FR2951218A1 - COMMUNICATION PYLONE - Google Patents

COMMUNICATION PYLONE Download PDF

Info

Publication number
FR2951218A1
FR2951218A1 FR0957095A FR0957095A FR2951218A1 FR 2951218 A1 FR2951218 A1 FR 2951218A1 FR 0957095 A FR0957095 A FR 0957095A FR 0957095 A FR0957095 A FR 0957095A FR 2951218 A1 FR2951218 A1 FR 2951218A1
Authority
FR
France
Prior art keywords
frames
pylon
spacers
frame
articulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0957095A
Other languages
French (fr)
Other versions
FR2951218B1 (en
Inventor
Patrick Feyfant
Christophe Menant
Jerome Barre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Priority to FR0957095A priority Critical patent/FR2951218B1/en
Priority to EP20100186759 priority patent/EP2312091B1/en
Publication of FR2951218A1 publication Critical patent/FR2951218A1/en
Application granted granted Critical
Publication of FR2951218B1 publication Critical patent/FR2951218B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/18Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures movable or with movable sections, e.g. rotatable or telescopic
    • E04H12/185Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures movable or with movable sections, e.g. rotatable or telescopic with identical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1242Rigid masts specially adapted for supporting an aerial

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Aerials With Secondary Devices (AREA)
  • Foundations (AREA)

Abstract

La présente invention a pour objet un pylône pour les télécommunications comprenant des membrures et des entretoises, comportant un empilage d'au moins deux cadres, chacun formé d'au moins trois membrures reliées par des entretoises, les cadres superposés étant reliés entre eux par des liaisons articulées. Avantageusement, les membrures sont en bois reliées par des entretoises métalliques.The present invention relates to a pylon for telecommunications comprising chords and spacers, comprising a stack of at least two frames, each formed of at least three members connected by spacers, the superposed frames being interconnected by articulated links. Advantageously, the frames are made of wood connected by metal spacers.

Description

Pylône de communication La présente invention se rapporte aux pylônes utilisés notamment dans le domaine des télécommunications mobiles, de la radiocommunication cellulaire, de la radiodiffusion hertzienne, de la télédiffusion, de l'énergie, de la détection ou de toute autre application nécessitant des structures verticales élancées. Ces pylônes sont de grande hauteur et destinés à soutenir en particulier des dispositifs pour les télécommunications et la radiodiffusion, y compris la télévision, et/ou des équipements fournisseurs d'énergie électriques, comme les éoliennes. Ces 10 constructions doivent répondre aux règles techniques en vigueur. Elles doivent notamment être conformes aux règles définissant les effets de la neige et du vent sur ces constructions. Pour les systèmes supportant des antennes de télécommunication mobile (antennes panneaux, antennes paraboliques,...), on recherche en outre des structures plus esthétiques de telle sorte qu'elles s'intègrent au mieux dans leur 15 environnement et qu'elles ne soient pas sources de pollution visuelle. Il existe deux grandes familles de pylônes : les pylônes haubanés et les pylônes autostables. Les pylônes haubanés sont utilisés soit pour de très grands ouvrages lorsque le terrain disponible est très étendu et peu coûteux, soit pour de petites hauteurs s'ils sont fixés sur les bâtiments. Les pylônes autostables sont préférés aux pylônes 20 haubanés pour leur faible emprise au sol. Ils sont utilisés pour des hauteurs comprises entre 10 et 60 m et sont destinés principalement au marché des télécommunications. Ces pylônes peuvent avoir deux types de structures : en treillis ou monotube. Le pylône en treillis est utilisé le plus souvent en milieu rural, et le pylône monotube est généralement préféré en milieu urbain et périurbain pour son esthétisme. 25 Les opérateurs rencontrent de nombreuses difficultés à déployer leur réseau en milieu urbain, périurbain ou en zone rurale à protéger, car ils font l'objet d'études ou de recommandations particulières de la part des institutions publiques. L'esthétisme et l'intégration dans l'environnement sont aujourd'hui les critères principaux retenus pour l'obtention des autorisations d'implantation. The present invention relates to towers used in particular in the field of mobile telecommunications, cellular radio, radio broadcasting, television broadcasting, energy, detection or any other application requiring vertical structures slender. These pylons are of great height and intended to support in particular devices for telecommunications and broadcasting, including television, and / or electrical energy supply equipment, such as wind turbines. These 10 constructions must meet the technical rules in force. In particular, they must comply with the rules defining the effects of snow and wind on these constructions. For systems supporting mobile telecommunication antennas (panel antennas, satellite dishes, etc.), more aesthetic structures are also sought so that they integrate better into their environment and are not no sources of visual pollution. There are two main families of pylons: guyed towers and freestanding pylons. Guyed towers are used either for very large structures when the available terrain is very large and inexpensive, or for small heights if they are fixed on the buildings. Freestanding pylons are preferred to guyed pylons for their low footprint. They are used for heights between 10 and 60 m and are mainly intended for the telecommunications market. These pylons can have two types of structures: lattice or monotube. The trellis pylon is used most often in rural areas, and the monotube pylon is generally preferred in urban and peri-urban areas for its aesthetics. Operators encounter many difficulties in deploying their network in urban, peri-urban or rural areas to be protected, as they are the subject of studies or special recommendations by public institutions. Aesthetics and integration into the environment are today the main criteria used to obtain planning permission.

