (cadres de renforts, revêtement, lisses,...) en matériau composite pour les structures primaires et les exigences de tenue à un crash, en particulier vertical, en absorbant l'énergie est donc indispensable pour améliorer les chances de survie des passagers dans les aéronefs. On the other hand, the device used is metallic and attached to the connecting rod, so it is penalizing mass for the aircraft. The implementation of integrated elements at the level of primary structures of aircraft that reconciles the use of structural elements (reinforcing frames, coating, smooth, ...) composite material for primary structures and requirements crash resistance, especially vertical, absorbing energy is therefore essential to improve the chances of survival of passengers in aircraft.

La présente invention concerne un élément structural apte à reprendre des efforts de compression statique selon un axe Z prépondérant. Ledit élément structural comporte deux profilés en matériau composite fibreux, s'étendant selon l'axe Z, et étant solidarisés entre eux, au niveau d'une zone de jonction, par des fibres, dites fibres transversales, placées perpendiculairement à une interface entre lesdits deux profilés et perpendiculairement à l'axe Z, de sorte qu'un choc selon l'axe Z provoque un délaminage desdites fibres transversales afin d'absorber l'énergie. Par matériau composite fibreux, on entend un matériau à base de fibres noyées dans une résine polymérisable. L'élément structural est avantageusement fixé au niveau des extrémités à deux pièces structurales d'une structure primaire d'un fuselage d'avion, plus particulièrement entre un cadre de renfort et une traverse de plancher. The present invention relates to a structural element capable of taking up static compression forces along a predominant Z axis. Said structural element comprises two fibrous composite material profiles, extending along the Z axis, and being joined together, at a junction zone, by fibers, called transverse fibers, placed perpendicularly to an interface between said two sections and perpendicular to the Z axis, so that a shock along the Z axis causes delamination of said transverse fibers to absorb energy. By fibrous composite material is meant a material based on fibers embedded in a polymerizable resin. The structural element is advantageously fixed at the ends of two structural parts of a primary structure of an aircraft fuselage, more particularly between a reinforcing frame and a floor cross.

L'axe Z est orienté sensiblement suivant une direction des forces de compression devant être absorbées lors d'un choc. L'axe Z est par exemple sensiblement vertical sous le plancher, dans un repère aéronef. L'élément structural permet d'assurer d'une part une fonction de transfert d'efforts entre les deux pièces structurales lorsque l'avion est en fonctionnement nominal et d'autre part une fonction d'absorption de l'énergie générée par le choc, en cas de crash. L'énergie générée lors du choc est avantageusement dissipée par la destruction progressive de l'élément structural. Dans un exemple de réalisation d'assemblage des deux profilés, les fibres transversales sont piquées perpendiculairement à travers les deux profilés de sorte à constituer une couture. Dans un autre exemple de réalisation d'assemblage des deux profilés, les fibres transversales forment des clous traversant les deux profilés perpendiculairement à l'interface. The Z axis is oriented substantially in a direction of compressive forces to be absorbed during an impact. The Z axis is for example substantially vertical under the floor, in an aircraft mark. The structural element makes it possible, on the one hand, to provide a force transfer function between the two structural parts when the aircraft is in nominal operation and, on the other hand, to absorb the energy generated by the impact. , in case of crash. The energy generated during the shock is advantageously dissipated by the progressive destruction of the structural element. In an exemplary embodiment of assembly of the two sections, the transverse fibers are pricked perpendicularly through the two sections so as to form a seam. In another embodiment of assembly of the two sections, the transverse fibers form nails through the two sections perpendicular to the interface.

L'assemblage par couture, cloutage ou par d'autres techniques connues permet un renforcement de l'élément structural dans son épaisseur afin d'assurer une maîtrise de la dissipation de l'énergie provoquée lors de la destruction dudit élément structural en cas de choc. The assembly by sewing, nailing or by other known techniques allows a strengthening of the structural element in its thickness to ensure control of the dissipation of energy caused during the destruction of said structural element in case of shock .

Dans une forme de réalisation de l'élément structural, ledit élément structural comporte : - un profilé présentant, au moins dans la zone de jonction, une section transversale, dans un plan normal à l'axe longitudinal Z, en forme de H, formant deux formes en creux, - un profilé présentant, au moins dans la zone de jonction, une section transversale en forme de C, ledit profilé de section transversale en forme de C présentant des dimensions, en largeur et hauteur, adaptées pour s'imbriquer dans une des deux formes en creux du profilé de section transversale en forme de H. Ainsi, lors d'un choc, l'élément structural se déclenche par arrachement progressif des fibres transversales solidarisant les deux profilés. Dans une forme améliorée de l'élément structural, les deux profilés présentent conjointement, dans tout ou partie de la zone de jonction, une section transversale évolutive. Ainsi, lors d'un choc, le glissement d'un profilé dans l'autre provoque son délaminage en plus de l'arrachement des fibres transversales, apportant ainsi une dissipation supplémentaire de l'énergie. Dans une autre forme de réalisation de l'élément structural, ledit élément structural comporte : - un profilé présentant, au moins dans la zone de jonction, une section transversale, dans un plan normal à l'axe longitudinal Z, en forme de H, formant deux formes en creux, - deux pièces, présentant chacune, au moins dans la zone de jonction, une section transversale en forme de C, et s'imbriquant chacune dans une forme en creux du profilé de section transversale en forme de H, et deux ailes, l'ensemble pièces-ailes formant un profilé présentant, au moins dans la zone de jonction, une section transversale en forme de H. In one embodiment of the structural element, said structural element comprises: - a profile having, at least in the junction zone, a cross section, in a plane normal to the longitudinal axis Z, H-shaped, forming two hollow shapes, - a profile having, at least in the junction area, a C-shaped cross section, said C-shaped cross section profile having dimensions, in width and height, adapted to interlock in one of the two hollow forms of the H-shaped cross section profile. Thus, during an impact, the structural element is triggered by progressive tearing of the transverse fibers solidarisant the two profiles. In an improved form of the structural element, the two sections jointly present, in all or part of the junction zone, an evolutive transverse section. Thus, during an impact, the sliding of a profile in the other causes its delamination in addition to tearing of the transverse fibers, thus providing additional dissipation of energy. In another embodiment of the structural element, said structural element comprises: - a profile having, at least in the junction zone, a cross section, in a plane normal to the longitudinal axis Z, H-shaped, forming two hollow shapes, - two pieces, each having, at least in the junction area, a C-shaped cross-section, and each interlocking in a recessed shape of the H-shaped cross section profile, and two wings, the set-pieces-wings forming a profile having, at least in the junction zone, a cross section in the form of H.

Ainsi, lors d'un choc, le glissement d'un profilé dans l'autre provoque son délaminage en plus de l'arrachement des fibres transversales, apportant une dissipation supplémentaire de l'énergie. Thus, during an impact, the sliding of a profile in the other causes delamination in addition to tearing of the transverse fibers, providing additional dissipation of energy.

