FR2950897A1 - Procede d'hydrocraquage classique de charges hydrocarbonees mettant en oeuvre un catalyseur a base de carbure de silicium - Google Patents

Procede d'hydrocraquage classique de charges hydrocarbonees mettant en oeuvre un catalyseur a base de carbure de silicium Download PDF

Info

Publication number
FR2950897A1
FR2950897A1 FR0904776A FR0904776A FR2950897A1 FR 2950897 A1 FR2950897 A1 FR 2950897A1 FR 0904776 A FR0904776 A FR 0904776A FR 0904776 A FR0904776 A FR 0904776A FR 2950897 A1 FR2950897 A1 FR 2950897A1
Authority
FR
France
Prior art keywords
catalyst
hydrocracking
group viii
group
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0904776A
Other languages
English (en)
Other versions
FR2950897B1 (fr
Inventor
Christophe Bouchy
Laurent Simon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to FR0904776A priority Critical patent/FR2950897B1/fr
Publication of FR2950897A1 publication Critical patent/FR2950897A1/fr
Application granted granted Critical
Publication of FR2950897B1 publication Critical patent/FR2950897B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • B01J35/31
    • B01J35/613
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/043Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a change in the structural skeleton
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/107Atmospheric residues having a boiling point of at least about 538 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1074Vacuum distillates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1077Vacuum residues
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4018Spatial velocity, e.g. LHSV, WHSV

Abstract

L'invention concerne un procédé d'hydrocraquage de charges hydrocarbonées mettant en oeuvre un catalyseur d'hydrocraquage/hydroisomérisation comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un composite formé par une zéolithe de type Y et du carbure de silicium SiC, ledit procédé opérant à une température supérieure à 200°C, sous une pression supérieure à 1 MPa, la vitesse spatiale étant comprise entre 0,1 et 20 h et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 80 et 5000 L/L.