Par ailleurs ces pylônes, qu'ils soient de type en treillis ou de type monotube, sont habituellement fabriqués en acier galvanisés puis peints d'une couleur en accord avec les exigences esthétiques des autorités compétentes. La fabrication de ces pylônes métalliques est polluante et nécessite une consommation énergétique importante. Aujourd'hui on tend vers l'utilisation de produits plus respeetueux de l'environnement et moins énergivore. L'utilisation du bois pour la réalisation de tours d'observation ou de pylônes émetteurs pour les communications est connue depuis le début du XXème siècle. Ces structures les plus récentes sont érigées in-situ et constituées d'un treillis de poutres en bois assemblées par des vis, tirefonds ou goujons en acier galvanisés. Mais les propriétés du bois limitent significativement son utilisation pour des structures élancées et ajourées. Les efforts acceptables en matière de flambement, de flexion et de torsion sont limités. Pour compenser la faiblesse des propriétés mécaniques du bois par rapport à des matériaux comme l'acier ou le béton armés, ces ouvrages en bois sont très 15 denses et compacts, donc visuellement imposants et inesthétiques au regard des critères actuels. La présente invention a donc pour but de proposer un pylône de télécommunications améliorant le dépointage (flexion dans le plan vertical), qui est le critère le plus important pour les ouvrages supportant des antennes de 20 télécommunications. L'invention a aussi pour but de proposer un pylône dont la structure est plus élancée, plus ajourée et plus esthétique que les tours de l'art antérieur. En particulier l'invention doit permettre la construction d'ouvrages suffisamment hauts pour une application dans le domaine des télécommunications et de l'énergie, tout en réduisant 25 son impact visuel. L'invention a encore pour but de proposer un pylône dont l'assemblage in-situ est plus facile et plus rapide que les pylônes connus. En particulier l'invention propose un procédé de fabrication d'un pylône moins complexe et moins coûteux que les procédés connus. 30 L'objet de la présente invention est un pylône pour les télécommunications comprenant des membrures et des entretoises, comportant un empilage d'au moins deux cadres, chacun formé d'au moins trois membrures reliées par des entretoises, les cadres superposés étant reliés entre eux par des liaisons articulées. In addition, these pylons, whether lattice type or monotube type, are usually made of galvanized steel and then painted a color in accordance with the aesthetic requirements of the competent authorities. The manufacture of these metal pylons is polluting and requires a significant energy consumption. Today we tend towards the use of products more respeetive of the environment and less energy consuming. The use of wood for the realization of observation towers or transmitter pylons for communications has been known since the beginning of the 20th century. These most recent structures are erected in situ and consist of a lattice of wooden beams joined by galvanized steel screws, bolts or studs. But the properties of wood significantly limit its use for slender structures and openwork. Acceptable efforts in buckling, bending and twisting are limited. To compensate for the weakness of the mechanical properties of wood compared to materials such as steel or reinforced concrete, these wooden structures are very dense and compact, so visually imposing and unsightly in the light of current criteria. The present invention therefore aims to provide a telecommunication tower improving the misalignment (bending in the vertical plane), which is the most important criterion for structures supporting telecommunications antennas. The invention also aims to provide a pylon whose structure is slender, more openwork and more aesthetic than the towers of the prior art. In particular the invention must allow the construction of structures high enough for an application in the field of telecommunications and energy, while reducing its visual impact. The invention also aims to propose a pylon whose assembly in-situ is easier and faster than known pylons. In particular the invention provides a method of manufacturing a pylon less complex and less expensive than known methods. The object of the present invention is a pylon for telecommunications comprising chords and spacers, comprising a stack of at least two frames, each formed of at least three members connected by spacers, the superposed frames being connected between them by articulated links.

Les entretoises entre les membrures forment une liaison rigide. La hauteur où sont placées les entretoises est variable en fonction des sollicitations exercées à la base de chaque cadre. Cette liaison rigide permet d'assimiler mécaniquement le cadre à un portique inversé et empilable, Par ailleurs les entretoises sont placées de préférence à la base des cadres qui offre avantageusement une section de membrure plus importante et améliore ainsi l'efficacité de l'assemblage. En effet les sollicitations étant plus importantes dans les membrures au niveau de la fixation des entretoises, le portique ainsi réalisé subit une déformation moindre par rapport au cas où les entretoises sont en position haute. Cependant des entretoises peuvent en outre être disposées dans la to partie haute des cadres. Cette solution permet de réduire, voire de supprimer, tous les efforts parasites et résiduels au niveau des assemblages (moment, torsion, etc...). Des déformations sont générées dans l'empilage indépendamment pour chaque cadre, qui entraînent une augmentation de la flèche cumulée de l'empilement, mais aussi une réduction du 15 dépointage (déformée de flexion autour de l'axe horizontal) qui est un paramètre de grande efficacité dans le domaine des télécommunications. Selon une forme d'exécution, les membrures respectives des deux cadres sont reliées deux à deux par des liaisons articulées. Selon une autre forme d'exécution, l'un des cadres comprend au moins une 20 liaison articulée apte à être fixée sur une fondation. Avantageusement les liaisons comportent deux plans parallèles reliés par un axe perpendiculaire aux plans. De cette façon, la liaison est apte à effectuer un mouvement de rotation dans un plan. Le plan de rotation de chaque liaison est de préférence disposé perpendiculairement au plan de la bissectrice de l'un des angles 25 appartenant à la section géométrique du pylône. Alternativement les liaisons articulées peuvent être constituées de rotules. Selon une variante, les membrures ont une section carrée ou rectangulaire. Les membrures peuvent avoir une section constante ou variable. La section peut être de dimension variable au sein d'un même cadre ou d'un cadre à l'autre, notamment la 30 section des membrures peut décroître de la base jusqu'au sommet du pylône. Selon une autre variante, les entretoises sont rectilignes ou courbes. Les entretoises peuvent être de type treillis, ou formée d'une tôle pleine ou ajourée. The spacers between the frames form a rigid connection. The height where the spacers are placed is variable according to the stresses exerted at the base of each frame. This rigid connection makes it possible to assimilate the frame mechanically to an inverted and stackable gantry. Furthermore, the spacers are preferably placed at the base of the frames, which advantageously offers a larger chord section and thus improves the efficiency of the assembly. Indeed the stresses being greater in the frames at the fixing of the spacers, the gantry thus produced undergoes a lesser deformation compared to the case where the spacers are in the high position. However, spacers may further be arranged in the top part of the frames. This solution makes it possible to reduce or even eliminate all parasitic and residual stresses at the level of the assemblies (moment, torsion, etc.). Deformations are generated in the stack independently for each frame, which results in an increase in the cumulative deflection of the stack, but also in a reduction in the misalignment (bending deformation around the horizontal axis) which is a parameter of great magnitude. efficiency in the field of telecommunications. According to one embodiment, the respective frames of the two frames are connected in pairs by articulated links. According to another embodiment, one of the frames comprises at least one articulated connection capable of being fixed on a foundation. Advantageously, the links comprise two parallel planes connected by an axis perpendicular to the planes. In this way, the connection is able to rotate in a plane. The plane of rotation of each link is preferably arranged perpendicular to the plane of the bisector of one of the angles 25 belonging to the geometric section of the pylon. Alternatively the articulated connections may consist of ball joints. According to one variant, the members have a square or rectangular section. The members may have a constant or variable section. The section may be of variable size within the same frame or from one frame to the other, especially the section of the frames may decrease from the base to the top of the pylon. According to another variant, the spacers are rectilinear or curved. The spacers may be of lattice type, or formed of a solid sheet or perforated.