Dans un mode amélioré de réalisation de l'élément structural, un des deux profilés présente une forme en L. Cette forme en L permet le remplacement d'une traverse horizontale de plancher, dans le repère aéronef. Cette forme en L permet ainsi à l'élément structural d'intégrer à la fois un raidisseur vertical, de part ses deux profilés, et une traverse horizontale de plancher. De préférence, les deux profilés de l'élément structural forment un ensemble monobloc réalisé en une seule pièce. De préférence, l'élément structural est réalisé à partir d'un procédé de transfert de résine, dit procédé RTM. L'invention est également relative à une structure primaire d'un fuselage d'aéronef comportant un revêtement, au moins un cadre de renfort, au moins une traverse et au moins un élément structural comportant deux profilés s'étendant selon l'axe Z. L'élément structural est fixé à une première extrémité au cadre de renfort et à une deuxième extrémité à une traverse. L'invention est également relative à une structure primaire d'un fuselage d'aéronef comportant un revêtement, au moins un cadre de renfort, au moins une traverse et au moins un élément structural, dont un des deux profilés présente une forme en L. L'élément structural est alors fixé à ses deux extrémités au même cadre de renfort et en son angle à une traverse. Une description détaillée de modes de réalisation préférés de l'invention est faite ci-après, à simple titre illustratif, en référence aux figures 1 à 8 qui représentent : Figure 1, une vue en perspective représentant schématiquement un tronçon d'une structure primaire d'un fuselage d'aéronef comportant dix éléments structuraux sous un plancher réalisés conformément à un mode de réalisation de l'invention, Figure 2a, un exemple d'assemblage entre deux profilés d'un élément structural par cloutage, Figure 2b, un exemple d'assemblage entre deux profilés d'un élément structural par couture, Figure 3, une vue en perspective d'un premier exemple d'assemblage des deux profilés d'un élément structural selon un mode de réalisation de l'invention, Figure 4a, une vue en perspective représentant schématiquement une portion d'une partie inférieure d'un tronçon d'une structure primaire d'un 5 fuselage d'aéronef comportant trois éléments structuraux selon un deuxième exemple de réalisation, Figure 4b, une vue de face d'un deuxième exemple d'assemblage des deux profilés d'un élément structural selon un mode de réalisation de l'invention, 10 Figure 4c, une vue de face du comportement de l'élément structural de la figure 4a lors d'un crash, Figure 4d, un agrandissement de la figure 4c, vue de dos, au niveau d'une zone de jonction, Figure 4e, un agrandissement de la figure 4d illustrant l'arrachement 15 des fibres transversales, Figure 5a, une vue en perspective d'un troisième exemple d'assemblage des deux profilés d'un élément structural selon un mode de réalisation de l'invention, Figure 5b, une vue éclatée de l'élément structural de la figure 5a, 20 Figure 6, une vue en perspective représentant schématiquement une portion d'une partie inférieure d'un tronçon d'une structure primaire d'un fuselage d'aéronef comportant cinq éléments structuraux sous un plancher réalisés conformément à un mode amélioré de réalisation de l'invention, Figure 7, une vue en perspective d'un exemple d'élément structural 25 suivant le mode amélioré, Figure 8, une vue de coté d'un autre exemple d'élément structural suivant le mode amélioré. Une structure primaire d'un fuselage d'aéronef comporte, comme illustré sur la figure 1, une ossature 1, sensiblement cylindrique, sur laquelle est 30 fixé un revêtement 11 renforcé par des lisses 12 s'étendant sensiblement suivant un axe longitudinal de la structure primaire du fuselage de l'aéronef. L'ossature 1 de la structure primaire du fuselage d'aéronef est formée principalement de cadres de renfort 13. Lesdits cadres de renfort sont positionnés suivant des sections du fuselage sensiblement perpendiculaires à l'axe longitudinal du fuselage et sont régulièrement répartis sur toute la longueur du fuselage d'aéronef. Chacun d'entre eux présente une forme qui correspond sensiblement à la section locale du fuselage, le plus souvent circulaire, au moins localement, comme dans l'exemple de la figure 1. Sur chaque cadre de renfort 13 est fixée une traverse 14. Les traverses 14 sont avantageusement droites et horizontales, dans un repère aéronef, de sorte à pouvoir supporter un plancher (non représenté), tel que le plancher d'une soute de chargement ou d'une cabine de passagers. En outre, l'ossature 1 comporte, dans une partie inférieure de la structure primaire du fuselage d'aéronef située entre les traverses 14 et les cadres de renfort 13, au moins un élément structural 2 apte à reprendre des efforts de compression. In an improved embodiment of the structural element, one of the two sections has an L shape. This L-shaped allows the replacement of a horizontal floor crossbar, in the aircraft reference. This L-shaped thus allows the structural element to integrate both a vertical stiffener, from its two sections, and a horizontal floor crossbar. Preferably, the two sections of the structural element form a one-piece assembly made in one piece. Preferably, the structural element is made from a resin transfer process, said RTM process. The invention also relates to a primary structure of an aircraft fuselage comprising a coating, at least one reinforcing frame, at least one cross member and at least one structural element comprising two sections extending along the Z axis. The structural member is attached at a first end to the reinforcing frame and at a second end to a cross member. The invention also relates to a primary structure of an aircraft fuselage comprising a coating, at least one reinforcing frame, at least one cross member and at least one structural element, one of which has an L-shaped profile. The structural element is then fixed at both ends to the same reinforcing frame and at its angle to a cross member. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION IS DETAILED BELOW, FOR EXAMPLE, WITH REFERENCE TO FIGS. 1 to 8, which represent: FIG. 1, a perspective view schematically showing a section of a primary structure of an aircraft fuselage comprising ten structural elements under a floor made according to an embodiment of the invention, Figure 2a, an example of an assembly between two profiles of a studded structural element, Figure 2b, an example of a FIG. 3 is a perspective view of a first example of assembly of the two sections of a structural element according to one embodiment of the invention, FIG. 4a, FIG. perspective view schematically showing a portion of a lower portion of a section of a primary structure of an aircraft fuselage having three structural elements in accordance with an FIG. 4b, a front view of a second example of assembly of the two sections of a structural element according to one embodiment of the invention, FIG. 4c, a front view of the behavior of the FIG. 4a in a crash, FIG. 4d, an enlargement of FIG. 4c, rear view, at a junction zone, FIG. 4e, an enlargement of FIG. 4d illustrating tearing. FIG. FIG. 5a, a perspective view of a third example of assembly of the two sections of a structural element according to one embodiment of the invention, FIG. 5b, an exploded view of the structural element of FIG. FIG. 5a, FIG. 6, a perspective view schematically showing a portion of a lower portion of a section of a primary structure of an aircraft fuselage comprising five structural elements under a floor made in accordance with an improved mode of realized FIG. 7 is a perspective view of an exemplary structural element 25 in the improved mode, FIG. 8 is a side view of another example of a structural element in the improved mode. A primary structure of an aircraft fuselage comprises, as illustrated in FIG. 1, a frame 1, substantially cylindrical, on which is fixed a coating 11 reinforced by rails 12 extending substantially along a longitudinal axis of the structure. primary fuselage of the aircraft. The frame 1 of the primary structure of the aircraft fuselage is formed mainly of reinforcing frames 13. Said reinforcing frames are positioned along sections of the fuselage substantially perpendicular to the longitudinal axis of the fuselage and are regularly distributed over the entire length aircraft fuselage. Each of them has a shape that corresponds substantially to the local section of the fuselage, usually circular, at least locally, as in the example of Figure 1. On each reinforcing frame 13 is fixed a cross 14. The sleepers 14 are advantageously straight and horizontal, in an aircraft mark, so as to support a floor (not shown), such as the floor of a cargo hold or a passenger cabin. In addition, the frame 1 comprises, in a lower portion of the primary structure of the aircraft fuselage located between the cross members 14 and the reinforcing frames 13, at least one structural element 2 adapted to take compression forces.