Description

La présente invention concerne un procédé d'hydrocraquage et/ou d'hydroisomérisation de charges hydrocarbonées mettant en oeuvre un catalyseur comprenant au moins un métal hydrodéshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un composite formé par une zéolithe de type structural Y et du carbure de silicium SiC, ledit procédé opérant à une température supérieure à 200°C, sous une pression supérieure à 1 MPa, la vitesse spatiale étant comprise entre 0,1 et 20 h-1 et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 80 et 5000 L/L.
Art antérieur L'hydrocraquage de coupes pétrolières lourdes est un procédé très important du raffinage qui permet de produire, à partir de charges lourdes excédentaires et peu valorisables, des fractions plus légères telles que essences, carburéacteurs et gazoles légers que recherche le raffineur pour adapter sa production à la structure de la demande. Certains procédés d'hydrocraquage permettent d'obtenir également un résidu fortement purifié pouvant fournir d'excellentes bases pour huiles. Par rapport au craquage catalytique, l'intérêt de l'hydrocraquage catalytique est de fournir des distillats moyens de très bonne qualité. Inversement, l'essence produite présente un indice d'octane beaucoup plus faible que celle issue du craquage catalytique.
L'hydrocraquage est un procédé qui tire sa flexibilité de trois éléments principaux qui sont, les conditions opératoires utilisées, les types de catalyseurs employés et le fait que l'hydrocraquage de charges hydrocarbonées peut être réalisé en une ou deux étapes.
Les catalyseurs d'hydrocraquage utilisés dans les procédés d'hydrocraquage sont tous du type bifonctionnel associant une fonction acide à une fonction hydrogénante. La fonction acide est apportée par des supports dont les surfaces varient généralement de 150 à 800 m2.g-' et présentant une acidité superficielle, telles que les alumines halogénées (chlorées ou fluorées notamment), les combinaisons d'oxydes de bore et d'aluminium, les silice-alumine amorphes et les zéolithes. La fonction hydrogénante est apportée soit par un ou plusieurs métaux du groupe VIB de la classification périodique des éléments, soit par une association d'au moins un métal du groupe VIB de la classification périodique et au moins un métal du groupe VIII.
L'équilibre entre les deux fonctions acide et hydrogénante est l'un des paramètres qui régissent l'activité et la sélectivité du catalyseur. Une fonction acide faible et une fonction hydrogénante forte donnent des catalyseurs peu actifs et sélectifs envers l'isomérisation alors
qu'une fonction acide forte et une fonction hydrogénante faible donnent des catalyseurs très actifs et sélectifs envers le craquage. Une troisième possibilité est d'utiliser une fonction acide forte et une fonction hydrogénante forte afin d'obtenir un catalyseur très actif mais également très sélectif envers l'isomérisation et le craquage. II est donc possible, en choisissant judicieusement chacune des fonctions d'ajuster le couple activité/sélectivité du catalyseur. Les catalyseurs conventionnels de l'hydrocraquage catalytique sont, pour leur grande majorité, constitués de supports faiblement acides, tels les silice-alumines par exemple. Ces systèmes sont plus particulièrement utilisés pour produire des distillats moyens de très bonne qualité. Beaucoup de catalyseurs du marché de l'hydrocraquage sont à base de silice-alumine associée à un métal du groupe VIII. Ces systèmes ont une très bonne sélectivité en distillats moyens, et les produits formés sont de bonne qualité. L'inconvénient de tous ces systèmes catalytiques à base de silice-alumine est, comme on l'a dit, leur faible activité. En revanche, les systèmes catalytiques à base de zéolithe (en particulier les zéolithes USY ou bêta) sont très actifs pour la réaction d'hydrocraquage mais peu sélectifs.
Le brevet FR2834655 enseigne la synthèse de composites zéolithe / SiC et leur utilisation en catalyse. Ce brevet n'enseigne pas l'utilisation potentielle d'un composite de type zéolithe Y / SiC en hydrocraquage de charges hydrocarbonées et n'enseigne pas non plus la mise en oeuvre de post-traitements spécifiques du composite afin d'ajuster le niveau d'acidité et/ou la porosité de la zéolithe dudit composite. En tentant de développer des catalyseurs d'hydrocraquage et d'hydroisomérisation de charges hydrocarbonées, les demandeurs ont découvert un procédé d'hydrocraquage et/ ou d'hydroisomérisation et d'hydroisomérisation de charges hydrocarbonées mettant en oeuvre un catalyseur comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique, pris seul ou en mélange et un support composite formé par, de préférence comprenant et de manière préférée constitué par une zéolithe de type Y et du carbure de silicium SiC, permettait d'obtenir une activité élevée, c'est à dire un niveau de conversion élevé, en hydrocraquage, tout en permettant d'obtenir un rendement en distillats moyens (carburéacteurs et gazoles) élevé.
En particulier, l'invention concerne l'hydrocraquage et/ou l'hydroisomérisation de charges hydrocarbonées contenant par exemple des composés aromatiques, et/ou oléfiniques, et/ou naphténiques, et/ou paraffiniques à l'exclusion des charges issues du procédé Fischer-Tropsch et contenant éventuellement des métaux, et/ou de l'azote, et/ou de l'oxygène et/ou du soufre.35
L'objectif du procédé d'hydrocraquage et/ou d'hydroisomérisation est essentiellement la production de distillats moyens, c'est-à-dire une coupe kérosène ayant un point d'ébullition compris entre 150 et 250°C, et une coupe gazole ayant un point d'ébullition compris entre 250 et 380°C. Objet de l'invention La présente invention concerne donc un procédé pour la production de distillats moyens. Plus précisément l'invention concerne un procédé d'hydrocraquage et/ ou d'hydroisomérisation de charges hydrocarbonées mettant en oeuvre un catalyseur particulier tel que défini dans la 10 description qui suit. La présente invention concerne un procédé d'hydrocraquage et/ou d'hydroisomérisation de charges hydrocarbonées mettant en oeuvre un catalyseur comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique, pris seul ou en mélange et un support composite formé par 15 une zéolithe de type Y et du carbure de silicium SiC, ledit procédé opérant à une température supérieure à 200°C, sous une pression supérieure à 1 MPa, la vitesse spatiale étant comprise entre 0,1 et 20 h-1 et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 80 et 5000 L/L.
20 Description détaillée de l'invention La présente invention concerne un procédé d'hydrocraquage et/ ou d'hydroisomérisation de charges hydrocarbonées mettant en oeuvre un catalyseur comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII de la classification périodique et un support composite formé par, de préférence comprenant 25 et de manière préférée constitué par, une zéolithe de type Y et du carbure de silicium SiC, ledit procédé opérant à une température supérieure à 200°C, sous une pression supérieure à 1 MPa, la vitesse spatiale étant comprise entre 0,1 et 20 h-1 et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 80 et 5000 L/L. 30 Description des figures La figure 1 représente le diagramme DRX du support composite NaY/SiC utilisé dans le support du catalyseur mis en oeuvre dans le procédé d'hydrocraquage et/ou d'hydroisomérisation selon l'invention. La figure 2 représente un cliché de microscopie électronique à balayage du composite NaY/SiC. 35 La figure 3 représente le spectre RMN MAS de 27AI du composite NaY/SiC.5
Le catalyseur d'hydrocraquage et d'hydroisomérisation De préférence, ledit catalyseur utilisé dans le procédé d'hydrocraquage et/ou d'hydroisomérisation selon l'invention comprend un support composite comprenant, et de préférence constitué, en pourcentage poids par rapport à la masse totale du catalyseur, de : - 70 à 99,5 % et de préférence 80 à 99 %, de manière préférée 85 à 99 % et de manière très préférée de 90 à 99 % de carbure de silicium (SiC) dont la surface spécifique mesurée par la méthode BET est supérieure à 5 m2/g; - 0,5 à 30 %, de préférence de 1 à 20 %, de manière préférée de 1 à 15 % et de manière très préférée, de 1 à 10 % d'une zéolithe de type Y. a) La fonction hydro-déshydrogénante Conformément à l'invention, le procédé met en oeuvre un catalyseur comprenant une phase active contenant au moins un élément hydro-déshydrogénant choisi parmi les éléments du groupe VIB et du groupe VIII de la classification périodique, pris seuls ou en mélange.
De préférence, les éléments du groupe VIB de la classification périodique sont choisis dans le groupe formé par le tungstène et le molybdène, pris seuls ou en mélange. Selon un mode de réalisation préféré, l'élément hydro-déshydrogénant choisi dans le groupe formé par les éléments du groupe VIB de la classification périodique est le molybdène. Selon un autre mode de réalisation préféré, l'élément hydro-déshydrogénant choisi dans le groupe formé par les éléments du groupe VIB de la classification périodique est le tungstène.
De préférence, les éléments du groupe VIII sont choisis parmi le fer, le cobalt, le nickel, le ruthénium, le rhodium, le palladium, l'osmium, l'iridium ou le platine, pris seuls ou en mélange. 25 Dans le cas où les éléments du groupe VIII sont choisis parmi les métaux non nobles du groupe VIII, lesdits éléments sont avantageusement choisis parmi le fer, le cobalt et le nickel, pris seuls ou en mélange et de préférence le cobalt et le nickel, pris seul ou en mélange. Selon un mode de réalisation préféré, l'élément hydro-déshydrogénant choisi dans le groupe 30 formé par les éléments du groupe VIII non noble est le cobalt. Selon un autre mode de réalisation préféré, l'élément hydro-déshydrogénant choisi dans le groupe formé par les éléments du groupe VIII non noble est le nickel.
35 Selon un mode de réalisation préféré, ledit catalyseur comprend au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, les éléments non nobles
du groupe VIII étant choisi dans le groupe formé par le cobalt et le nickel et les éléments du groupe VIB étant choisi dans le groupe formé par le tungstène et le molybdène. D'une manière avantageuse, on utilise les associations de métaux suivantes : nickel-molybdène, cobalt-molybdène, nickel-tungstène, cobalt-tungstène, les associations préférées sont : nickel- molybdène, cobalt-molybdène, cobalt-tungstène, nickel-tungstène et encore plus avantageusement nickel-moybdène et nickel-tungstène.
Dans le cas où le catalyseur comprend au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, la teneur en métal du groupe VIB est avantageusement comprise, en équivalent oxyde, entre 5 et 40 % en poids par rapport à la masse totale dudit catalyseur, de manière préférée entre 10 et 35 % en poids et de manière très préférée entre 15 et 30 % en poids et la teneur en métal non noble du groupe VIII est avantageusement comprise, en équivalent oxyde, entre 0,5 et 10 % en poids par rapport à la masse totale dudit catalyseur, de manière préférée entre 1 et 8 % en poids et de manière très préférée entre 1,5 et 6 % en poids.
Dans le cas où le catalyseur comprend au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, ledit catalyseur est un catalyseur sulfuré.