Le pylône muni d'entretoises à la base des cadres permet la mise en place d'équipements, tels que des antennes planes, des antennes paraboliques, des luminaires, et/ou des accessoires tels que des plateformes ou des fixations d'échelle. On peut encore envisager d'y fixer des éoliennes à axe de rotation vertical, qui peuvent être placées à l'intérieures du pylône et/ou au sommet du pylône dans ce dernier cas l'axe de rotation peut être horizontal ou vertical. Le profilé des membrures, combiné avec une orientation judicieuses du pylône en fonction des vents dominants du site, améliore le rendement des éoliennes placées à l'intérieur du pylône. De préférence, les membrures sont en bois reliées par des entretoises métalliques. Les membrures sont en bois lamellé-collé non traité, et elles peuvent être rectilignes ou courbes. On utilise de préférence un bois de conifère purgé de l'aubier, tel que du mélèze ou du douglas, ou encore du pin maritime. Le bois utilisé ne nécessite aucun traitement contre les intempéries, les insectes xylophages et les pathologies biologiques. 15 L'invention a aussi pour objet un procédé fabrication d'un pylône tel que décrit précédemment, comprenant les étapes suivantes : - les membrures et les entretoises sont assemblées pour former des cadres, - les cadres sont empilés les un sur les autres et solidarisés au moyen des liaisons articulées pour former le pylône. 20 Selon une variante d'exécution, l'empilement de cadres est solidarisé à une fondation par au moins une liaison articulée. Ce procédé autorise un assemblage des cadres en usine suivi d'un transport classique sur le site de construction. Il permet un assemblage au sol in-situ sans moyen de manutention spécifique ou un empilage des cadres au moyen d'une grue, en toute 25 sécurité cadre par cadre. Par rapport aux procédés habituels, il implique un nombre de composants réduits, et la mise en place des cadres est facilité par la jonction au moyen d'une liaison par membrure. Le pylône selon la présente invention a comme avantage d'être plus respectueux de l'environnement et plus facilement recyclable, et il s'inscrit dans le cadre 30 des préoccupations actuelles en matière de développement durable. L'invention a aussi comme avantage de permettre aux opérateurs de télécommunications de déployer plus rapidement leur réseaux en obtenant plus facilement les autorisations administratives de constructions grâce à une esthétique améliorée du pylône et à la prise en compte de son impact environnemental, notamment en matière de recyclage, et éventuellement de l'autonomie énergétique des équipement qu'il supporte. Le pylône élancé, principalement en bois, est esthétiquement amélioré par l'apport d'un matériau noble tout en réduisant l'impact visuel massif d'un pylône monotube et le caractère industriel d'un pylône de type treillis. Le faible impact des entretoises met en valeur les membrures verticales et donne à la structure une élégance certaine. L'invention a aussi pour avantage de proposer un pylône dont la géométrie ajourée permet d'intégrer plusieurs éoliennes à axe de rotation vertical, permettant de participer ou de fournir l'énergie nécessaire au fonctionnement du site télécom. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation, donné bien entendu à titre 15 illustratif et non limitatif, et dans le dessin annexé sur lequel - la figure 1 représente un mode de réalisation d'un pylône selon l'invention, - les figures 2a et 2b montrent deux formes d'exécution des entretoises, - les figures 3a et 3b montrent, respectivement de face et en coupe 1-1, une liaison entre les cadres empilés, 20 - les figures 4a et 4b montrent en coupe l'implantation des liaisons articulées dans des pylône de section géométrique carrée et triangulaire respectivement, - les figures 5a et 5b montre, respectivement de face et de profil, une liaison entre le cadre de base et la fondation, - la figure 6 est une vue en perspective dessus du sommet du pylône, 25 - la figure 7 est une vue en perspective dessus du sommet du pylône équipé d'un radôme sommital, - la figure 8 montre un pylône portant des éoliennes, - la figure 9 montre la courbe de déformation d'une structure dite "à poutre continue" ; la hauteur h de la structure en mètre est portée en ordonnée, et la distance d 30 au centre de la structure en mètre est portée en abscisse, - la figure 10 montre la courbe de déformation d'une structure dite "à cadres empilés" analogue à celle du pylône de la figure 1 ; la hauteur h de la structure en mètre est portée en ordonnée, et la distance d au centre de la structure en mètre est portée en abscisse. The pylon provided with spacers at the base of the frames allows the establishment of equipment, such as flat antennas, satellite dishes, fixtures, and / or accessories such as platforms or scale fixtures. It is also possible to envisage fixing wind turbines with a vertical axis of rotation, which can be placed inside the pylon and / or at the top of the pylon in the latter case the axis of rotation can be horizontal or vertical. The profile of the members, combined with a judicious orientation of the pylon according to the prevailing winds of the site, improves the efficiency of the wind turbines placed inside the pylon. Preferably, the frames are made of wood connected by metal spacers. The frames are made of untreated laminated wood and can be rectilinear or curved. It is preferable to use coniferous sapwood, such as larch or Douglas fir, or maritime pine. The wood used does not require any treatment against bad weather, xylophagous insects and biological pathologies. The invention also relates to a method of manufacturing a pylon as described above, comprising the following steps: - The frames and the struts are assembled to form frames - The frames are stacked one on the other and secured by means of articulated links to form the pylon. According to an alternative embodiment, the stack of frames is secured to a foundation by at least one articulated connection. This process allows assembly of frames in the factory followed by conventional transport on the construction site. It allows an in-situ floor assembly without specific handling means or a stack of frames by means of a crane, in complete frame safety. Compared to the usual methods, it involves a reduced number of components, and the setting up of the frames is facilitated by the junction by means of a frame connection. The pylon according to the present invention has the advantage of being more environmentally friendly and more easily recyclable, and is part of the current concerns for sustainable development. The invention also has the advantage of enabling telecommunications operators to deploy their networks more quickly by obtaining administrative building authorizations more easily thanks to an improved aesthetics of the tower and the taking into account of its environmental impact, especially in terms of recycling, and possibly the energy autonomy of the equipment that it supports. The slender pylon, mainly made of wood, is aesthetically enhanced by the addition of a noble material while reducing the massive visual impact of a monotube pylon and the industrial character of a lattice type pylon. The low impact of the spacers enhances the vertical members and gives the structure a certain elegance. The invention also has the advantage of providing a pylon whose openwork geometry allows to integrate several wind turbines with vertical axis of rotation, to participate or provide the energy necessary for the operation of the telecom site. Other features and advantages of the present invention will appear on reading the following description of an embodiment, given of course by way of illustration and not limitation, and in the accompanying drawing in which - FIG. embodiment of a pylon according to the invention, - Figures 2a and 2b show two forms of execution of the spacers, - Figures 3a and 3b show, respectively from the front and in section 1-1, a connection between the frames FIGS. 4a and 4b show in section the implantation of articulated connections in pylons of square and triangular geometrical section respectively; FIGS. 5a and 5b show, respectively from the front and from the side, a connection between the frame of 6 is a perspective view above the top of the pylon equipped with a top radome; FIG. 8 shows a view of the top of the pylon, FIG. ylône carrying wind turbines, - Figure 9 shows the deformation curve of a structure called "continuous beam"; the height h of the structure in meters is plotted on the ordinate, and the distance d 30 at the center of the structure in meters is plotted on the abscissa, - Figure 10 shows the deformation curve of a so-called "stacked frames" structure. to that of the pylon of Figure 1; the height h of the structure in meters is plotted on the ordinate, and the distance d at the center of the structure in meters is plotted on the abscissa.