L'invention est décrite en détail pour un élément structural. La mise en oeuvre de l'invention peut être adaptée à tous les éléments structuraux 2 de l'ossature de l'aéronef. Dans l'exemple de réalisation illustré sur la figure 1, dix éléments structuraux 2 sont représentés, deux éléments structuraux par cadre de renfort. The invention is described in detail for a structural member. The implementation of the invention can be adapted to all the structural elements 2 of the frame of the aircraft. In the exemplary embodiment illustrated in FIG. 1, ten structural elements 2 are shown, two structural elements per reinforcing frame.

Dans un mode de réalisation de l'élément structural, comme illustré sur les figures 1 à 5c, un élément structural 2 présente une forme allongée et est relié, d'une part en une première extrémité 23 à une traverse 14 et d'autre part en une deuxième extrémité 24, opposée à ladite première extrémité 23, à un cadre de renfort 13. In one embodiment of the structural element, as illustrated in Figures 1 to 5c, a structural element 2 has an elongate shape and is connected, on the one hand at a first end 23 to a cross member 14 and secondly at a second end 24, opposite said first end 23, to a reinforcing frame 13.

L'élément structural 2 a un axe longitudinal Z orienté sensiblement suivant la direction des forces de compression devant être absorbées lors d'un choc, par exemple sensiblement vertical, sous un plancher. L'élément structural 2 comporte deux profilés, dénommé premier 21 et second 22 profilé, de même axe longitudinal Z, solidarisés entre eux, chacun sensiblement à une extrémité, au niveau d'une zone, dite zone de jonction 25. Le premier profilé 21 est relié, à une extrémité, dite première extrémité 211, opposée à l'extrémité solidarisée au second profilé, dite deuxième extrémité 212, à la traverse 14. Le second profilé 22 est relié, à une extrémité, dite première extrémité 221, opposée à l'extrémité solidarisée au premier profilé, dite deuxième extrémité 222, au cadre de renfort 13. Les deux profilés 21, 22 sont réalisés dans un matériau composite fibreux. Le premier profilé 21, respectivement le second profilé 22, est fixé sur la traverse 14, respectivement sur le cadre 13, par des moyens conventionnels, tels que par exemple des rivets. Les deux profilés 21, 22 sont solidarisés entre eux dans la zone de jonction 25, notamment par couture, comme illustré figure 2b, ou cloutage, comme illustré figure 2a, tout au moins par des fibres, dites fibres transversales 26, placées perpendiculairement à une interface 27 entre les deux profilés 21, 22. Le rôle de l'élément structural 2 est double. D'une part, l'élément structural 2 assure une fonction de transfert d'efforts entre la traverse 14 et le cadre de renfort 13, lorsque la structure du fuselage est soumise aux efforts normaux correspondant à des sollicitations rencontrées pendant l'exploitation normale de l'aéronef, majorées de facteurs de sécurité. D'autre part, l'élément structural 2 assure, grâce aux éléments qui le composent, la destruction du second profilé 22, de façon progressive, lorsque l'élément structural est soumis à un effort de compression majoritairement appliqué dans le sens de sa longueur, c'est à dire dans l'exemple illustré sensiblement verticalement, correspondant aux efforts rencontrés lors de cas de crash. La destruction progressive du second profilé 22 a pour effet d'absorber une partie de l'énergie générée lors de l'impact. La destruction du second profilé 22 se déclenche au niveau de la zone de jonction et se propage par délaminage d'au moins un des profilés et ou par l'arrachement des fibres transversales 26 solidarisant les deux profilés. Dans un premier exemple de réalisation de l'élément structural, illustré figure 3, le premier profilé 21 présente, au moins sur une certaine longueur à partir de sa deuxième extrémité 212 située du coté du second profilé 22, incluant la zone de jonction 25, une section droite dans un plan normal à l'axe longitudinal Z, dite section transversale, en forme de H et comporte une âme 213 et deux semelles 214 de part et d'autre de l'âme, formant deux formes en creux. Dans un exemple préféré, le premier profilé 21 présente sur toute sa longueur, une section transversale en forme de H. The structural element 2 has a longitudinal axis Z oriented substantially in the direction of the compressive forces to be absorbed during an impact, for example substantially vertical, under a floor. The structural element 2 comprises two profiles, called first 21 and second profile 22, of the same longitudinal axis Z, joined together, each substantially at one end, at a zone, called the junction zone 25. The first section 21 is connected, at one end, said first end 211, opposite the end secured to the second section, said second end 212, to the cross member 14. The second section 22 is connected at one end, said first end 221, opposite to the end secured to the first section, said second end 222, to the reinforcing frame 13. The two sections 21, 22 are made of a fibrous composite material. The first profile 21, respectively the second profile 22, is fixed on the cross member 14, respectively on the frame 13, by conventional means, such as for example rivets. The two sections 21, 22 are joined together in the junction zone 25, in particular by stitching, as illustrated in FIG. 2b, or nailing, as illustrated in FIG. 2a, at least by fibers, called transverse fibers 26, placed perpendicular to a interface 27 between the two sections 21, 22. The role of the structural element 2 is double. On the one hand, the structural element 2 provides a force transfer function between the cross member 14 and the reinforcing frame 13, when the fuselage structure is subjected to the normal forces corresponding to stresses encountered during the normal operation of the structure. the aircraft, plus safety factors. On the other hand, the structural element 2 ensures, thanks to the elements that compose it, the destruction of the second section 22, in a progressive manner, when the structural element is subjected to a compression force mainly applied in the direction of its length. , ie in the illustrated example substantially vertically, corresponding to the efforts encountered in case of crash. The progressive destruction of the second section 22 has the effect of absorbing a portion of the energy generated during the impact. The destruction of the second section 22 is triggered at the junction zone and propagates by delamination of at least one of the profiles and or tearing of the transverse fibers 26 solidarisant the two profiles. In a first embodiment of the structural element, illustrated in FIG. 3, the first section 21 has, at least over a certain length, from its second end 212 located on the side of the second profile 22, including the junction zone 25, a cross section in a plane normal to the longitudinal axis Z, said cross section, H-shaped and comprises a core 213 and two flanges 214 on either side of the core, forming two recessed shapes. In a preferred example, the first section 21 has, along its entire length, an H-shaped cross section.