Dans le cas où les éléments du groupe VIII sont choisis parmi les métaux nobles du groupe VIII, lesdits éléments sont avantageusement choisis parmi le platine et le palladium, pris seuls ou en mélange. Lorsque l'élément hydro-déshydrogénant est un métal noble du groupe VIII, le catalyseur renferme de préférence une teneur en métal noble comprise entre 0,01 et 10 % poids, de manière encore plus préférée de 0,02 à 5 % poids par rapport à la masse totale dudit catalyseur. Le métal noble est de préférence utilisé sous sa forme réduite et non sulfurée.
Le catalyseur peut également avantageusement contenir : de 0 à 20% en poids, de préférence de 0,1 à 15% en poids et de manière encore plus préférée de 0,1 à 10% en poids par rapport à la masse totale du catalyseur d'au moins un élément dopant choisi dans le groupe constitué par le silicium, le bore et le phosphore, non compris le silicium contenu dans la charpente de la zéolithe et éventuellement - de 0 à 60% en poids, de préférence de 0,1 à 50% en poids, et de manière encore plus préférée de 0,1 à 40% en poids par rapport à la masse totale du catalyseur, d'au moins un élément choisi dans le groupe VB et de préférence le niobium et éventuellement encore
de 0 à 20% en poids, de préférence de 0,1 à 15% en poids et de manière encore plus préférée de 0,1 à 10% en poids par rapport à la masse totale du catalyseur d'au moins un élément choisi dans le groupe VIIA, de préférence le fluor.
Il est également avantageusement possible d'utiliser des associations de trois métaux par exemple nickel-cobalt-molybdène, nickel-molybdène-tungstène, nickel-cobalt-tungstène. D'une manière avantageuse, on utilise les associations de métaux suivantes : nickel-niobiummolybdène, cobalt-niobium-molybdène, nickel-niobium-tungstène, cobalt-niobium-tungstène, les associations préférées étant : nickel-niobium-molybdène, cobalt-niobium-molybdène. II est également possible d'utiliser des associations de quatre métaux par exemple nickel-cobaltniobium-molybdène.
b) Le composite zéolithe de type Y / carbure de silicium Le carbure de silicium Le carbure de silicium utilisable dans l'invention présente avantageusement une surface spécifique (mesurée par la technique BET) supérieure à 5 m2/g, de préférence comprise entre 5 et 300 m2/g, et de manière encore préférée comprise entre 10 et 250 m2/g. Le volume poreux du support est avantageusement compris entre 0,20 cm3/g et 1,00 cm3/g, de préférence compris entre 0,25 cm3/g et 0,80 cm3/g, et de manière encore préférée comprise entre 0,25 cm3/g et 0,75 cm3/g.
Les valeurs de surface spécifique BET ont été déterminées par adsorption d'azote à la température de l'azote liquide selon la méthode BET connue de l'homme du métier. La fabrication de supports de type carbure de silicium utilisables en catalyse hétérogène est déjà connue et enseignée dans les brevets tels que notamment le brevet EP 0440569 B1 ou encore le brevet US 6,184,178 B1, sans que cette liste soit limitative. Ce type de support est industriellement fabriqué par exemple par la société SICAT Sari.
Synthèse du composite zéolithe de type Y / carbure de silicium Le composite est obtenu par germination et croissance de cristallites de zéolithe à la surface du carbure de silicium déjà préformé, c'est à dire déjà sous toute forme permettant l'utilisation ultérieure du catalyseur préparé à partir de ce composite dans une unité catalytique industrielle. A titre d'exemple, le carbure de silicium peut se présenter sous la forme de billes, d'extrudés, voire de mousse. Le carbure de silicium peut subir un traitement thermique, de préférence une calcination, avant l'étape de zéolithisation.
La zéolithisation du carbure de silicium peut être effectuée par toute méthode connue de l'homme du métier. On peut par exemple le zéolithiser selon la méthode hydrothermale classique: le carbure de silicium est immergé dans le milieu réactionnel liquide qui contient les sources des éléments de la charpente zéolithique, des sources d'agent minéralisateur (OH-); des cations minéraux et/ou des espèces organiques et un solvant (en général de l'eau). Le mélange réactionnel et le solide sont ensuite introduits dans une autoclave, puis portés en température pour une durée appropriée à la germination et à la croissance de cristaux de zéolithe à la surface du carbure de silicium.
La zéolithisation du carbure de silicium peut également être effectuée par application de la méthode dite de "Dry Gel Conversion". On effectue alors une imprégnation à sec du carbure de silicium par le milieu réactionnel liquide puis le solide subit alors un traitement hydrothermal en autoclave.
Après zéolithisation, le matériau est ensuite filtré (lorsque la méthode hydrothermale classique est mise en oeuvre), lavé abondamment à l'eau distillée, séché et éventuellement calciné. Il peut ensuite subir une étape d'ultrasonication afin d'éliminer les cristaux de zéolithe insuffisamment fixés à la surface du carbure de silicium. Le composite ainsi obtenu peut être éventuellement à nouveau zéolithisé une ou plusieurs fois.
Après séchage et éventuelle calcination, différentes caractérisations telles que la diffraction des rayons X, la microscopie électronique à balayage ou encore la RMN de rotation à l'angle magique de l'aluminium 27 peuvent être effectuées sur le composite de manière à mettre en évidence la présence de cristallites de zéolithe.
Le composite est ensuite avantageusement échangé par au moins un traitement par une solution d'au moins un sel d'ammonium tel que par exemple du nitrate d'ammonium ou du chlorure d'ammonium de manière à obtenir la forme ammonium de la zéolithe Y qui une fois calcinée conduit à la forme hydrogène de ladite zéolithe. Après échange, le rapport atomique Na/Al de la zéolithe est généralement avantageusement inférieur à 0,1 et de préférence inférieur à 0,05 et de manière encore plus préférée inférieur à 0,01. L'étape d'échange peut être effectuée avant ou après le dépôt de la phase hydrogénante, avantageusement avant.
Le composite peut également avantageusement subir une étape de désalumination afin d'ajuster le niveau d'acidité de la zéolithe Y et/ou de générer de la mésoporosité au sein des cristaux de zéolithe. Cette étape de désalumination peut être effectuée par toute méthode connue de l'homme du métier comme par exemple un traitement hydrothermal, une
désalumination par voie chimique ou encore une combinaison des deux méthodes (se référer par exemple à "Hydrocracking science and technology" de J. Scherzer et A.J. Gruia, Marcel Dekker Inc., 1996). Cette étape de désalumination peut être effectuée avant ou après les étapes d'échange et de dépôt de la phase hydrogénante, avantageusement après l'étape d'échange et avant l'étape de dépôt de la phase hydrogénante. Avantageusement l'étape de désalumination est ajustée pour obtenir un rapport atomique silicium de réseau sur aluminium de réseau de la zéolithe supérieur à 5, de préférence compris entre 10 et 60, de manière très préférée compris entre 10 et 40. Le rapport Si/AI de réseau est calculé à partir de la corrélation de Fichtner û Schmittler (H. Fichtner û Schmittler et coll., Crystal Research and Technology, 19, 1984, K1-K3) selon la formule suivante : (Si/Al)réseau = [ 192 / (112,4 * (aO û 24,233)) ] û 1 où aO représente le paramètre de maille de la zéolithe (en Angstrom) tel que déterminé par diffraction des rayons X par application de la méthode ASTM D3942.
Avantageusement l'étape de désalumination est ajustée de manière à éliminer substantiellement du solide les aluminiums extraits du réseau cristallin, dits aluminiums extra-réseau. Ceci peut être réalisé par toute méthode connu par l'homme du métier. Le pourcentage d'aluminium extra-réseau est déterminé par RMN de l'aluminium, et correspond au pourcentage d'aluminium octaédrique (pic de résonance à 0 ppm); de préférence le composite présente un pourcentage d'aluminium extra-réseau inférieur à 40 %, et de manière très préférée inférieur à 20 %.
c) Le dépôt de la fonction hydro-déshydrogénante La fonction hydro-déshydrogénante peut avantageusement être introduite à toute étape de la préparation, de manière très préférée après les étapes de zéolithisation, échange et désalumination. La préparation se termine généralement par une calcination du solide à une température de 250 à 600°C. D'une façon préférée, le composite est imprégné par une solution aqueuse. L'imprégnation du composite est de préférence effectuée par la méthode d'imprégnation dite "à sec" bien connue de l'homme du métier. L'imprégnation peut avantageusement être effectuée en une seule étape par une solution contenant l'ensemble des éléments constitutifs de la fonction hydrogénante du catalyseur final. La fonction hydro-déshydrogénante peut avantageusement être introduite par une ou plusieurs opérations d'imprégnation du composite, par une solution contenant au moins un précurseur d'au moins un oxyde d'au moins un métal choisi dans le groupe formé par les métaux du groupes VIII et les métaux du groupe VIB, et éventuellement au moins un précurseur d'au moins un élément dopant choisi parmi le silicium, le bore et le phosphore et éventuellement au moins un
précurseur d'au moins un élément du groupe VB ou du groupe VIIA, le(s) précurseur(s) d'au moins un oxyde d'au moins un métal du groupe VIII étant de préférence introduit(s) après ceux du groupe VIB ou en même temps que ces derniers, si le catalyseur contient au moins un métal du groupe VIB et au moins un métal du groupe VIII.
Dans le cas où le catalyseur contient avantageusement au moins un élément du groupe VIB par exemple le molybdène, il est par exemple possible d'imprégner le composite avec une solution contenant au moins un élément du groupe VIB, de sécher, de calciner. L'imprégnation du molybdène peut avantageusement être facilitée par ajout d'acide phosphorique dans les solutions de paramolybdate d'ammonium, ce qui permet d'introduire aussi le phosphore de façon à promouvoir l'activité catalytique. Les sources d'élément du groupe VB qui peuvent être utilisées sont bien connues de l'homme du métier. Par exemple, parmi les sources de niobium, on peut utiliser les oxydes, tel que le pentaoxyde de diniobium Nb2O5, l'acide niobique Nb2O5.H20, les hydroxydes de niobium et les polyoxoniobates, les alkoxydes de niobium de formule Nb(OR1)3 où R1 est un radical alkyle, l'oxalate de niobium NbO(HC2O4)5, le niobate d'ammonium. On utilise de préférence l'oxalate de niobium ou le niobate d'ammonium.
Les sources d'éléments du groupe VIIA qui peuvent être utilisées sont bien connues de l'homme du métier. Par exemple, les anions fluorures peuvent être introduits sous forme d'acide fluorhydrique ou de ses sels. Ces sels sont formés avec des métaux alcalins, l'ammonium ou un composé organique. Dans ce dernier cas, le sel est avantageusement formé dans le mélange réactionnel par réaction entre le composé organique et l'acide fluorhydrique. Il est également possible d'utiliser des composés hydrolysables pouvant libérer des anions fluorures dans l'eau, comme le fluorosilicate d'ammonium (NH4)2 SiF6, le tétrafluorure de silicium SiF4 ou de sodium Na2SiF6. Le fluor peut être introduit par exemple par imprégnation d'une solution aqueuse d'acide fluorhydrique ou de fluorure d'ammonium. Les éléments dopants suivants : bore et/ou silicium et/ou phosphore peuvent être introduits dans le catalyseur à tout niveau de la préparation et selon toute technique connue de l'homme du métier.
Une méthode préférée selon l'invention consiste à déposer le ou les éléments promoteurs choisis, sur le composite zéolithe de type Y / carbure de silicium calciné ou non, de préférence calciné. Pour cela on prépare une solution aqueuse d'au moins un sel de bore tel que le biborate d'ammonium ou le pentaborate d'ammonium en milieu alcalin et en présence d'eau oxygénée et on procède à une imprégnation dite à sec, dans laquelle on remplit le volume des pores du précurseur par la solution contenant par exemple le bore. Dans le cas où l'on dépose par