Dans le mode de réalisation de l'invention illustré sur la figure 1, le pylône représenté a une section carrée. Il est formé d'un empilage de cadres 1 indépendants. Chaque cadre 1 est composé de quatre membrures 2 en bois de section rectangulaire, qui peut être constante ou variable. Les membrures 2, verticales ou sensiblement verticales, sont disposées aux quatre coins d'un carré et reliées par des entretoises 3 horizontales ou sensiblement horizontales. Les entretoises 3 sont par exemple constituées d'un treillis métallique composé de tubes reliés par des ronds ou des tubes. Les entretoises 3 sont de préférence situées dans la partie basse du cadre 1 où la section de la membrure 2 est la plus large dans le cas d'une membrure 2 à section to variable. Ces entretoises 3 peuvent aussi bien être fixées en partie haute ou en partie haute et basse. Le nombre et la position des entretoises 3 sont choisis en fonctions des efforts appliqués sur le cadre 1. Les cadres 1 superposés sont solidarisés entre eux par des liaisons 4 métalliques articulées. Le pylône comporte aussi un cadre 5 placé à la base du pylône et sur lequel 15 sont empilés les cadres 1. Le cadre de base 5 est relié au cadre 1 qui le surmonte par des liaisons 4 métalliques articulées. Le cadre 5 est composé de quatre membrures 6 en bois de section rectangulaire variable qui sont maintenues en position relative par un ensemble de barres, métalliques ou en bois, qui est composé de traverses 7 et de diagonales 8 reliées entre elles par des liaisons 9 métalliques. Le cadre de base 5 20 assure la jonction avec la fondation 10 sur laquelle repose le pylône, par l'intermédiaire d'une liaison Il métallique articulée. On a représenté sur la figure 2a, une forme d'exécution des entretoises 3 joignant les membrures 2 d'un cadre 1 du mode de réalisation du pylône représenté sur la figure 1. Dans le cas présent, les entretoises 3 sont en treillis métalliques rectilignes. 25 Les entretoises 3 peuvent être de forme ou de composition diverses les rendant capable d'assurant une liaison rigide entre les membrures 2, et sont fixées sur les membrures 2, en bois de section rectangulaire variable, à l'aide de broches, de goujons, de vis, de boulons et/ou de tiges filetées. Le montage sur site est facilité par un pré-assemblage des cadres en usine. 30 Sur la figure 2b, on a représenté une autre forme d'exécution d'un cadre 20 comportant des membrures 21 en bois de section rectangulaire variable qui sont reliées par des entretoises 22, par exemple en treillis métalliques, qui sont ici de forme courbe. In the embodiment of the invention illustrated in Figure 1, the pylon shown has a square section. It consists of a stack of independent 1 frames. Each frame 1 is composed of four wooden members 2 of rectangular section, which can be constant or variable. The ribs 2, vertical or substantially vertical, are arranged at the four corners of a square and connected by spacers 3 horizontal or substantially horizontal. The spacers 3 consist for example of a wire mesh consisting of tubes connected by rings or tubes. The spacers 3 are preferably located in the lower part of the frame 1 where the section of the chord 2 is widest in the case of a chord 2 section to variable. These spacers 3 may as well be fixed in the upper part or in the upper and lower part. The number and the position of the spacers 3 are chosen according to the forces applied to the frame 1. The superposed frames 1 are secured to each other by articulated metal links 4. The pylon also comprises a frame 5 placed at the base of the pylon and on which 15 are stacked the frames 1. The base frame 5 is connected to the frame 1 which surmounted by articulated metal links 4. The frame 5 is composed of four wooden members 6 of variable rectangular section which are maintained in relative position by a set of bars, metal or wood, which is composed of cross-members 7 and diagonals 8 interconnected by metal links 9 . The base frame 5 connects with the foundation 10 on which the pylon rests, via an articulated metal link 11. FIG. 2a shows an embodiment of the spacers 3 joining the members 2 of a frame 1 of the embodiment of the tower shown in FIG. 1. In the present case, the spacers 3 are in rectilinear wire mesh. . The spacers 3 may be of various shapes or compositions making them capable of providing a rigid connection between the chords 2, and are fixed to the chords 2, made of wood of variable rectangular section, using pins, studs , screws, bolts and / or threaded rods. On-site assembly is facilitated by pre-assembly of frames in the factory. FIG. 2b shows another embodiment of a frame 20 comprising wooden frames 21 of variable rectangular section which are connected by spacers 22, for example made of metal lattices, which are curved here. .