Le second profilé 22 présente, au moins sur une certaine longueur à partir de sa deuxième extrémité 222 située du coté du premier profilé 21, incluant la zone de jonction 25, une section transversale en forme de C et comporte une âme 223 et deux semelles 224 de part et d'autre de l'âme, sensiblement transversales par rapport à l'âme et disposées en regard l'une de l'autre. Dans un exemple préféré, le second profilé 22 présente sur toute sa longueur, une section transversale en forme de C. Le second profilé 22 présente une dimension, en largeur et en hauteur, telle qu'il est imbriqué, au niveau des faces extérieures 225 dans une des deux formes en creux du premier profilé en H. The second profile 22 has, at least over a certain length from its second end 222 located on the side of the first profile 21, including the junction zone 25, a C-shaped cross section and comprises a core 223 and two flanges 224. on both sides of the soul, substantially transverse to the soul and arranged opposite one another. In a preferred example, the second section 22 has a C-shaped cross-section along its entire length. The second profile 22 has a dimension, in width and in height, as it is nested, at the outer faces 225 in one of the two recessed shapes of the first H-profile.

Les deux profilés 21, 22 sont assemblés dans la zone de jonction 25, au niveau des âmes et des semelles, âme 213 contre âme 223 et semelles 214 contre semelles 224, par exemple par couture ou cloutage. En fonctionnement nominal, c'est à dire lorsque les charges sont inférieures ou égales à des charges normales susceptibles d'être rencontrées en exploitation commerciale, majorées des facteurs de sécurité associés, l'élément structural 2 assure une fonction de transfert d'effort entre une traverse 14 et un cadre de renfort 13. Des efforts secondaires dans un sens transverse peuvent également être passés. La présence de l'élément structural 2 permet ainsi d'assurer le passage de ces efforts combinés. The two profiles 21, 22 are assembled in the junction zone 25, at the webs and soles, soul 213 against soul 223 and soles 214 against flanges 224, for example by sewing or nailing. In nominal operation, ie when the loads are less than or equal to normal loads likely to be encountered in commercial operation, plus the associated safety factors, the structural element 2 provides a function of transfer of effort between a cross member 14 and a reinforcing frame 13. Secondary forces in a transverse direction can also be passed. The presence of the structural element 2 thus makes it possible to ensure the passage of these combined forces.