exemple également du silicium, on utilise par exemple une solution d'un composé du silicium de type silicone ou émulsion d'huile silicone. Le ou les élément(s) promoteur(s) choisi(s) dans le groupe formé par le silicium, le bore et le phosphore peuvent avantageusement être introduits par une ou plusieurs opérations d'imprégnation avec excès de solution sur le précurseur calciné. La source de bore peut avantageusement être l'acide borique, de préférence l'acide orthoborique H3BO3, le biborate ou le pentaborate d'ammonium, l'oxyde de bore, les esters boriques. Le bore peut par exemple être introduit sous la forme d'un mélange d'acide borique, d'eau oxygénée et un composé organique basique contenant de l'azote tels que l'ammoniaque, les amines primaires et secondaires, les amines cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole. Le bore peut être introduit par exemple par une solution d'acide borique dans un mélange eau/alcool. La source de phosphore préférée est l'acide orthophosphorique H3PO4, mais ses sels et esters comme les phosphates d'ammonium conviennent également. Le phosphore peut par exemple être introduit sous la forme d'un mélange d'acide phosphorique et un composé organique basique contenant de l'azote tels que l'ammoniaque, les amines primaires et secondaires, les amines cycliques, les composés de la famille de la pyridine et des quinoléines et les composés de la famille du pyrrole. De nombreuses sources de silicium peuvent avantageusement être employées. Ainsi, on peut utiliser l'orthosilicate d'éthyle Si(OEt)4, les siloxanes, les polysiloxanes, les silicones, les émulsions de silicones, les silicates d'halogénures comme le fluorosilicate d'ammonium (NH4)2SiF6 ou le fluorosilicate de sodium Na2SiF6. L'acide silicomolybdique et ses sels, l'acide silicotungstique et ses sels peuvent également être avantageusement employés. Le silicium peut avantageusement être ajouté par exemple par imprégnation de silicate d'éthyle en solution dans un mélange eau/alcool. Le silicium peut être ajouté par exemple par imprégnation d'un composé du silicium de type silicone ou l'acide silicique mis en suspension dans l'eau. Les métaux nobles du groupe VIII du catalyseur de la présente invention peuvent avantageusement être présents en totalité ou partiellement sous forme métallique et/ou oxyde. Les sources d'éléments nobles du groupe VIII qui peuvent avantageusement être utilisées sont bien connues de l'homme du métier. Pour les métaux nobles on utilise les halogénures, par exemple les chlorures, les nitrates, les acides tels que l'acide hexachloroplatinique, les hydroxydes, les oxychlorures tels que l'oxychlorure ammoniacal de ruthénium. On peut également avantageusement utiliser les complexes cationiques tels que les sels d'ammonium lorsque l'on souhaite déposer le métal sur la zéolithe de type Y par échange cationique.
Les sources d'éléments du groupe VIB et par exemple les sources de molybdène et de tungstène sont avantageusement choisies parmi les oxydes et hydroxydes, les acides
molybdiques et tungstiques et leurs sels en particulier les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium, le tungstate d'ammonium, l'acide phosphomolybdique, l'acide phosphotungstique et leurs sels, l'acide silicomolybdique, l'acide silicotungstique et leurs sels. On utilise de préférence les oxydes et les sels d'ammonium tels que le molybdate d'ammonium, l'heptamolybdate d'ammonium et le tungstate d'ammonium.
Les sources d'éléments du groupe VIII non nobles qui peuvent être utilisées sont bien connues de l'homme du métier. Par exemple, pour les métaux non nobles on utilisera les nitrates, les sulfates, les hydroxydes, les phosphates, les halogénures comme par exemple, les chlorures, les bromures et les fluorures, les carboxylates comme par exemple les acétates et les carbonates.
Les catalyseurs ainsi obtenus sont mis en forme sous la forme de grains de différentes formes et dimensions. Ils sont utilisés en général sous la forme d'extrudés cylindriques ou polylobés tels que bilobés, trilobés, polylobés de forme droite ou torsadée, mais peuvent éventuellement être fabriqués et employés sous la forme de poudres concassées, de tablettes, d'anneaux, de billes, de roues. D'autres techniques que l'extrusion, telles que le pastillage ou la dragéification, peuvent avantageusement être utilisées. Procédés d'hydrocraquage L'invention porte sur un procédé d'hydrocraquage et/ou d'hydroisomérisation opérant en présence d'hydrogène, à une température supérieure à 200°C, sous une pression supérieure à 1 MPa, la vitesse spatiale étant comprise entre 0,1 et 20 h-1 et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 80 et 5000 L/L.
De préférence, le procédé d'hydrocraquage et/ou d'hydroisomérisation selon l'invention opèrent en présence d'hydrogène, à une température comprise entre 250 et 480°C, de manière préférée entre 320 et 450°C, de manière très préférée entre 330 et 435°C, sous une pression comprise entre 2 et 25 MPa, de manière préférée entre 3 et 20 MPa, à une vitesse spatiale comprise entre 0,1 et 20 h-', de préférence 0,1 et 6 h-', de manière préférée entre 0,2 et 3 h-1, et sous une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure est compris entre 100 et 2000 L/L. Ces conditions opératoires utilisées dans les procédés selon l'invention permettent généralement d'atteindre des conversions par passe, en produits ayant des points d'ébullition inférieurs à 340°C, et mieux inférieurs à 380°C, supérieures à 15% poids et de manière encore plus préférée comprises entre 20 et 95% poids. a) Charges Des charges très variées peuvent être traitées par les procédés selon l'invention décrits ci-dessus. Elles contiennent avantageusement au moins 20% volume et de préférence au moins 80% volume de composés bouillant au-dessus de 340°C.
La charge hydrocarbonée traitée dans le procédé selon l'invention est avantageusement choisie parmi les LCO (Light Cycle Oil (gazoles légers issus d'une unité de craquage catalytique)), les distillats atmosphériques, les distillats sous vide tels que par exemple gasoils issus de la distillation directe du brut ou d'unités de conversion telles que le FCC, le coker ou la viscoréduction, les charges provenant d'unités d'extraction d'aromatiques des bases d'huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, les distillats provenant de procédés de désulfuration ou d'hydroconversion en lit fixe ou en lit bouillonnant de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide) et/ou d'huiles désasphaltées, et les huiles désasphaltées, prises seules ou en mélange. La liste ci-dessus n'est pas limitative. Les paraffines issues du procédé Fischer-Tropsch sont exclues. Lesdites charges ont de préférence un point d'ébullition T5 supérieur à 340°C, de préférence supérieur à 370°C, c'est à dire que 95% des composés présents dans la charge ont un point d'ébullition supérieur à 340°C, et de manière préférée supérieur à 370°C.
La teneur en azote des charges traitées dans les procédés selon l'invention est avantageusement supérieure à 500 ppm poids, de préférence comprise entre 500 et 10000 ppm poids, de manière plus préférée entre 700 et 4000 ppm poids et de manière encore plus préférée entre 1000 et 4000 ppm poids. La teneur en soufre des charges traitées dans les procédés selon l'invention est avantageusement comprise entre 0,01 et 5% poids, de manière préférée comprise entre 0,2 et 4% poids et de manière encore plus préférée entre 0,5 et 3 % poids. La charge peut éventuellement contenir des métaux. La teneur cumulée en nickel et vanadium des charges traitées dans les procédés selon l'invention est de préférence inférieure à 1 ppm poids. La charge peut éventuellement contenir des asphaltènes. La teneur en asphaltènes est 30 généralement inférieure à 3000 ppm poids, de manière préférée inférieure à 1000 ppm poids, de manière encore plus préférée inférieure à 200 ppm poids. b) Sulfuration ou réduction des catalyseurs Dans le cas où le catalyseur comprend au moins un métal du groupe VIB en combinaison 35 avec au moins un métal non noble du groupe VIII, et préalablement à l'injection de la charge, 12
lesdits catalyseurs utilisés dans le procédé selon la présente invention sont soumis préalablement à un traitement de sulfuration permettant de transformer, au moins en partie, les espèces métalliques en sulfure avant leur mise en contact avec la charge à traiter. Ce traitement d'activation par sulfuration est bien connu de l'Homme du métier et peut être effectué par toute méthode déjà décrite dans la littérature soit in-situ, c'est-à-dire dans le réacteur, soit ex-situ.
Une méthode de sulfuration classique bien connue de l'Homme du métier consiste à chauffer le catalyseur en présence d'hydrogène sulfuré (pur ou par exemple sous flux d'un mélange hydrogène/hydrogène sulfuré) à une température comprise entre 150 et 800°C, de préférence entre 250 et 600°C, généralement dans une zone réactionnelle à lit traversé.
Dans le cas où ledit catalyseur utilisé dans le procédé d'hydrocraquage et/ou d'hydroisomérisation selon l'invention comprend au moins un métal noble du groupe VIII, ledit métal noble contenu dans le catalyseur doit être réduit avant utilisation dans la réaction. Une des méthodes préférées pour conduire la réduction du métal est le traitement sous hydrogène à une température comprise entre 150°C et 650°C et une pression totale comprise entre 0,1 et 25 MPa. Par exemple, une réduction consiste en un palier à 120°C de une heures puis une montée en température jusqu'à 450°C à la vitesse de 1°C/min puis un palier de deux heures à 450°C; durant toute cette étape de réduction, le débit d'hydrogène est de 1600 normaux litres hydrogène / litre catalyseur et la pression totale maintenue constante à 0,1 MPa. Notons également que toute méthode de réduction ex-situ est convenable. c) Lits de garde Dans le cas où la charge contient des composés de type résines et/ou asphaltènes, il est avantageux de faire passer au préalable la charge sur un lit de catalyseur ou d'adsorbant différent du catalyseur d'hydrocraquage ou d'hydroisomérisation. Les catalyseurs ou lits de garde utilisés selon l'invention ont la forme de sphères ou d'extrudés. Il est toutefois avantageux que le catalyseur se présente sous forme d'extrudés d'un diamètre compris entre 0,5 et 5 mm et plus particulièrement entre 0,7 et 2,5 mm. Les formes sont cylindriques (qui peuvent être creuses ou non), cylindriques torsadés, multilobées (2, 3, 4 ou 5 lobes par exemple), anneaux. La forme cylindrique est utilisée de manière préférée, mais toute autre forme peut être utilisée.
Afin de remédier à la présence de contaminants et ou de poisons dans la charge, les catalyseurs de garde peuvent, dans un autre de mode de réalisation préféré, avoir des formes géométriques plus particulières afin d'augmenter leur fraction de vide. La fraction de vide de ces catalyseurs est comprise entre 0,2 et 0,75. Leur diamètre extérieur peut varier entre 1 et 35 mm.
Parmi les formes particulières possibles sans que cette liste soit limitative, nous citons : les cylindres creux, les anneaux creux, les anneaux de Raschig, les cylindres creux dentelés, les cylindres creux crénelés, les roues de charrettes pentaring, les cylindres à multiples trous, etc..