Une liaison 30 métallique articulée reliant deux membrures 31, 32 appartenant respectivement à deux cadres superposés est représentée sur les figures 3a et 3b, respectivement de face et selon une coupe 1-1. Cette liaison 30 est composée d'une pièce mécano-soudée 33 supérieure s'insérant en partie à l'intérieur de la membrure en bois du cadre supérieur. La liaison 30 est fixée sur la membrure 31 par exemple au moyen de broches et/ou de tiges filetée 34. La partie 35 en forme de pointe de la pièce mécano-soudée 33, qui se projette en dehors de la membrure 31, est solidarisée et articulée avec une pièce mécano-soudée 36 inférieure à l'aide d'un axe métallique 37. La pièce mécano-soudée 36 inférieure s'insère aussi partiellement dans la membrure 32 du cadre inférieur. La partie 38 en forme de pointe de la pièce mécano-soudée 36 inférieure, se trouvant en dehors de la membrure 32, est reliée et articulée avec la pièce mécano-soudée 33 supérieure par l'axe métallique 37. Ce type d'assemblage est appelé communément "assemblage par ferrure en âme". Cette liaison 30 a l'avantage de posséder de la souplesse dans plusieurs directions qui lui permet d'accompagner les mouvements de faible ampleur du pylône. La pièce mécano-soudée 36 inférieure est équipée d'une plaque de protection 40 horizontale qui s'emboîte pour protéger l'extrémité de la membrure 32 du cadre inférieur, notamment contre les intempéries. Un prolongement 41 astucieux de la plaque de protection 40, munie de trous 42 pour le passage de vis, permet la mise en place de traverses provisoires de montage afin d'éviter toute déformation au cours du levage du cadre, mais aussi de faciliter son assemblage avec le cadre inférieur. Les dispositions des liaisons articulées dans le cas de pylônes à section géométrique carrée et à section géométrique triangulaire sont représentées sur les figures 4a et 4b respectivement. An articulated metal link connecting two members 31, 32 respectively belonging to two superposed frames is shown in FIGS. 3a and 3b, respectively from the front and in a section 1-1. This connection 30 is composed of a welded upper part 33 inserted partly inside the wooden frame of the upper frame. The link 30 is fixed on the frame 31 for example by means of pins and / or threaded rods 34. The tip-shaped portion 35 of the mechanically welded part 33, which projects out of the frame 31, is secured. and hinged with a welded lower part 36 by means of a metal pin 37. The lower welded part 36 also fits partially in the frame 32 of the lower frame. The tip-shaped part 38 of the lower welded part 36, lying outside the frame 32, is connected and articulated with the upper welded part 33 by the metal axis 37. This type of assembly is commonly called "assembly by ironing soul". This link 30 has the advantage of having flexibility in several directions that allows it to accompany the small-scale movements of the pylon. The lower welded part 36 is equipped with a horizontal protection plate 40 which fits to protect the end of the frame 32 of the lower frame, especially against the weather. A clever extension 41 of the protection plate 40, provided with holes 42 for the passage of screws, allows the installation of temporary mounting rails to prevent any deformation during the lifting of the frame, but also to facilitate its assembly. with the lower frame. The arrangements of articulated links in the case of pylons with square geometric section and triangular geometric section are shown in Figures 4a and 4b respectively.

Sur la figure 4a on a représenté en coupe un pylône à section géométrique carrée. L'axe 43 des liaisons articulées insérés dans la membrure 44 est perpendiculaire au plan de la bissectrice 45 pour chacun des angles placés aux sommets du carré. Sur la figure 4b on a représenté en coupe un pylône à section géométrique triangulaire. L'axe 47 des liaisons articulées insérés dans la membrure 48 est perpendiculaire au plan de la bissectrice 49 pour chacun des angles placés aux sommets du triangle. On a illustré sur le figure 5, la liaison 50 entre la membrure 51 du cadre de base du pylône et la fondation 52 sur laquelle il repose. Cette liaison 50 est composée d'une pièce mécano-soudées 53 supérieure s'insérant en partie à l'intérieur de la membrure 51 en bois à laquelle elle est fixée au moyen de broches ou tiges filetées 54. La partie 55 en pointe de la pièce mécano-soudées 53, dépassant de la membrure, est solidarisée et articulée avec une pièce mécano-soudée 56 inférieure à l'aide d'un axe métallique 57. In Figure 4a is shown in section a pylon with a square geometric section. The axis 43 of the articulated links inserted in the rib 44 is perpendicular to the plane of the bisector 45 for each of the angles placed at the vertices of the square. In Figure 4b is shown in section a pylon with triangular geometric section. The axis 47 of the articulated links inserted in the rib 48 is perpendicular to the plane of the bisector 49 for each of the angles placed at the vertices of the triangle. FIG. 5 shows the connection 50 between the frame 51 of the base frame of the pylon and the foundation 52 on which it rests. This link 50 is composed of a mechanically welded part 53 which is partly inserted inside the wooden frame 51 to which it is fixed by means of spindles or threaded rods 54. The portion 55 at the end of the welded piece 53, protruding from the frame, is secured and articulated with a welded part 56 lower using a metal axis 57.