En cas de crash, une augmentation de l'effort sur le second profilé 22 suivant l'axe vertical est générée. L'élément structural 2 se déclenche par arrachement progressif des fibres transversales 26 solidarisant les deux profilés 21, 22. Dans un exemple de réalisation, la densité de fibres transversales est évolutive dans la zone de jonction afin de permettre une absorption d'énergie évolutive. Dans un deuxième exemple de réalisation de l'élément structural 2, illustré figure 4a à 4e, le premier profilé 21 présente, au moins sur une certaine longueur à partir de sa deuxième extrémité 212 située du coté du second profilé 22, incluant la zone de jonction 25, une section transversale, en forme de C et comporte une âme 213 et deux semelles 214 de part et d'autre de l'âme. Dans l'exemple illustré sur la figures 4a, le premier profilé 21 présente sur une certaine longueur, à partir de sa première extrémité 211 située du coté de la traverse 14, une section transversale en forme de H et sur une certaine longueur à partir de sa deuxième extrémité 212 située du coté du second profilé 22, incluant la zone de jonction 25, une section transversale, en forme de C. Le premier profilé 21 présente, sur une certaine longueur de la zone de jonction 25, une section transversale décroissante vers le second profilé 22, par une diminution d'une largeur de l'âme 213, comme illustré sur la figure 4b. Le second profilé 22 présente, au moins sur une certaine longueur à partir de la deuxième extrémité 222 située du coté du premier profilé 21, incluant la zone de jonction 25, une section transversale en forme de H et comporte une âme 223 et deux semelles 224 de part et d'autre de l'âme et présentant deux formes en creux. Dans l'exemple illustré sur la figure 4a, le second profilé 22 présente sur une certaine longueur, à partir de sa deuxième extrémité 222, une section transversale en forme de H et sur une certaine longueur à partir de sa première extrémité 221, une section transversale, en forme de C. Le second profilé 22 présente, sur une certaine longueur de la zone de jonction, une section transversale croissante vers le premier profilé 21 par un élargissement de l'âme 213, comme illustré figure 4b. Le premier profilé 21 présente une dimension, en largeur et en hauteur, telle qu'il est imbriqué, au niveau de faces extérieures 215 dans une des deux formes en creux du second profilé 22 en H. Les deux profilés 21, 22 sont assemblés dans la zone de jonction 25, 30 au niveau des âmes et des semelles, âme 213 contre âme 223 et semelles 214 contre semelles 224, par exemple par couture ou cloutage. En fonctionnement nominal, c'est à dire lorsque les charges sont inférieures ou égales à des charges normales susceptibles d'être rencontrées en exploitation commerciale, majorées des facteurs de sécurité associés, l'élément structural 2 assure une fonction de transfert d'effort entre une traverse 14 et un cadre de renfort 13. En cas de crash, une augmentation de l'effort sur le second profilé 22 suivant l'axe vertical est générée. Le second profilé 22 se déplace suivant son axe longitudinal Z. Le glissement du premier profilé 21 dans le second profilé 22 provoque l'écartement des semelles 224 du second profilé 22 par rapport à l'âme 223 et l'arrachement des fibres transversales 26 solidarisant les deux profilés 21, 22, comme illustrés figure 4c à 4e. L'absorption de l'énergie est effectuée, à la fois par délaminage, par arrachement progressif des fibres transversales 26 solidarisant les deux profilés 21, 22 entre les semelles 224 et l'âme 223 du second profilé 22, et par frottement. Dans un troisième exemple de réalisation de l'élément structural 2, le premier profilé 21 présente, au moins sur une certaine longueur à partir de sa deuxième extrémité 212 située du coté du second profilé 22, incluant la zone de jonction 25, une section transversale, en forme de H et comporte une âme 213 et deux semelles 214 de part et d'autre de l'âme. Dans l'exemple illustré sur la figure 5a, le premier profilé 21 présente sur toute sa longueur une section transversale en forme de H. Le second profilé 22 présente, au moins sur une certaine longueur, à partir de sa deuxième extrémité 222 située du coté du premier profilé 21, incluant la zone de jonction 25, une section transversale en forme de H et comporte une âme 223 et deux semelles 224 de part et d'autre de l'âme. Dans l'exemple illustré sur la figure 5a, le second profilé 22 présente sur toute sa longueur, une section transversale en forme de H. Le second profilé 22 est en fait composé de : - deux pièces 226 de section transversale en C, avec une âme et deux semelles, qui s'imbriquent chacune, au niveau de la zone de jonction, dans une forme en creux du premier profilé 21 en forme de H, et - de deux ailes 227 formant les deux semelles 224 qui recouvrent, en largeur et au niveau de la jonction, les semelles 214 du premier profilé 21. Le second profilé 22 présente, au delà de la deuxième extrémité 212 du premier profilé 21 et sur une certaine longueur, une section transversale décroissante par diminution d'une largeur de l'âme et des semelles. Dans la zone où le second profilé 22 présente une section décroissante, dite zone de rétrécissement, l'élément structural 2 comporte, entre les âmes des deux pièces 226 formant second profilé 22, et en prolongement de l'âme 213 du premier profilé 21, un noyau 28 réalisé dans un matériau absorbant. Par exemple, le matériau du noyau 28 est une mousse de type ROHACELL® ou thermoplastique ou à base de graphite ou un matériau absorbant comportant des billes creuses ou des élastomères. Dans la zone de rétrécissement, l'élément structural 2 comporte, en prolongement de chaque semelle 214 du premier profilé 21, un élément coupant 29. Chaque élément coupant est pourvu d'une arête tranchante en forme de coin, parallèle à la largeur de l'aile et orientée vers le second profilé 22. L'élément coupant 29 a une longueur au plus égale, de préférence égale, à la largeur de l'aile 227 formant semelle 224 du second profilé 22. L'arête tranchante de chaque élément coupant est de préférence réalisée en matériau métallique, avantageusement en alliage de titane, afin d'assurer une longévité de la coupe et un couplage galvanique compatible afin de ne pas générer de corrosion dans l'association métal-carbone. Les deux profilés 21, 22 sont assemblés de part et d'autre du noyau 28 et des éléments coupants 29, dans la zone de jonction 25, au niveau des âmes 25 et des semelles, par exemple par couture ou cloutage. En fonctionnement nominal, c'est à dire lorsque les charges sont inférieures ou égales à des charges normales susceptibles d'être rencontrées en exploitation commerciale, majorées des facteurs de sécurité associés, l'élément structural 2 assure une fonction de transfert d'effort entre une 30 traverse 14 et un cadre de renfort 13. En cas de crash, une augmentation de l'effort sur le second profilé 22 suivant l'axe vertical est générée. Le second profilé 22 se déplace suivant son axe longitudinal Z. Le glissement du premier profilé 21 dans le second profilé 22 provoque l'écartement des ailes 227 formant semelles 224 du second profilé 22 par rapport à l'âme 224 par la découpe des fibres transversales 26 par les éléments coupants 29 ainsi que l'écartement des deux âmes des deux pièces formant le second profilé 22. La zone de rétrécissement constitue une zone de flambage de l'élément structural 2, dont le déclenchement est favorisé par la présence des éléments coupants 29. L'absorption de l'énergie est effectuée, à la fois par délaminage, par arrachement progressif des fibres transversales 26 solidarisant les deux profilés 21, 22 entre les semelles 224 et l'âme 223 du second profilé 22 et entre les deux âmes des deux pièces 226 formant le second profilé 22, et par écrasement du noyau absorbant 28. Dans un mode amélioré de l'élément structural 2, comme illustré sur les figures 6 à 8, le premier profilé 21 présente une forme générale en L inversé, avec une première branche dans l'axe longitudinal Z, précédemment décrite, et une seconde branche 216 sensiblement selon un axe horizontal dans un repère avion. Cet élément structural 2 est particulièrement adapté à un plancher passage réalisé en trois parties : un plancher central et deux zones triangle, la seconde branche 216 permettant le remplacement d'une traverse située dans une zone triangle. L'élément structural 2 est fixé, au niveau des extrémités au même cadre de renfort 13 et en son angle à la traverse 14. Ce mode amélioré de réalisation de l'élément structural 2 offre une meilleure résistance à la flexion de la structure du plancher ainsi qu'une 25 meilleure tenue aux efforts de pression interne du fuselage. L'élément structural, en intégrant à la fois un raidisseur vertical et une traverse horizontale, offre ainsi un gain de temps lors de l'installation des différents éléments constitutifs de la structure primaire et le plancher d'un aéronef. 30 L'élément structural 2 peut par exemple être formé par un procédé conventionnel tel que le procédé par transfert de résine, dit procédé RTM, selon lequel on réalise par drapage de différents plis les uns sur les autres une préforme sèche, de caractéristiques et selon une forme adaptée à celle de la pièce en matériau composite à réaliser, puis on injecte dans l'ensemble des plis ainsi déposés une résine pouvant être thermoplastique ou thermodurcissable, et on provoque le durcissement de la résine. In case of a crash, an increase in the force on the second section 22 along the vertical axis is generated. The structural element 2 is triggered by progressive tearing of the transverse fibers 26 joining the two profiles 21, 22. In an exemplary embodiment, the transverse fiber density is scalable in the junction area to allow scalable energy absorption. In a second embodiment of the structural element 2, illustrated in FIGS. 4a to 4e, the first section 21 has, at least over a certain length, from its second end 212 located on the side of the second section 22, including the junction 25, a cross section, C-shaped and comprises a core 213 and two flanges 214 on either side of the core. In the example illustrated in FIG. 4a, the first profile 21 has, over a certain length, from its first end 211 located on the side of the cross member 14, a H-shaped cross-section and over a certain length from its second end 212 located on the side of the second section 22, including the junction zone 25, a cross section, C-shaped. The first profile 21 has, over a certain length of the junction zone 25, a decreasing cross-section towards the second section 22, by a reduction of a width of the core 213, as shown in Figure 4b. The second profile 22 has, at least over a certain length from the second end 222 located on the side of the first profile 21, including the junction zone 25, an H-shaped cross section and comprises a core 223 and two flanges 224. on both sides of the soul and having two hollow shapes. In the example illustrated in FIG. 4a, the second profile 22 has, over a certain length, from its second end 222, an H-shaped cross-section and over a certain length from its first end 221, a section transverse, C-shaped. The second profile 22 has, over a certain length of the junction zone, an increasing cross section towards the first profile 21 by an enlargement of the core 213, as shown in FIG. 4b. The first profile 21 has a dimension, in width and height, as it is nested, at outer faces 215 in one of the two recessed shapes of the second section 22 H. The two sections 21, 22 are assembled in the joining zone 25, 30 at the level of the webs and soles, web 213 against web 223 and webs 214 against webs 224, for example by stitching or nailing. In nominal operation, ie when the loads are less than or equal to normal loads likely to be encountered in commercial operation, plus the associated safety factors, the structural element 2 provides a function of transfer of effort between a cross member 14 and a reinforcing frame 13. In the event of a crash, an increase in the force on the second profile 22 along the vertical axis is generated. The second profile 22 moves along its longitudinal axis Z. The sliding of the first section 21 in the second profile 22 causes the spacing of the flanges 224 of the second profile 22 relative to the core 223 and tearing of the transverse fibers 26 solidarizing the two sections 21, 22, as illustrated in FIGS. 4c to 4e. Energy absorption is performed, both by delamination, by progressive tearing of the transverse fibers 26 joining the two sections 21, 22 between the flanges 224 and the core 223 of the second section 22, and by friction. In a third embodiment of the structural element 2, the first section 21 has, at least over a certain length from its second end 212 located on the side of the second section 22, including the junction zone 25, a cross section , H-shaped and comprises a core 213 and two flanges 214 on either side of the soul. In the example illustrated in FIG. 5a, the first profile 21 has, along its entire length, an H-shaped cross-section. The second profile 22 has, at least over a certain length, from its second end 222 situated on the side of the first section 21, including the junction zone 25, an H-shaped cross section and comprises a core 223 and two flanges 224 on either side of the core. In the example illustrated in FIG. 5a, the second profile 22 has, along its entire length, an H-shaped cross-section. The second profile 22 is in fact composed of: two pieces 226 of C cross-section, with a core and two flanges, which each interlock, at the junction zone, in a hollow form of the first profile 21 in the form of H, and - two wings 227 forming the two flanges 224 which cover, in width and at the junction, the flanges 214 of the first profile 21. The second section 22 has, beyond the second end 212 of the first profile 21 and over a certain length, a decreasing cross section by decreasing a width of the soul and soles. In the zone where the second section 22 has a decreasing section, called the shrink zone, the structural element 2 comprises, between the webs of the two pieces 226 forming the second profile 22, and in extension of the core 213 of the first section 21, a core 28 made of an absorbent material. For example, the core material 28 is a ROHACELL® or thermoplastic or graphite-based foam or an absorbent material having hollow beads or elastomers. In the narrowing zone, the structural element 2 comprises, in extension of each sole 214 of the first profile 21, a cutting element 29. Each cutting element is provided with a wedge-shaped cutting edge, parallel to the width of the lug. wing and oriented towards the second profile 22. The cutting element 29 has a length at most equal to, preferably equal to, the width of the flange 227 224 forming sole of the second profile 22. The cutting edge of each cutting element is preferably made of metal material, preferably titanium alloy, to ensure a longevity of the cut and a compatible galvanic coupling so as not to generate corrosion in the metal-carbon combination. The two sections 21, 22 are assembled on either side of the core 28 and the cutting elements 29, in the junction zone 25, at the webs 25 and the flanges, for example by sewing or nailing. In nominal operation, ie when the loads are less than or equal to normal loads likely to be encountered in commercial operation, plus the associated safety factors, the structural element 2 provides a function of transfer of effort between a cross member 14 and a reinforcing frame 13. In the event of a crash, an increase in the force on the second profile 22 along the vertical axis is generated. The second profile 22 moves along its longitudinal axis Z. The sliding of the first section 21 in the second section 22 causes the spacing of the flanges 227 forming flanges 224 of the second section 22 relative to the core 224 by the cutting of the transverse fibers. 26 by the cutting elements 29 and the spacing of the two cores of the two parts forming the second profile 22. The narrowing zone constitutes a buckling zone of the structural element 2, the triggering is favored by the presence of cutting elements 29. The absorption of the energy is performed, both by delamination, by progressive tearing of the transverse fibers 26 joining the two sections 21, 22 between the flanges 224 and the core 223 of the second section 22 and between the two webs. two pieces 226 forming the second profile 22, and by crushing the absorbent core 28. In an improved mode of the structural element 2, as shown in Figures 6 to 8, the first section 21 has a generally inverted-L shape, with a first branch in the longitudinal axis Z, previously described, and a second branch 216 substantially along a horizontal axis in an aircraft coordinate system. This structural element 2 is particularly suitable for a floor passage made in three parts: a central floor and two triangle areas, the second branch 216 for the replacement of a cross member located in a triangle area. The structural element 2 is fastened at the ends to the same reinforcing frame 13 and at its angle to the cross-member 14. This improved embodiment of the structural element 2 offers better resistance to bending of the floor structure. as well as a better resistance to the internal pressure forces of the fuselage. The structural element, by integrating both a vertical stiffener and a horizontal cross member, thus saves time during the installation of the various components of the primary structure and the floor of an aircraft. The structural element 2 can for example be formed by a conventional method such as the resin transfer process, said RTM process, in which different folds are made by draping on each other a dry preform, with characteristics and according to a shape adapted to that of the composite material part to be produced, and then injected into the set of plies thus deposited a resin which may be thermoplastic or thermosetting, and the hardening of the resin is caused.