Ces catalyseurs ou lits de garde peuvent avoir été imprégnés par une phase active ou non. De manière préférée, les catalyseurs sont imprégnés par une phase hydro-déshydrogénante. De manière très préférée, la phase CoMo ou NiMo est utilisée.
Ces catalyseurs ou lits de garde peuvent présenter de la macroporosité. Les lits de garde peuvent être commercialisés par Norton-Saint-Gobain, par exemple les lits de garde MacroTrap®. Les lits de garde peuvent être commercialisés par Axens dans la famille ACT : ACT077, ACT645, ACT961 ou HMC841, HMC845, HMC868 ou HMC945. Il peut être particulièrement avantageux de superposer ces catalyseurs dans au moins deux lits différents de hauteurs variables. Les catalyseurs ayant le plus fort taux de vide sont de préférence utilisés dans le ou les premiers lits catalytiques en entrée de réacteur catalytique. II peut également être avantageux d'utiliser au moins deux réacteurs différents pour ces catalyseurs.
Les lits de garde préférés selon l'invention sont les HMC et l'ACT961. d) Modes de réalisation Les procédés d'hydrocraquage et/ou d'hydroisomérisation selon l'invention mettant en oeuvre les catalyseurs décrits ci dessus, couvrent les domaines de pression et de conversion allant de l'hydrocraquage doux à l'hydrocraquage haute pression. On entend par hydrocraquage doux, un hydrocraquage conduisant à des conversions modérées, généralement inférieures à 40%, et fonctionnant à basse pression, généralement entre 2 MPa et 6 MPa.
Les procédés d'hydrocraquage et/ou d'hydroisomérisation selon l'invention peuvent avantageusement mettre en oeuvre ledit catalyseur décrit ci dessus seul, en un seul ou plusieurs lits catalytiques en lit fixe, dans un ou plusieurs réacteurs, dans un schéma d'hydrocraquage dit en une étape, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydrotraitement classique situé en amont dudit catalyseur utilisé dans le procédé d'hydrocraquage et/ ou d'hydroisomérisation selon la présente invention.
Les procédés d'hydrocraquage et/ou d'hydroisomérisation selon l'invention peuvent avantageusement également mettre en oeuvre ledit catalyseur décrit ci dessus seul, dans un seul ou plusieurs réacteurs en lit bouillonnant, dans un schéma d'hydrocraquage dit en une
étape, avec ou sans recyclage liquide de la fraction non convertie, éventuellement en association avec un catalyseur d'hydrotraitement classique situé dans un réacteur en lit fixe ou en lit bouillonnant en amont dudit catalyseur utilisé dans le procédé d'hydrocraquage et/ou d'hydroisomérisation selon la présente invention. Le lit bouillonnant s'opère avec retrait de catalyseur usé et ajout journalier de catalyseur neuf afin de conserver une activité du catalyseur stable.
Le catalyseur décrit selon l'invention peut également avantageusement être utilisé dans la 10 première zone réactionnelle d'hydrotraitement, en prétraitement convertissant, seul ou en association avec un autre catalyseur d'hydroraffinage classique, situé en amont du catalyseur décrit selon l'invention, dans un ou plusieurs lit(s) catalytique(s), dans un ou plusieurs réacteur(s), en lit fixe ou en lit bouillonnant.
15 Procédé dit en une étape Le procédé d'hydrocraquage et/ ou d'hydroisomérisation selon l'invention peut avantageusement être mis en oeuvre dans un procédé dit en une étape.
L'hydrocraquage dit en une étape, comporte en premier lieu et de façon générale un 20 hydroraffinage poussé qui a pour but de réaliser une hydrodéazotation et une désulfuration poussées de la charge avant que celle-ci ne soit envoyée sur le catalyseur d'hydrocraquage décrit selon l'invention proprement dit, en particulier dans le cas où celui-ci comporte une zéolithe. Cet hydroraffinage poussé de la charge n'entraîne qu'une conversion limitée de la charge, en fractions plus légères, qui reste insuffisante et doit donc être complétée sur le 25 catalyseur d'hydrocraquage plus actif décrit ci-dessus. Cependant, il est à noter qu'aucune séparation n'intervient entre les deux types de catalyseurs. La totalité de l'effluent en sortie de réacteur d'hydroraffinage est injectée sur ledit catalyseur d'hydrocraquage décrit selon l'invention proprement dit et ce n'est qu'ensuite qu'une séparation des produits formés est réalisée. Cette version de l'hydrocraquage, encore appelée "Once Through", possède une variante qui présente 30 un recyclage de la fraction non convertie vers le réacteur en vue d'une conversion plus poussée de la charge.
Le catalyseur décrit selon l'invention est donc avantageusement mis en oeuvre dans un procédé d'hydrocraquage et/ ou d'hydroisomérisation dit en une étape, dans une zone 35 d'hydrocraquage placée en aval d'une zone d'hydroraffinage, aucune séparation intermédiaire n'étant mise en oeuvre entre les deux zones.5 De préférence, le catalyseur utilisé dans ladite zone d'hydrocraquage dans un procédé d'hydrocraquage et/ ou d'hydroisomérisation dit en une étape comprend une phase active comprenant au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, la teneur en métal du groupe VIB étant avantageusement comprise, en équivalent oxyde, entre 5 et 40 % en poids par rapport à la masse totale dudit catalyseur, de manière préférée entre 10 et 35 % en poids et de manière très préférée entre 15 et 30 % en poids et la teneur en métal non noble du groupe VIII étant avantageusement comprise, en équivalent oxyde, entre 0,5 et 10 % en poids par rapport à la masse totale dudit catalyseur, de manière préférée entre 1 et 8 % en poids et de manière très préférée entre 1,5 et 6 % en poids. De manière préférée, ledit catalyseur est un catalyseur sulfuré.
De préférence, le catalyseur d'hydroraffinage utilisé dans la première zone réactionnelle d'hydroraffinage, seul ou en association avec un autre catalyseur d'hydroraffinage classique, situé en amont du catalyseur décrit selon l'invention, est un catalyseur comprenant éventuellement un élément dopant choisi parmi le phosphore, le bore et le silicium, ledit catalyseur étant à base d'éléments du groupe VIII non nobles et éventuellement en combinaison avec des éléments du groupe VIB sur support alumine ou silice alumine et de manière encore plus préférée ledit catalyseur comprend du nickel et du tungstène.
Procédé dit en deux étapes Le procédé d'hydrocraquage et/ ou d'hydroisomérisation selon l'invention peut avantageusement être mis en oeuvre dans un procédé dit en deux étapes. L'hydrocraquage en deux étapes, comporte avantageusement une première étape qui a pour objectif, comme dans le procédé "une étape", de réaliser l'hydroraffinage de la charge mais aussi d'atteindre une conversion de cette dernière de l'ordre en général de 40 à 60%. L'effluent issu de la première étape d'hydroraffinage subit ensuite avantageusement une séparation et de préférence une distillation, appelée le plus souvent séparation intermédiaire, qui a pour objectif de séparer les produits de conversion de la fraction non convertie. Dans la deuxième étape d'un procédé d'hydrocraquage en deux étapes, seule la fraction de la charge non convertie lors de la première étape d'hydrocraquage est traitée. Ledit catalyseur décrit selon l'invention est avantageusement mis en oeuvre dans la deuxième étape d'hydrocraquage dudit procédé d'hydrocraquage dit en deux étapes. La séparation intermédiaire permet à un procédé d'hydrocraquage deux étapes d'être plus sélectif en distillats moyens (kérosène + diesel) qu'un procédé en une étape. En effet, la séparation intermédiaire des produits de conversion évite leur "sur-craquage" en naphta et gaz dans la deuxième étape sur le catalyseur d'hydrocraquage. Par
ailleurs, il est à noter que la fraction non convertie de la charge traitée dans la deuxième étape contient en général de très faibles teneurs en NH3 ainsi qu'en composés azotés organiques, en général moins de 20 ppm poids voire moins de 10 ppm poids.
Les configurations de lits catalytiques en lit fixe ou en lit bouillonnant décrites dans le cas d'un procédé dit en une étape peuvent avantageusement être utilisées dans la première ou la deuxième étape d'hydrocraquage d'un schéma dit en deux étapes, que le catalyseur selon l'invention soit utilisé seul ou en association avec un catalyseur d'hydroraffinage classique placé en amont de la première étape d'hydrocraquage.
Le catalyseur décrit selon l'invention est donc avantageusement mis en oeuvre dans un procédé d'hydrocraquage dit en deux étapes, dans la deuxième étape d'hydrocraquage placée en aval de la première étape d'hydroraffinage, une séparation intermédiaire étant mise en oeuvre entre les deux zones.
Selon un mode de réalisation préféré, le catalyseur utilisé dans ladite deuxième étape d'hydrocraquage dans un procédé d'hydrocraquage dit en deux étapes comprend une phase active comprenant au moins un métal noble du groupe VIII, la teneur en métal noble du groupe VIII étant avantageusement comprise entre 0,01 et 10 % poids, de manière encore plus préférée de 0,02 à 5 % poids par rapport à la masse totale dudit catalyseur . Le métal noble est de préférence utilisé sous sa forme réduite et non sulfurée.
Pour les procédés dits en une étape et pour la première étape d'hydroraffinage des procédés d'hydrocraquage dits en deux étapes, les catalyseurs d'hydroraffinage classique pouvant avantageusement être utilisés sont les catalyseurs comprenant éventuellement un élément dopant choisi parmi le phosphore, le bore et le silicium, ledit catalyseur étant à base d'éléments du groupe VIII non nobles et éventuellement en combinaison avec des éléments du groupe VIB sur support alumine, silice alumine ou zéolithique et de manière encore plus préférée ledit catalyseur comprend du nickel et du tungstène ou du nickel et du molybdène.
La première étape d'hydroraffinage des procédé d'hydrocraquage dit en une étape et des procédés d'hydrocraquage dits en deux étapes peuvent avantageusement mettre en oeuvre un ou plusieurs catalyseurs d'hydroraffinage dans un ou plusieurs lits catalytiques différents de manière à réaliser dans le cas de la première étape d'hydroraffinage des procédés d'hydrocraquage dits en deux étapes un raffinage pré-convertissant.35
Dans un mode de réalisation préféré, les catalyseurs utilisés dans la première étape d'hydroraffinage des procédés d'hydrocraquage dits en deux étapes sont les catalyseurs décrits selon l'invention.
Pour les procédés dits en une étape et pour la première étape des procédés d'hydrocraquage en deux étapes, l'étape d'hydroraffinage opère avantageusement à une température comprise entre 200 et 450 C, de préférence entre 250 et 440°C, à une pression comprise entre 1 et 25 MPa, de préférence entre 1 et 18 MPa, à une vitesse volumique horaire comprise entre 0,1 et 20 h-1, de manière préférée entre 0,2 et 5 h-1, et à un rapport hydrogène/charge exprimé en volume d'hydrogène, mesuré dans les conditions normales de température et pression, par volume de charge liquide généralement comprise entre 80 L/L et 5000 L/L et de préférence entre 100 L/L et 2000 L/L. Exemples Exemple 1: Préparation du catalyseur d'hydroraffinage (Cl) Les catalyseurs utilisés dans l'étape d'hydroraffinage sont des catalyseurs industriels à base de nickel / molybdène sur alumine type HRK558 et zéolithique type HYK742 fourni par la société AXENS. Exemple 2: Préparation d'un catalyseur d'hydroisomérisation et d'hydrocraquage conforme à l'invention (C2) a) Préparation du composite zéolithe de type Y / carbure de silicium Le carbure de silicium Le carbure de silicium est fourni par la société SICAT, sous la forme d'extrudés cylindriques de diamètre 1 mm. Ses principales caractéristiques sont fournies dans le tableau 1 ci-dessous. Tableau 1: principales caractéristiques du carbure de silicium utilisé. phase cristallisée (DRX) 13-SiC surface spécifique BET (porosimétrie N2) 25 m2/g volume microporeux (porosimétrie N2) nul diamètre poreux médian (porosimétrie Hg) 40 nm volume poreux total (porosimétrie Hg) 0.35 cm3/g écrasement en lit type Shell (norme Shell > 3 MPa SMS 1471-74) impuretés Fe < 0.05 % poids, Al < 0.1 % poids, Ca < 0.01 % poids25