La pièce mécano-soudée 56 inférieure est reliée à la fondation 52 à l'aide d'ancrages 58 à béton comportant une extrémité filetée 59 qui assure le serrage et la fixation des ancrages 58 sur la pièce mécano-soudée 56 inférieure. On a illustré sur la figure 6, le sommet du pylône qui peut être équipé de supports pour des accessoires tels que plate-forme, parafoudre, antennes, etc... Le Io cadre sommital 60 comprend des membrures 61 reliées par des entretoises 62, par exemple constituées d'un treillis métallique composé de tubes reliés par des ronds ou des tubes. Les entretoises 62 sont adaptées afin de recevoir des tubes 63 verticaux qui peuvent servir de supports d'antenne pour des antennes panneaux 64 ou des antennes paraboliques 65. Ces tubes 63 peuvent être fixés sur l'entretoise 62 adaptée et/ou sur la 15 ceinture sommitale 66 du pylône. La ceinture sommitale 66 peut assurer simultanément la fonction de support de parafoudre 67, comme dans la présente illustration. Le parafoudre 67 est ici centré, mais il peut être disposé à tout autre endroit de la ceinture sommitale 66 ou dans le prolongement de la membrure 61. La ceinture sommitale 60 peut être de structure analogue aux entretoises 62, ou bien constituée d'une tôle pleine 20 ou ajourée. Une plate-forme 68 peut en outre être fixée à la base de l'entretoise horizontale 62. La figure 7 illustre le sommet du pylône revêtu d'un radôme 70 cylindrique comportant quatre pans 71 disposés entre les membrures 72 du cadre sommital. Les plans 71 du radôme 70 sont constitués d'un matériau composite comprenant du 25 polyester renforcé de fibre de verre. Le radôme 70 peut avoir plusieurs fonctions telles que réduire l'impact visuel des équipements de télécommunication ou bien se transformer en support signalétique et/ou publicitaire. Ce radôme 70 est fixé sur la partie externe des entretoises 73 ou sur la ceinture sommitale 74. Sur cette figure 7, une partie du radôme 70 a été supprimée afin de laisser apparaître une antenne 75 fixée sur la 30 partie interne de t'entretoise 73. On a illustré sur la figure 8 un pylône comportant des cadres 80 superposés et un cadre de base 81 qui assure la jonction du pylône avec la fondation 82 par la liaison 83 articulée. Les cadres 80 et le cadre de base 81 sont formés de membrures 84 et d'entretoises 85, et solidarisés par des liaisons 86 articulées. Le pylône porte une ceinture sommitale 87 de structure en treillis métallique similaire à la structure des entretoises 85. Une éolienne 88 est placée au sommet du pylône et fixée sur la ceinture sommitale 87. Des éoliennes 89 ayant un axe de rotation vertical sont placées à l'intérieur du pylône et fixées sur les entretoises 85 équipées d'éléments mécaniques. Ces éoliennes 89 tournent dans l'espace intérieur du pylône. Les échelles et autres accessoires intérieurs linéaires sont supprimés ou dépiacés pour rendre libre cet espace intérieur. Les membrures 84 en bois à section rectangulaire sont utilisées en outre canine déflecteur pour améliorer l'écoulement de l'air sur les éoliennes 89 intérieures. Les membrures 84 et les entretoises 85 peuvent aussi être équipées au moins partiellement de déflecteurs aérodynamiques pour obtenir un rendement encore plus performant des éoliennes 89. Une étude préliminaire de la direction et l'intensité du vent du site d'installation est nécessaire pour une implantation judicieuse du pylône. Le rendement des éoliennes placées à l'intérieur est amélioré en disposant judicieusement ure en fonction des vents dominants et/ou en ajoutant des déflecteurs aérodynamiques sur les membrures et/ou sur les entretoises. En outre un effort esthétique est réalisé de façon à ce que l'éolienne 88 sommitale soit dans la continuité de l'empilement de cadres 80, 81. Cette éolienne 88 sommitale est de puissance moyenne et permet d'alimenter tout ou partie de la consommation d'énergie des équipements portés par le pylône La figure 9 illustre la déformation d'une structure dite "à poutre continue". La courbe 90 est une portion de parabole continue sur toute la hauteur h considérée. L'angle de flexion aie représente la rotation du sommet de la structure dans le plan vertical. L'angle ota est mesuré comme l'angle entre le plan horizontal 91 et une droite 92 perpendiculaire à la tangente au sommet de la courbe Cette valeur appelée "dépointage" ("tilt" an anglais) est représentative de la qualité de la transmission radio. Les fournisseurs d'antennes précisent cette valeur en fonction des fréquences d'utilisation et du type de l'antenne, L'angle aa a une valeur généralement comprise entre 20 minutes et 1 degré. La flèche fa est une valeur relativement moins importante qui représente la distance d entre l'axe du pylône 93 et la projection au sol 94 du sommet du pylône une fois fléchi. La figure 10 illustre la déformation d'une structure dite "à cadres empilés" analogue à celle du pylône de la figure 1. Cette courbe 100 est discontinue sur toute la hauteur h considérée et composée de la somme de portions de parabole, chacune relative à l'un des cadres. L'angle de flexion ab représente la rotation du sommet de la structure dans le plan vertical. L'angle ab est mesuré comme l'angle entre le plan horizontal 101 et une droite 102 perpendiculaire à la tangente au sommet de la courbe et la flèche fb est la distance d projetée du sommet du pylône déformé à son axe. Pour ces structures différentes, représentées par les courbes 90 et 100, les valeurs de l'angle de flexion et de la flèche sont différentes. En effet, L'angle de flexion aa de la structure "à poutre continue" est supérieur à l'angle de flexion ab de la structure "à cadres empilés". La flèche fa de la structure "à poutre continue" est 10 inférieure à la flèche fb de la structure "à cadres empilés". Le but recherché est atteint avec une structure "à cadres empilés" telle que représentée par le pylône de la figure 1, composé de cadres empilés et assemblés par des liaisons articulées, qui présente comme avantage majeur une valeur de dépointage réduite. Contrairement aux poutres des structures