Selon l'invention, la préforme est constituée d'un ensemble de préformes intermédiaires de formes simples, par exemple de type formes planes. Chaque préforme est constituée d'une superposition de plis ou de tissus de fibres, sèches ou pré-imprégnées de résine. According to the invention, the preform consists of a set of intermediate preforms of simple shapes, for example of planar shapes. Each preform consists of a superposition of folds or fiber fabrics, dry or pre-impregnated with resin.

Les plis ou tissus sont de préférence formés à partir de fibres de carbone. Le nombre et la nature des plis sont déterminés de manière à assurer les propriétés mécaniques finales souhaitées pour l'élément structural. Tout ou partie des assemblages entre préformes intermédiaires peut être renforcée par exemple par des technologies de piquage ou de cloutage afin de permettre une meilleure maîtrise de la dissipation d'énergie lors de la destruction de l'élément structural. Les différentes préformes intermédiaires sont assemblées entre elles sur une forme ou dans un moule dont la forme et le volume correspondent sensiblement à la forme et aux dimensions de la pièce finale à réaliser, pour réaliser la préforme complexe. Dans une deuxième étape, la préforme complexe est imprégnée d'une résine, par exemple thermodurcissable, suivant le procédé RTM. La résine est par exemple une résine de type époxyde. La résine est injectée de sorte à se répandre uniformément dans l'espace interne délimité par le moule, en remplissant les zones de vide entre les constituants des différentes préformes intermédiaires. Enfin, la résine est durcie de manière à solidariser les différentes préformes intermédiaires et former un élément structural monobloc. A l'issue de cette étape, la pièce est démoulée et soumise le cas échéant à des opérations de finition, par exemple des perçages ou des usinages en fonction de son utilisation prévue. L'élément structural suivant l'invention, de part sa réalisation en matériau composite, se révèle ainsi moins pénalisant en terme de masse que les solutions de l'art antérieur, réalisées en matériau métallique ou par un mélange matériau composite-matériau métallique. L'énergie générée lors de l'impact est avantageusement dissipée par la destruction progressive d'au moins un profilé constitutif de l'élément structural. The folds or fabrics are preferably formed from carbon fibers. The number and nature of the plies are determined so as to provide the desired final mechanical properties for the structural element. All or part of the assemblies between intermediate preforms can be reinforced for example by stitching or nailing technologies to allow better control of the energy dissipation during the destruction of the structural element. The different intermediate preforms are assembled together on a form or in a mold whose shape and volume substantially correspond to the shape and dimensions of the final part to be produced, to produce the complex preform. In a second step, the complex preform is impregnated with a resin, for example a thermosetting resin, according to the RTM method. The resin is for example an epoxy resin. The resin is injected so as to spread uniformly in the internal space delimited by the mold, by filling the void zones between the constituents of the various intermediate preforms. Finally, the resin is cured so as to secure the various intermediate preforms and form a monobloc structural element. At the end of this step, the part is removed from the mold and subjected, if necessary, to finishing operations, for example drilling or machining according to its intended use. The structural element according to the invention, because of its embodiment of composite material, is thus less penalizing in terms of mass than the solutions of the prior art, made of metal material or a mixture of composite material and metallic material. The energy generated during the impact is advantageously dissipated by the progressive destruction of at least one constituent section of the structural element.