Synthèse du composite zéolithe de type Y / SiC. 100 grammes de carbure de silicium sont calcinés sous air dans un four à moufle en couche mince à 900°C durant 2 heures. La zéolithisation du support est ensuite effectuée par traitement hydrothermal. La préparation du gel utilisé pour la synthèse de la zéolithe de type Y a été effectuée en trois étapes, en utilisant comme source d'aluminium de l'aluminate de sodium (50-56 % en poids AI2O3, 40 û 45 % en poids Na2O, Sigma-Aldrich) et comme source de silicium une solution de silicate de sodium (27 % en poids SiO2, 14 % en poids de NaOH, Sigma-Aldrich). 20,4 grammes d'hydroxyde de sodium et 10,6 grammes d'aluminate de sodium sont tout d'abord dissous dans 100 ml d'eau distillée à température ambiante; après complète dissolution on ajoute 113,6 grammes de silicate de sodium. Le mélange est ensuite agité jusqu'à l'apparition d'un gel dense puis laissé à mûrir durant 24 heures. En parallèle un second gel est préparé par dissolution de 0,7 grammes d'hydroxyde de sodium et 67,4 grammes d'aluminate de sodium dans 655 ml d'eau distillée; après complète dissolution on ajoute 712,2 grammes de silicate de sodium. Le mélange est ensuite agité vigoureusement jusqu'à apparition d'un gel dense. Le gel final est obtenu par addition de ce second gel à 82,6 grammes du premier gel sous agitation vigoureuse durant 20 minutes afin d'obtenir un gel final bien homogène. Finalement on mélange ce gel final avec 100 grammes de carbure de silicium dans un autoclave téfloné en acier inox. L'ensemble est monté en température dans un four à moufle à 100°C en pression autogène durant 22 heures afin d'effectuer la cristallisation de la zéolithe.
Le mélange ainsi obtenu est composé de cristaux massiques de zéolithe NaY et des extrudés de composite NaY / SiC qui sont facilement récupérés par tamisage. Les extrudés sont ensuite rincés à l'eau distillée jusqu'à obtenir un pH de l'eau de lavage inférieur à 9, puis subissent une étape d'ultrasonication de 30 minutes afin d'éliminer les cristaux de NaY pas ou mal fixés sur le carbure de silicium. Les extrudés sont finalement séchés en étuve à 110°C durant 24 heures.
Après séchage, différentes caractérisations sont effectuées sur le composite NaY / SiC. La diffraction des rayons X met en évidence la présence de cristallites de NaY, ce qui est confirmé par la caractérisation par microscopie électronique à balayage du solide, qui montre la formation de cristallites d'environ 400 nm à la surface des extrudés de carbure de silicium (figure 7). Le composite a également été analysé par RMN de rotation à l'angle magique (MAS) de l'aluminium 27, en sonde MQMAS 4mm sur un spectromètre Avance 400 de Bruker avec une vitesse de rotation de l'échantillon de 14 kHz: seul un pic correspondant à l'aluminium +IV engagé dans la structure zéolithique est observé (figure 8), ce qui confirme que les cristallites observés par microscopie électronique à balayage sont des cristallites de NaY. La présence de zéolithe dans le composite est également confirmée par les résultats de porosimétrie à l'azote puisque le solide initial passe d'une surface spécifique BET de 25 m2/g et d'un volume microporeux nul à une surface spécifique BET de 42 m2/g (dont 25 m2/g de surface microporeuse) et un volume
microporeux de 0,01 cm3/g. La quantité de zéolithe NaY dans le composite a été évaluée par sa solubilisation dans une solution aqueuse d'acide fluorhydrique à 48 % en poids durant une heure à température ambiante et mesure de la perte de poids résultante du solide. Avec cette méthode la teneur en zéolithe du composite est évaluée à 5 % en poids. Les teneurs en aluminium et en sodium dans le composite mesurées par la technique de spectrométrie de masse par plasma induit (ICP-MS) après minéralisation de l'échantillon sont égales respectivement à 0.61 % en poids et 0.52 % en poids. Le solide subit ensuite des étapes d'échanges successifs afin d'obtenir la zéolithe Y sous sa forme ammonium NH4Y. Le protocole utilisé est similaire à celui proposé par Gala et coll. (Gola et coll. Microporous and Mesoporous Materials 40, 2000, 73 - 83): pour chaque échange, le composite est mis au contact d'une solution de nitrate d'ammonium (10 M, 5 cm3 de solution par gramme de composite) puischauffé en ballon à reflux durant 4 heures. Le composite est ensuite rincé à l'eau distillée puis séché durant la nuit en étuve à 120°C. Après cinq échanges successifs, le solide est calciné sous air en four à moufle à 550°C durant 12 heures, avec une rampe de montée en température de 5°C/min. La teneur en sodium mesurée par ICP-MS sur le composite échangé 5 fois est inférieure à 40 ppm. Ceci correspond à un rapport atomique Na / Al inférieur à 0,01. Le composite subit ensuite une étape de désalumination afin d'ajuster l'acidité et la porosité de la zéolithe. Dans un premier temps, le solide subit un traitement thermique en lit traversé en présence de vapeur d'eau dans les conditions opératoires suivantes. Typiquement 5 grammes de composite sont placés dans un réacteur en quartz dans un four tubulaire puis montés à 750°C sous débit d'azote (0,4 I azote / h / gramme de solide) avec une rampe de montée de 5°C/min. Une fois la température du palier atteinte, l'azote passe préalablement dans un saturateur à eau à 95°C avant arrivée dans le réacteur en quartz. A la fin du palier, le saturateur à eau est by passé et l'on redescend à température ambiante sous débit d'azote uniquement. Différents essais ont permis de fixer la durée de palier à une heure afin d'obtenir un rapport (Si/AI)réseau égal à 15. Les aluminiums extra-réseau générés par le traitement thermique sont ensuite éliminés par mise au contact du solide avec une solution aqueuse de Na2H2-EDTA selon un protocole similaire à celui proposé par Gola et coll. (Gola et coll. Microporous and Mesoporous Materials 40, 2000, 73 - 83) à savoir 20 cm3 de solution aqueuse par gramme de composite, et un rapport molaire entre Na2H2-EDTA et l'aluminium présent dans le composite de 2. L'ensemble est chauffé en ballon à reflux durant 4 heures, puis le solide est rincé à l'eau distillé et enfin échangé deux fois avec une solution de nitrate d'ammonium selon le protocole décrit dans le paragraphe précédent, afin d'éliminer les ions sodium introduits par Na2H2-EDTA. Finalement le solide est calciné sous air en four à moufle à 550°C durant 12 heures, avec une rampe de montée en température de
5°C/min. Au final, le composite ainsi obtenu présente une teneur en Na inférieure à 50 ppm, un rapport (Si/AI)réseau égal à 17 et un pourcentage d'aluminium extra-réseau mesuré par RMN inférieur à 20 %. b) dépôt de la fonction hydro-déshydrogénante (C2) Les extrudés du composite sont soumis à une étape d'imprégnation à sec par une solution aqueuse de nitrate de platine tétramine Pt(NH3)4(NO3)2, laissés à maturer en maturateur à eau durant 24 heures à température ambiante puis calcinés à 450°C (rampe de montée de 5°C/min) durant deux heures en lit traversé sous air sec (2 L air / h / gramme de solide). La teneur pondérale en platine du catalyseur fini après calcination est de 0,34 %. Sa dispersion mesurée par titration H2-02 est de 37 % et le coefficient de répartition du platine mesuré par microsonde de Castaing est égal à 0,88. Exemple 3 : Evaluation du catalyseur selon l'invention en hydrocraquage d'un distillat sous vide. Le catalyseur dont la préparation est décrite dans les exemples précédents est utilisé dans les conditions de l'hydrocraquage dit en 2 étapes. La charge pétrolière est un distillat sous vide "Straight Run" dont les principales caractéristiques sont données dans le tableau 1. Tableau 1 : Caractéristique de la charge utilisée. Densité (20/4) 0,94 Soufre (% poids) 2,8 Azote (ppm poids) 1275 Distillation simulée point initial (°C) 346 point 10 % (°C) 425 point 50 % (°C) 487 point 90 % (°C) 561 point final (°C) 629 La charge distillat sous vide passe dans une zone d'hydroraffinage comprenant le catalyseur Cl. Les conditions opératoires utilisées dans la zone d'hydroraffinage sont indiquées dans le Tableau 2. Tableau 2 : Conditions d'hydroraffinage. Température (°C) Pression totale (MPa) WH (h-') HYK742 374 14 0,75 400 HRK55825 Après cet hydroraffinage, les teneurs en soufre et azote sont très faibles et la conversion de la fraction 370°C+ en fraction 370°C- est de l'ordre de 55%; L'effluent hydroraffiné est envoyé dans une colonne de séparation par distillation. Le résidu constitue la charge d'hydrocraquage envoyée sur le catalyseur C2 préparé selon l'invention. Les caractéristiques de ce résidu de l'effluent hydroraffiné sont indiqués dans le Tableau 3. Tableau 3 : Caractéristique du résidu extrait de l'effluent hydroraffiné. Densité (15/4) 0,85 Soufre (ppm poids) 0,0015 Azote (ppm poids) 2,2 Distillation simulée point initial (°C) 301 point 10 % (°C) 391 point 50 % (°C) 466 point 90 % (°C) 546 point final % (°C) 617 Avant test, le catalyseur C2 subit une étape de réduction dans les conditions opératoires 10 suivantes : - débit d'hydrogène : 1600 normaux litres par heure et par litre de catalyseur, - montée de la température ambiante à 120°C : 10°C/min, - palier d'une heure à 120°C, - montée de 120°C à 450°C à 5°C/min, 15 - palier de deux heures à 450°C, - pression : 0,1 MPa
Après réduction, le test catalytique s'effectue dans les conditions suivantes : - pression totale de 14 MPa, 20 - rapport hydrogène sur charge de 1000 normaux litres/litre, - vitesse volumique horaire (WH) égale à La conversion de la fraction 370°C+ est prise égale à : C(370°C+) = [ (% de 370°C effluents ) - (% de 370°C charge) ] 1 [ 100 - (% de 370°C charge)] avec 25 % de 370°C" effluents = pourcentage massique en composés ayant des points d'ébullition inférieurs à 370°C dans les effluents, et % de 370°C- charge = pourcentage massique en composés ayant des points d'ébullition inférieurs à 370°C dans la charge d'hydrocraquage. 30
La température de réaction est ajustée à 375°C de manière à obtenir un niveau de conversion de la fraction 370°C+ égal à 70 % en poids. Les analyses de l'effluent hydrocraqué par distillation simulée permettent d'obtenir les rendements par coupes : naphta, coupe ayant un point d'ébullition entre 80 et 150°C. - kerosène, coupe ayant un point d'ébullition entre 150 et 250°C gazole, coupe ayant un point d'ébullition entre 250 et 370°C - et distillats moyens (kérosène + gazole), coupe ayant un point d'ébullition entre 150 et 370°C
Les résultats sont donnés dans le tableau 5.
Tableau 5 : répartition par coupes de l'effluent hydrocraqué (analyse GC). % poids Rendement en naphta 13,4 Rendement en kérosène 21,4 Rendement en gazole 27,7 Rendement en distillats moyens 49,1 Ces résultats montrent que l'utilisation d'un catalyseur d'hydrocraquage selon l'invention et dans un procédé selon l'invention permet par hydrocraquage d'une charge DSV de produire des 15 distillats moyens (kérosène et gazole) à des rendements élevés.