de type "à poutres continues", les membrures du pylône selon l'invention, 15 sont moins sollicitées ce qui permet soit de réduire la section du matériau utilisé, soit d'augmenter la capacité de la membrure, et ainsi d'envisager des structures plus hautes et plus élancées. The lower welded part 56 is connected to the foundation 52 using concrete anchors 58 having a threaded end 59 which ensures the clamping and fixing of the anchors 58 on the welded part 56 lower. FIG. 6 shows the top of the tower which can be equipped with supports for accessories such as platform, surge arrester, antennas, etc. The top frame 60 comprises frames 61 connected by spacers 62, for example consisting of a wire mesh consisting of tubes connected by rings or tubes. The spacers 62 are adapted to receive vertical tubes 63 which may serve as antenna supports for panel antennas 64 or parabolic antennas 65. These tubes 63 may be attached to the adapted spacer 62 and / or the belt. summit 66 of the pylon. The top belt 66 can simultaneously perform the surge arrester support function 67, as in the present illustration. The arrester 67 is here centered, but it can be disposed at any other point of the top belt 66 or in the extension of the chord 61. The top belt 60 may be of similar structure to the struts 62, or consist of a sheet metal full 20 or openwork. A platform 68 may further be attached to the base of the horizontal spacer 62. Figure 7 illustrates the top of the pylon coated with a cylindrical radome 70 having four panels 71 disposed between the frames 72 of the top frame. The planes 71 of the radome 70 are made of a composite material comprising fiberglass reinforced polyester. The radome 70 can have several functions such as reducing the visual impact of telecommunications equipment or turning into a sign and / or advertising medium. This radome 70 is fixed on the outer part of the spacers 73 or on the top belt 74. In this FIG. 7, a part of the radome 70 has been removed in order to reveal an antenna 75 fixed on the inner part of the spacer 73. FIG. 8 illustrates a pylon comprising superposed frames 80 and a base frame 81 which connects the pylon with the foundation 82 via the articulated link 83. The frames 80 and the base frame 81 are formed of ribs 84 and spacers 85, and secured by links 86 hinged. The pylon carries a top belt 87 of wire mesh structure similar to the structure of the struts 85. A wind turbine 88 is placed at the top of the pylon and fixed on the top belt 87. Wind turbines 89 having a vertical axis of rotation are placed at the top of the tower. inside the pylon and fixed on the spacers 85 equipped with mechanical elements. These wind turbines turn in the inner space of the pylon. Ladders and other linear interior accessories are removed or depiocated to make this interior space free. The wood frames 84 of rectangular section are further used canine deflector to improve the flow of air on the 89 inland wind turbines. The ribs 84 and the spacers 85 may also be at least partially equipped with aerodynamic deflectors to obtain an even more efficient performance of the wind turbines 89. A preliminary study of the direction and the wind intensity of the installation site is necessary for an implantation. judicious pylon. The efficiency of indoor wind turbines is improved by judiciously using the prevailing winds and / or by adding aerodynamic baffles to the ribs and / or spacers. In addition, an aesthetic effort is made so that the top wind turbine 88 is in the continuity of the stack of frames 80, 81. This top 88 wind turbine is of medium power and can supply all or part of the consumption The energy of the equipment carried by the tower Figure 9 illustrates the deformation of a so-called "continuous beam" structure. Curve 90 is a continuous parabola portion over the entire height h considered. The bending angle ae represents the rotation of the top of the structure in the vertical plane. The angle ota is measured as the angle between the horizontal plane 91 and a straight line 92 perpendicular to the tangent at the top of the curve. This value called "misalignment" ("tilt") is representative of the quality of the radio transmission. . The antennas suppliers specify this value according to the frequencies of use and the type of the antenna. The angle aa has a value generally between 20 minutes and 1 degree. The arrow fa is a relatively less important value which represents the distance d between the axis of the pylon 93 and the ground projection 94 of the top of the pylon once flexed. FIG. 10 illustrates the deformation of a so-called "stacked frame" structure similar to that of the pylon of FIG. 1. This curve 100 is discontinuous over the entire height h considered and composed of the sum of parabolic portions, each relating to one of the frames. The bending angle ab represents the rotation of the top of the structure in the vertical plane. The angle ab is measured as the angle between the horizontal plane 101 and a straight line 102 perpendicular to the tangent at the top of the curve and the arrow fb is the projected distance from the top of the tower deformed to its axis. For these different structures, represented by the curves 90 and 100, the values of the bending angle and the arrow are different. Indeed, the bending angle aa of the "continuous beam" structure is greater than the bending angle ab of the "stacked frame" structure. The arrow fa of the "continuous beam" structure is less than the arrow fb of the "stacked frame" structure. The desired object is achieved with a "stacked frame" structure as represented by the pylon of Figure 1, consisting of frames stacked and assembled by articulated links, which has as a major advantage a reduced misalignment value. In contrast to beams of "continuous beam" type structures, the members of the pylon according to the invention are less stressed, which makes it possible either to reduce the cross-section of the material used or to increase the capacity of the chord, and thus to consider taller and slimmer structures.