Claims (1)

REVENDICATIONS1 Elément structural (2) apte à reprendre des efforts de compression statique selon un axe Z, caractérisé en ce qu'il comporte deux profilés (21, 22) en matériau composite fibreux, s'étendant selon l'axe Z, lesdits deux profilés étant solidarisés entre eux, au niveau d'une zone de jonction (25), par des fibres, dites fibres transversales (26), placées perpendiculairement à une interface (27) entre lesdits deux profilés et perpendiculairement à l'axe Z, de sorte qu'un choc selon l'axe Z provoque un délaminage desdites fibres transversales afin d'absorber l'énergie. 2 Elément structural (2) selon la revendication 1 dans lequel les fibres 10 transversales (26) sont piquées perpendiculairement à travers les deux profilés (21, 22) de sorte à constituer une couture. 3 - Elément structural (2) selon la revendication 1 dans lequel les fibres transversales (26) forment des clous traversant les deux profilés (21, 22) perpendiculairement à l'interface. 15 4 - Elément structural (2) selon l'une des revendications 1 à 3 comportant : - un profilé (21) présentant, au moins dans la zone de jonction (25), une section transversale, dans un plan normal à l'axe longitudinal Z, en forme de H, formant deux formes en creux, - un profilé (22) présentant, au moins dans la zone de jonction (25), 20 une section transversale en forme de C, ledit profilé de section transversale en forme de C présentant des dimensions, en largeur et hauteur, adaptées pour s'imbriquer dans une des deux formes en creux du profilé (21) de section transversale en forme de H. 25 5 - Elément structural (2) selon la revendication 4 dans lequel les deux profilés (21, 22) présentent conjointement, dans tout ou partie de la zone de jonction (25), une section transversale évolutive. 6 - Elément structural (2) selon l'une des revendications 1 à 3 comportant : un profilé (21) présentant, au moins dans la zone de jonction (25), 30 une section transversale, dans un plan normal à l'axe longitudinal Z, en forme de H, formant deux formes en creux,deux pièces (226), présentant chacune, au moins dans la zone de jonction, une section transversale en forme de C, et s'imbriquant chacune dans une forme en creux du profilé de section transversale en forme de H, et deux ailes (227), l'ensemble pièces- ailes formant un profilé présentant, au moins dans la zone de jonction, une section transversale en forme de H. 7 - Elément structural (2) selon l'une des revendications précédentes dans lequel un des deux profilés présente une forme en L. 8 - Elément structural (2) selon l'une des revendications précédentes dans lequel les deux profilés (21, 22) forment un ensemble monobloc réalisé en une seule pièce. 9 - Structure primaire d'un fuselage d'aéronef comportant un revêtement (11), au moins un cadre de renfort (13), au moins une traverse (14) et au moins un élément structural (2) suivant l'une des revendications 1 à 4 fixé à une première extrémité (23) à une traverse (14) et à une deuxième extrémité (24) au cadre de renfort (13). 10 - Structure primaire d'un fuselage d'aéronef comportant un revêtement (11), au moins un cadre de renfort (13), au moins une traverse (14) et au moins un élément structural (2) suivant la revendication 7 fixé à ses deux extrémités au même cadre de renfort et en son angle à une traverse. CLAIMS1 structural element (2) adapted to take up static compression forces along a Z axis, characterized in that it comprises two sections (21, 22) made of fibrous composite material, extending along the Z axis, said two sections being joined together, at a junction zone (25), by fibers, called transverse fibers (26), placed perpendicular to an interface (27) between said two sections and perpendicular to the Z axis, so that shock along the Z axis causes delamination of said transverse fibers to absorb energy. Structural member (2) according to claim 1 wherein the transverse fibers (26) are perpendicularly stitched through the two sections (21,22) so as to form a seam. 3 - structural element (2) according to claim 1 wherein the transverse fibers (26) form nails through the two sections (21, 22) perpendicularly to the interface. 4 - structural element (2) according to one of claims 1 to 3 comprising: - a profile (21) having, at least in the junction area (25), a cross section, in a plane normal to the axis longitudinal Z, H-shaped, forming two recessed shapes, - a profile (22) having, at least in the junction zone (25), a C-shaped cross-section, said cross-section profile in the form of a cross-section, C having dimensions, in width and height, adapted to interlock in one of the two recessed shapes of the profile section (21) of H-shaped cross-section. 5 - The structural element (2) according to claim 4 wherein the two profiles (21, 22) jointly present, in all or part of the junction zone (25), an evolutive cross section. 6 - structural element (2) according to one of claims 1 to 3 comprising: a profile (21) having, at least in the junction area (25), a cross section, in a plane normal to the longitudinal axis Z, H-shaped, forming two hollow shapes, two pieces (226), each having, at least in the junction area, a C-shaped cross section, and each interlocking in a hollow shape of the profile of H-shaped cross-section, and two wings (227), the wing-pieces forming a profile having, at least in the junction zone, an H-shaped cross-section. 7 - Structural element (2) according to one of the preceding claims wherein one of the two profiles has an L-shaped. 8 - structural element (2) according to one of the preceding claims wherein the two profiles (21, 22) form a monobloc assembly made in one room. 9 - Primary structure of an aircraft fuselage comprising a coating (11), at least one reinforcing frame (13), at least one cross member (14) and at least one structural element (2) according to one of the claims 1 to 4 attached to a first end (23) to a cross member (14) and a second end (24) to the reinforcing frame (13). 10 - Primary structure of an aircraft fuselage comprising a coating (11), at least one reinforcing frame (13), at least one cross member (14) and at least one structural element (2) according to claim 7 attached to its two ends to the same reinforcing frame and at its angle to a cross.
FR0959200A 2009-12-18 2009-12-18 STRUCTURAL ELEMENT FOR ENERGY ABSORPTION IN COMPOSITE MATERIAL Expired - Fee Related FR2954430B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0959200A FR2954430B1 (en) 2009-12-18 2009-12-18 STRUCTURAL ELEMENT FOR ENERGY ABSORPTION IN COMPOSITE MATERIAL
PCT/EP2010/069886 WO2011073315A1 (en) 2009-12-18 2010-12-16 Energy absorption structural element made of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0959200A FR2954430B1 (en) 2009-12-18 2009-12-18 STRUCTURAL ELEMENT FOR ENERGY ABSORPTION IN COMPOSITE MATERIAL