Claims (14)

  1. REVENDICATIONS1. Procédé d'hydrocraquage et/ou d'hydroisomérisation de charges hydrocarbonées mettant en oeuvre un catalyseur comprenant au moins un métal hydro-déshydrogénant choisi dans le groupe formé par les métaux du groupe VIB et du groupe VIII, pris seul ou en mélange, de la classification périodique et un support composite formé par une zéolithe de type Y et du carbure de silicium SiC, ledit procédé opérant à une température supérieure à 200°C, sous une pression supérieure à 1 MPa, la vitesse spatiale étant comprise entre 0,1 et 20 h-1 et la quantité d'hydrogène introduite est telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure soit compris entre 80 et 5000 L/L.
  2. 2. Procédé selon la revendication 1 dans lequel ledit catalyseur d'hydrocraquage/hydroisomérisation comprend un support composite constitué, en pourcentage poids, par : - 70 à 99,5 % de carbure de silicium (SiC) dont la surface spécifique mesurée par la méthode BET est supérieure à 5 m2/g, - 0,5 à 30 %, d'une zéolithe de type Y.
  3. 3. Procédé selon l'une des revendications 1 ou 2 dans lequel les éléments du groupe VIII sont choisis parmi les métaux nobles du groupe VIII, lesdits éléments étant choisis parmi le platine et le palladium, pris seuls ou en mélange.
  4. 4. Procédé selon la revendication 3 dans lequel la teneur en métal noble dudit catalyseur d'hydrocraquage/hydroisomérisation est comprise entre 0,01 et 10 % poids par rapport à la masse totale dudit catalyseur.
  5. 5. Procédé selon l'une des revendications 1 ou 2 dans lequel ledit catalyseur comprend au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, la teneur en métal du groupe VIB étant comprise, en équivalent oxyde, entre 5 et 40 0/0 en poids par rapport à la masse totale dudit catalyseur, et la teneur en métal non noble du groupe VIII étant comprise, en équivalent oxyde, entre 0,5 et 10 % en poids par rapport à la masse totale dudit catalyseur.
  6. 6. Procédé selon l'une des revendications 1 à 5 dans lequel le volume poreux du support dudit catalyseur d'hydrocraquage/hydroisomérisation est compris entre 0,20 cm3/g et 1,0 cm3/g.
  7. 7. Procédé selon l'une des revendications 1 à 6 dans lequel ledit procédé opèrent en présence d'hydrogène, à une température comprise entre 250 et 480°C, sous une pression comprise entre 2 et 25 MPa, à une vitesse spatiale comprise entre 0,1 et 20 h-1, et sous une quantité d'hydrogène introduite telle que le rapport volumique litre d'hydrogène/litre d'hydrocarbure est compris entre 100 et 2000 L/L.
  8. 8. Procédé selon l'une des revendications 1 à 7 dans lequel la charge hydrocarbonée est choisie parmi les gazoles légers issus d'une unité de craquage catalytique, les distillats atmosphériques, les distillats sous vide, les distillats provenant de procédés de désulfuration ou d'hydroconversion en lit fixe ou en lit bouillonnant de résidus atmosphériques et/ou de résidus sous vide et/ou d'huiles désasphaltées, et les huiles désasphaltées, prises seules ou en mélange.
  9. 9. Procédé selon l'une des revendications 1 à 8 dans lequel le procédé est mis en oeuvre en une étape.
  10. 10. Procédé selon la revendication 9 dans lequel ledit catalyseur utilisé dans la zone d'hydrocraquage d'un procédé d'hydrocraquage dit en une étape comprend une phase active comprenant au moins un métal du groupe VIB en combinaison avec au moins un métal non noble du groupe VIII, la teneur en métal du groupe VIB étant comprise, en équivalent oxyde, entre 5 et 40 % en poids par rapport à la masse totale dudit catalyseur, et la teneur en métal non noble du groupe VIII étant comprise, en équivalent oxyde, entre 0,5 et 10 % en poids par rapport à la masse totale dudit catalyseur, ledit catalyseur étant un catalyseur sulfuré.
  11. 11. Procédé selon l'une des revendications 1 à 8 dans lequel le procédé est mis en oeuvre en deux étapes.
  12. 12. Procédé selon la revendication 11 dans lequel ledit catalyseur est mis en oeuvre dans la deuxième étape d'hydrocraquage placée en aval de la première étape d'hydroraffinage, une séparation intermédiaire étant mise en oeuvre entre les deux zones.
  13. 13. Procédé selon l'une des revendications 11 à 12 dans lequel ledit catalyseur utilisé dans ladite deuxième étape d'hydrocraquage comprend une phase active comprenant au moins un métal noble du groupe VIII, la teneur en métal noble du groupe VIII étant comprise entre 0,01 et 10 % poids, par rapport à la masse totale dudit catalyseur, le métal noble étant utilisé sous sa forme réduite et non sulfurée.
  14. 14. Procédé selon l'une des revendications 1 à 13 dans lequel la charge hydrocarbonée est choisie parmi les LCO (Light Cycle Oil (gazoles légers issus d'une unité de craquage catalytique)), les distillats atmosphériques, les distillats sous vide, les charges provenant d'unités d'extraction d'aromatiques des bases d'huile lubrifiante ou issues du déparaffinage au solvant des bases d'huile lubrifiante, les distillats provenant de procédés de désulfuration ou d'hydroconversion en lit fixe ou en lit bouillonnant de RAT (résidus atmosphériques) et/ou de RSV (résidus sous vide) et/ou d'huiles désasphaltées, et les huiles désasphaltées, prises seules ou en mélange.
FR0904776A 2009-10-06 2009-10-06 Procede d'hydrocraquage classique de charges hydrocarbonees mettant en oeuvre un catalyseur a base de carbure de silicium Expired - Fee Related FR2950897B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0904776A FR2950897B1 (fr) 2009-10-06 2009-10-06 Procede d'hydrocraquage classique de charges hydrocarbonees mettant en oeuvre un catalyseur a base de carbure de silicium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0904776A FR2950897B1 (fr) 2009-10-06 2009-10-06 Procede d'hydrocraquage classique de charges hydrocarbonees mettant en oeuvre un catalyseur a base de carbure de silicium