Claims (9)

REVENDICATIONS1. Pylône pour les télécommunications comprenant des membrures et des entretoises, caractérisé en ce qu'il comporte un empilage d'au moins deux cadres, chacun formé d'au moins trois membrures reliées par des entretoises, les cadres superposés étant reliés entre eux par des liaisons articulées. REVENDICATIONS1. Pylon for telecommunications comprising chords and spacers, characterized in that it comprises a stack of at least two frames, each formed of at least three members connected by spacers, the superposed frames being interconnected by links articulated. 2. Pylône selon la revendication 1, dans lequel les membrures respectives des deux cadres sont reliées deux à deux par des liaisons articulées. 2. Pylon according to claim 1, wherein the respective frames of the two frames are connected in pairs by articulated links. 3. Pylône selon l'une des revendications 1 et 2, dans lequel l'un des cadres comprend au moins une liaison articulée apte à être fixée sur une fondation. 10 3. Pylon according to one of claims 1 and 2, wherein one of the frames comprises at least one articulated connection adapted to be fixed on a foundation. 10 4. Pylône selon l'une des revendications 1 à 3, dans lequel les liaisons articulées comportent deux plans parallèles reliés par un axe perpendiculaire aux plans. 4. Pylon according to one of claims 1 to 3, wherein the articulated links comprise two parallel planes connected by an axis perpendicular to the planes. 5. Pylône selon l'une des revendications précédentes, dans lequel les membrures ont une section carrée ou rectangulaire. 5. Pylon according to one of the preceding claims, wherein the frames have a square or rectangular section. 6. Pylône selon l'une des revendications précédentes, dans lequel les entretoises 15 sont rectilignes ou courbes. 6. Pylon according to one of the preceding claims, wherein the spacers 15 are rectilinear or curved. 7. Pylône selon l'une des revendications précédentes, dans lequel les membrures sont en bois reliées par des entretoises métalliques. 7. Pylon according to one of the preceding claims, wherein the frames are made of wood connected by metal spacers. 8. Procédé de fabrication d'un pylône selon l'une des revendications précédentes, comprenant les étapes suivantes : 20 - les membrures et les entretoises sont assemblées pour former des cadres, - les cadres sont empilés les un sur les autres et solidarisés au moyen des liaisons articulées pour former le pylône. 8. A method of manufacturing a tower according to one of the preceding claims, comprising the following steps: - the frames and struts are assembled to form frames - the frames are stacked one on the other and secured to the means articulated links to form the pylon. 9. Procédé selon la revendication 8, dans lequel l'empilement de cadres solidarisé à une fondation par au moins une liaison articulée. 11 9. The method of claim 8, wherein the stack of frames secured to a foundation by at least one articulated connection. 11
FR0957095A 2009-10-12 2009-10-12 COMMUNICATION PYLONE Expired - Fee Related FR2951218B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
FR0957095A FR2951218B1 (en) 2009-10-12 2009-10-12 COMMUNICATION PYLONE
EP20100186759 EP2312091B1 (en) 2009-10-12 2010-10-06 Communication pylon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0957095A FR2951218B1 (en) 2009-10-12 2009-10-12 COMMUNICATION PYLONE

Publications (2)

Publication Number Publication Date
FR2951218A1 true FR2951218A1 (en) 2011-04-15
FR2951218B1 FR2951218B1 (en) 2012-03-09

Family

ID=42213990

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0957095A Expired - Fee Related FR2951218B1 (en) 2009-10-12 2009-10-12 COMMUNICATION PYLONE

Country Status (2)

Country Link
EP (1) EP2312091B1 (en)
FR (1) FR2951218B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001471B1 (en) * 2013-01-28 2015-07-24 Foure Lagadec PYLONE OF MEASUREMENTS
CN111155820B (en) * 2020-01-07 2021-09-07 青岛汇金通电力设备股份有限公司 Single tube construction communication tower convenient to maintenance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB931986A (en) * 1959-11-26 1963-07-24 Stanley Gustav Dehn Folding tower
EP0053534A1 (en) * 1980-12-01 1982-06-09 Laboratoire D'etudes Et De Recherches Chimiques L.E.R.C. Lattice tower structure, in particular for supporting antennae
EP1375772A1 (en) * 2002-06-28 2004-01-02 Interlock Structures International, Inc. Foldable support structure with hinged sawtooth wall members

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920710A (en) * 1989-04-25 1990-05-01 Paine David L Retractable column and method of forming

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB931986A (en) * 1959-11-26 1963-07-24 Stanley Gustav Dehn Folding tower
EP0053534A1 (en) * 1980-12-01 1982-06-09 Laboratoire D'etudes Et De Recherches Chimiques L.E.R.C. Lattice tower structure, in particular for supporting antennae
EP1375772A1 (en) * 2002-06-28 2004-01-02 Interlock Structures International, Inc. Foldable support structure with hinged sawtooth wall members

Also Published As

Publication number Publication date
EP2312091A1 (en) 2011-04-20
FR2951218B1 (en) 2012-03-09
EP2312091B1 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2646757B1 (en) Buoyant solar panel, and solar power plant consisting of an assembly of said panels
EP2435647B1 (en) Parking shelter provided with photovoltaic solar panels
WO2009013607A2 (en) Stilted photovoltaic generator
FR2637930A1 (en) PROCESS FOR PRODUCING A METAL STRUCTURE, PARTICULARLY FOR COVERING
EP2773912B1 (en) Solar farm, solar table for such a solar farm and method for constructing such a solar farm
EP2312091B1 (en) Communication pylon
FR3084052A1 (en) FLOATING PHOTOVOLTAIC DEVICE
FR2949243A1 (en) Photovoltaic parking shed for use in e.g. farm building, to protect cars from sunshine, has compass shaped side structures including inclined columns whose lower ends are attached to concrete base that forms parking spaces with another base
EP0310478A1 (en) Shell structure and manufacturing process of such a structure
EP0034541B1 (en) Flue or vertical pipe for gas discharge
EP1860387A1 (en) Solar tracker with articulated arms
EP2281982A1 (en) Single-tube pylon
WO2021260549A1 (en) Photovoltaic facility and method
US20220407449A1 (en) Pivotable support structure for cross canal solar array
WO2001067544A2 (en) Radio broadcasting device and relay tower therefor
FR3112801A3 (en) Photovoltaic shade house
EP4380040A1 (en) Photovoltaic installation following the sun's path
FR2938580A1 (en) Tower e.g. pylon, for supporting e.g. solar panels, has main vertical frames that are made of metal elements folded longitudinally along two folding angles, and reinforcement parts fixed on central zones of frames
FR3140405A1 (en) FIR-SHAPED WIND TURBINE SUPPORT STRUCTURE
EP1403961B1 (en) Tower for radio broadcasting device
FR2534613A1 (en) Metal building structure.
WO2024062177A1 (en) Floating support structure with multiple central columns for an offshore wind turbine and method for assembling such a structure
WO2023194672A1 (en) Device for converting solar energy into electrical energy
WO2011051613A1 (en) Mounting device for a photovoltaic panel
OA18567A (en) Mounting for devices on a container.

Legal Events

Date Code Title Description
GC Lien (pledge) constituted

Effective date: 20130923

ST Notification of lapse

Effective date: 20140630

RG Lien (pledge) cancelled

Effective date: 20141016