Publications (2)

Publication Number Publication Date
FR2954430A1 true FR2954430A1 (en) 2011-06-24
FR2954430B1 FR2954430B1 (en) 2013-11-29

Family

ID=42337536

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0959200A Expired - Fee Related FR2954430B1 (en) 2009-12-18 2009-12-18 STRUCTURAL ELEMENT FOR ENERGY ABSORPTION IN COMPOSITE MATERIAL

Country Status (2)

Country Link
FR (1) FR2954430B1 (en)
WO (1) WO2011073315A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062018B4 (en) * 2010-11-26 2015-05-13 Airbus Operations Gmbh Support rod for supporting a floor structure of an aircraft

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2979896A1 (en) * 2011-09-08 2013-03-15 Airbus Operations Sas AIRCRAFT FUSELAGE FRAME ELEMENT
FR2984273B1 (en) * 2011-12-16 2014-04-11 Aerolia AIRCRAFT FLOOR SUPPORT
DE102012001940A1 (en) 2012-02-01 2013-08-01 Volkswagen Aktiengesellschaft Deformation element, in particular for bumpers on motor vehicles
DE102012208721A1 (en) 2012-05-24 2013-11-28 Lufthansa Technik Ag Airplane seat with a seat assembly
DE102013205275B3 (en) 2013-03-26 2014-10-02 Airbus Operations Gmbh Aircraft fuselage structure
DE102013113393A1 (en) * 2013-12-03 2015-06-03 Airbus Operations Gmbh Connection arrangement and structure
DE102013224833A1 (en) * 2013-12-04 2015-06-11 Voith Patent Gmbh Energy dissipation device, in particular shock protection for a track-guided vehicle
FR3021624B1 (en) * 2014-05-30 2017-12-22 Airbus Operations Sas SLIDING CONNECTION BETWEEN THE FLOOR STRUCTURE AND THE HULL STRUCTURE OF AN AIRCRAFT.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657061A (en) * 1966-12-13 1972-04-18 Carborundum Co Reinforced carbon and graphite bodies
US5968639A (en) * 1996-05-31 1999-10-19 The Boeing Company Z-pin reinforced, bonded composite structure
EP1316409A1 (en) * 2001-12-01 2003-06-04 DaimlerChrysler AG Crash-structure made of fibre reinforced composite material
WO2004041528A2 (en) * 2002-11-01 2004-05-21 Bell Helicopter Textron Inc. Method and apparatus for z-direction reinforcement of composite laminates
WO2007033640A1 (en) * 2005-09-21 2007-03-29 Eads Deutschland Gmbh Floor structure for aircraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657061A (en) * 1966-12-13 1972-04-18 Carborundum Co Reinforced carbon and graphite bodies
US5968639A (en) * 1996-05-31 1999-10-19 The Boeing Company Z-pin reinforced, bonded composite structure
EP1316409A1 (en) * 2001-12-01 2003-06-04 DaimlerChrysler AG Crash-structure made of fibre reinforced composite material
WO2004041528A2 (en) * 2002-11-01 2004-05-21 Bell Helicopter Textron Inc. Method and apparatus for z-direction reinforcement of composite laminates
WO2007033640A1 (en) * 2005-09-21 2007-03-29 Eads Deutschland Gmbh Floor structure for aircraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062018B4 (en) * 2010-11-26 2015-05-13 Airbus Operations Gmbh Support rod for supporting a floor structure of an aircraft
US9090331B2 (en) 2010-11-26 2015-07-28 Airbus Operations Gmbh Aircraft floor support strut with design failure point

Also Published As

Publication number Publication date
WO2011073315A1 (en) 2011-06-23
FR2954430B1 (en) 2013-11-29

Similar Documents

Publication Publication Date Title
WO2011073315A1 (en) Energy absorption structural element made of composite material
EP2257465B1 (en) Energy-absorbing structural element made of a composite material and aircraft fuselage having said absorber
EP1349777B1 (en) Composite beam with integrated break-off initiator and aircraft fuselage incorporating such beams
EP2679484B1 (en) Primary structure of aircraft fuselage comprising bracing elements designed for early rupture to increase energy absorption in case of a crash
EP1813527B1 (en) Composite anti-crash structure with lateral restraint for aircraft
EP2596255B1 (en) Aircraft comprising a link rod one part of which is made of composite
EP3024714B1 (en) Improved lateral upright for motor vehicle body shell
FR2984274A1 (en) SECURED BEAM, IN PARTICULAR A STRONG FUSELAGE FRAME, AS WELL AS AIRCRAFT FUSELAGE EQUIPPED WITH SUCH FRAMES
FR2921899A1 (en) METHOD FOR LOCALLY REINFORCING COMPOSITE MATERIAL ELEMENT AND CENTRAL BOAT BOILER FOR REINFORCED AIRCRAFT
WO2016135092A1 (en) Composite panel provided with an improved assembly end piece and structure comprising such a panel
EP3562714B1 (en) Impact absorbing system for motor vehicle
EP3086984A1 (en) Increase of the compressibility of a bumper beam
FR2930477A1 (en) AMORTIZING PROTECTIVE SKIN OF COMPOSITE COMPONENTS
EP2563651B1 (en) Fuselage structure provided with an impact energy adorbing device
EP3245107B1 (en) Energy-absorbing element for car bumper
FR2903961A1 (en) Structural element for airframe of rotocraft e.g. helicopter, has insert mounted in cavities of lower cross-member without clearance, where insert has deformation crack and rupture, which are distributed on substantial portion of insert
EP2655919A1 (en) Structural part having the ability to dissipate energy
FR3068287A1 (en) LIGHT SHIELD FOR STRUCTURES AND METHOD OF MAKING AN ARMOR
FR2998258A1 (en) AIRCRAFT WITH MODEST WEIGHT SUPPORT STRUCTURE WITH HIGH ENERGY ABSORPTION CAPACITY FOR GROUND CRUSHING
FR2988150A1 (en) ABSORPTION BOX OF ENERGY
EP3315377B1 (en) Bodywork structure for a vehicle on rails and method for manufacturing such a bodywork structure
EP2508419A1 (en) Method of slowing the propagation of cracks in a fail safe structure and fail safe frame, especially for fuselage
FR3033846A1 (en) FLEXIBLE CONNECTION AND FLEXIBLE CONNECTION FOR SUCH ASSEMBLY
FR2896769A1 (en) Aircraft anti-crash structure, especially for helicopters, is made from double walls with intermediate material and cruciform connecting bars
EP3245108A1 (en) Energy-absorbing element for car bumpers

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

ST Notification of lapse

Effective date: 20230808