Publications (2)

Publication Number Publication Date
FR2950897A1 true FR2950897A1 (fr) 2011-04-08
FR2950897B1 FR2950897B1 (fr) 2012-12-07

Family

ID=42211875

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0904776A Expired - Fee Related FR2950897B1 (fr) 2009-10-06 2009-10-06 Procede d'hydrocraquage classique de charges hydrocarbonees mettant en oeuvre un catalyseur a base de carbure de silicium

Country Status (1)

Country Link
FR (1) FR2950897B1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207096A1 (fr) * 2013-06-27 2014-12-31 Sicat Procédé de fabrication de produits mésoporeux sous forme de beta-sic et produits obtenus par ce procédé
FR3007673A1 (fr) * 2013-06-27 2015-01-02 Sicat Procede de fabrication de produits de forme mesoporeux en beta-sic et produits obtenus par ce procede

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3269934A (en) * 1963-12-24 1966-08-30 Union Oil Co Hydrocracking process with the use of a y type crystalline zeolite and a nitrogen containing hydrocarbon oil
US3758402A (en) * 1970-10-06 1973-09-11 Mobil Oil Corp Catalytic hydrocracking of hydrocarbons
FR2834655A1 (fr) * 2002-01-17 2003-07-18 Sicat COMPOSITES ZEOLITHE/SiC ET LEUR UTILISATION EN CATALYSE
FR2909012A1 (fr) * 2006-11-23 2008-05-30 Inst Francais Du Petrole Catalyseur a base d'un materiau a porosite hierarchisee comprenant du silicium et procede d'hydrocraquage/ hydroconversion et d'hydrotraitement de charges hydrocarbonees.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3269934A (en) * 1963-12-24 1966-08-30 Union Oil Co Hydrocracking process with the use of a y type crystalline zeolite and a nitrogen containing hydrocarbon oil
US3758402A (en) * 1970-10-06 1973-09-11 Mobil Oil Corp Catalytic hydrocracking of hydrocarbons
FR2834655A1 (fr) * 2002-01-17 2003-07-18 Sicat COMPOSITES ZEOLITHE/SiC ET LEUR UTILISATION EN CATALYSE
FR2909012A1 (fr) * 2006-11-23 2008-05-30 Inst Francais Du Petrole Catalyseur a base d'un materiau a porosite hierarchisee comprenant du silicium et procede d'hydrocraquage/ hydroconversion et d'hydrotraitement de charges hydrocarbonees.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIAGO FILIPE FRANCISCO LOPES: "SYNTHESIS AND EVALUATION OF BIFUNCTIONAL CATALYSTS FOR BIOFUEL PRODUCTION", 30 September 2009 (2009-09-30), XP002585613, Retrieved from the Internet <URL:https://dspace.ist.utl.pt/bitstream/2295/363073/1/THESIS2.pdf> [retrieved on 20100604] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014207096A1 (fr) * 2013-06-27 2014-12-31 Sicat Procédé de fabrication de produits mésoporeux sous forme de beta-sic et produits obtenus par ce procédé
FR3007673A1 (fr) * 2013-06-27 2015-01-02 Sicat Procede de fabrication de produits de forme mesoporeux en beta-sic et produits obtenus par ce procede

Also Published As

Publication number Publication date
FR2950897B1 (fr) 2012-12-07

Similar Documents

Publication Publication Date Title
EP2474357B1 (fr) Procédé de préparation d&#39;un catalyseur zéolithique d&#39;hydrocraquage contenant deux fonctions hydrogénantes distinctes
EP1804967B1 (fr) Catalyseur alumino-silicate dope et procede ameliore de traitement de charges hydrocarbonees
EP2313195B1 (fr) Catalyseur à base de zéolithe izm-2 et procédé d&#39;hydroconversion / hydrocraquage de charges hydrocarbonées
EP0955093B1 (fr) Catalyseur à base de zéolithe bêta et d&#39;element promoteur et procédé d&#39;hydrocraquage
EP2319902B1 (fr) Procédé d&#39;hydrocraquage mettant en oeuvre une zéolithe modifiée par un traitement basique
EP1462167B1 (fr) Catalyseur comprenant au moins une zeolithe ZBM-30 et au moins une zeolithe y et procédé d&#39;hydroconversion de charges hydrocarbonées utilisant un tel catalyseur
EP2285486B1 (fr) Procede de preparation d&#39;un catalyseur a base d&#39;un materiau amorphe comprenant du silicium a porosité hiérarchisée et organisee et procede ameliore de traitement de charges hydrocarbonees
EP1907508B1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un lit de garde multifonctionnel
CA2858049C (fr) Catalyseur comprenant au moins une zeolithe nu-86, au moins une zeolithe usy et une matrice minerale poreuse et procede d&#39;hydroconversion de charges hydrocarbonees utilisant ce catalyseur
EP2296808B1 (fr) Procede de preparation d&#39;un catalyseur a base d&#39;un materiau cristallise comprenant du silicium à porosité hiérarchisée et organisee et procede ameliore de traitement de charges hydrocarbonees
EP2794102B1 (fr) Procede de preparation d&#39;un catalyseur utilisable en hydroconversion comprenant au moins une zéolithe nu-86
FR2909012A1 (fr) Catalyseur a base d&#39;un materiau a porosite hierarchisee comprenant du silicium et procede d&#39;hydrocraquage/ hydroconversion et d&#39;hydrotraitement de charges hydrocarbonees.
FR2887556A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un catalyseur dope a base d&#39;alumine-silice mesoporeuse a teneur controlee en macropore
FR2950895A1 (fr) Procede d&#39;hydrotraitement et d&#39;hydroisomerisation de charges issues de source renouvelable mettant en oeuvre un catalyseur a base de carbure de silicium
EP2488609A1 (fr) Procede d&#39;hydrocraquage mettant en oeuvre une zeolithe modifiee
FR2780311A1 (fr) Catalyseur d&#39;hydrocraquage comprenant une zeolithe y non globalement desaluminee, un element du groupe vb, et un element promoteur choisi dans le groupe forme par le bore, le phosphore et le silicium
WO2000071641A1 (fr) Catalyseur comprenant une zeolithe y partiellement amorphe et son utilisation en hydroconversion de charges petrolieres hydrocarbonees
FR2950897A1 (fr) Procede d&#39;hydrocraquage classique de charges hydrocarbonees mettant en oeuvre un catalyseur a base de carbure de silicium
FR2950896A1 (fr) Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch mettant en oeuvre un catalyseur a base de carbure de silicium
EP1198292A1 (fr) Catalyseur comprenant une zeolithe y partiellement amorphe, un element du groupe vb et son utilisation en hydroconversion et hydroraffinage de charges petrolieres hydrocarbonees
WO2023094319A1 (fr) Catalyseur d&#39;hydrocraquage comprenant une zeolithe y specifique pour la production de naphta
WO2023110650A1 (fr) Catalyseur d&#39;hydrocraquage comprenant une zeolithe y specifique et une zeolithe de type mfi pour la production d&#39;une charge de vapocraquage

Legal Events

Date Code Title Description
CD Change of name or company name
ST Notification of lapse

Effective date: 20160630