FR2942003A1 - SUPERSIFIED DIESEL TYPE INTERNAL COMBUSTION ENGINE AND METHOD OF CONTROLLING AIR FLOW IN SUCH A MOTOR - Google Patents

SUPERSIFIED DIESEL TYPE INTERNAL COMBUSTION ENGINE AND METHOD OF CONTROLLING AIR FLOW IN SUCH A MOTOR Download PDF

Info

Publication number
FR2942003A1
FR2942003A1 FR0950850A FR0950850A FR2942003A1 FR 2942003 A1 FR2942003 A1 FR 2942003A1 FR 0950850 A FR0950850 A FR 0950850A FR 0950850 A FR0950850 A FR 0950850A FR 2942003 A1 FR2942003 A1 FR 2942003A1
Authority
FR
France
Prior art keywords
exhaust
engine
pressure
flap
recirculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0950850A
Other languages
French (fr)
Other versions
FR2942003B1 (en
Inventor
Nicolas Leberruyer
Frederic Noth
Arnaud Guinois
Jacques Olivier Lombardin
Emmanuel Buis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0950850A priority Critical patent/FR2942003B1/en
Priority to RU2011137422/07A priority patent/RU2011137422A/en
Priority to JP2011548737A priority patent/JP2012517551A/en
Priority to CN2009801565355A priority patent/CN102317602A/en
Priority to PCT/FR2009/052555 priority patent/WO2010092245A1/en
Priority to EP09803868A priority patent/EP2396529A1/en
Publication of FR2942003A1 publication Critical patent/FR2942003A1/en
Application granted granted Critical
Publication of FR2942003B1 publication Critical patent/FR2942003B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • F02M2026/003EGR valve controlled by air measuring device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/27Layout, e.g. schematics with air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

Moteur à combustion interne du type Diesel suralimenté comprenant : un filtre à particules 12 et un volet d'échappement commandé 14, montés dans la conduite d'échappement ; une boucle de recirculation partielle des gaz d'échappement à basse pression 15 incluant une vanne de recirculation commandée 16, ladite boucle reliant la conduite d'échappement 11, en aval du filtre à particules avec la conduite d'arrivée d'air 4, en amont du compresseur de suralimentation 6 ; et une unité électronique de commande 21 capable de recevoir des valeurs de paramètres de fonctionnement du moteur et de commander différents organes du moteur ; caractérisé par le fait que l'unité électronique de commande est capable de déterminer les pertes de charge subies par l'écoulement des gaz d'échappement et par l'air admis dans le moteur, l'unité électronique de commande comprenant des moyens pour calculer des valeurs de consigne de position de la vanne de recirculation 16 ou du volet d'échappement 14 à partir de valeurs de consigne du débit d'air admis dans le moteur, en fonction desdites pertes de charge.A supercharged diesel type internal combustion engine comprising: a particulate filter 12 and a controlled exhaust louver 14 mounted in the exhaust pipe; a partial recirculation loop of the low-pressure exhaust gas including a controlled recirculation valve 16, said loop connecting the exhaust pipe 11, downstream of the particulate filter with the air inlet pipe 4, in upstream of the supercharger 6; and an electronic control unit 21 capable of receiving engine operating parameter values and controlling different engine components; characterized in that the electronic control unit is capable of determining the pressure losses experienced by the flow of exhaust gases and by the air admitted into the engine, the electronic control unit comprising means for calculating position setpoint values of the recirculation valve 16 or the exhaust flap 14 from setpoints of the air flow rate admitted into the engine, as a function of said pressure drops.

Description

B07-3546FR - AxC/EVH B07-3546EN - AxC / EVH

Société par Actions Simplifiée dite : RENAULT s.a.s. Moteur à combustion interne du type Diesel suralimenté et procédé de commande du débit d'air dans un tel moteur Invention de : LEBERRUYER Nicolas NOTH Frédéric GUINOIS Arnaud LOMBARDIN Jacques Olivier BUIS Emmanuel Société par Actions Simplifiée known as: RENAULT s.a.s. Internal combustion engine of the supercharged diesel type and method for controlling the air flow rate in such an engine Invention of: LEBERRUYER Nicolas NOTH Frédéric GUINOIS Arnaud LOMBARDIN Olivier Jacques BUIS Emmanuel

Moteur à combustion interne du type Diesel suralimenté et procédé de commande du débit d'air dans un tel moteur La présente invention se rapporte au contrôle d'un moteur à combustion interne, c'est-à-dire à la technique de gestion du moteur avec l'ensemble de ses capteurs et actionneurs. On considérera principalement les moteurs à combustion interne du type Diesel suralimenté comprenant une boucle de recirculation partielle des gaz d'échappement. L'ensemble des lois de commande ou stratégie logicielle et des paramètres de caractérisation tels que les différentes calibrations du moteur sont contenus dans un calculateur ou unité de commande électronique (UCE). Les normes limitant la quantité de polluants produits à l'échappement d'un véhicule, dont des oxydes d'azote (dits NOx, où x varie selon l'oxyde considéré) et des particules de suie, sont de plus en plus sévères. Afin de respecter ces normes, on sait prévoir sur un moteur de type Diesel, une boucle de recirculation partielle des gaz d'échappement (dits EGR pour, en anglais, Exhaust Gaz Recirculation ) une partie des gaz d'échappement étant alors réintroduits à l'admission. Par conséquent, le mélange des gaz admis dans le moteur est composé d'air frais issu du compresseur, mélangé avec des gaz d'échappement issus du collecteur d'échappement. On insère généralement une vanne commandée pour réguler le débit des gaz d'échappement recyclés (dite vanne EGR ). Les gaz d'échappement recyclés étant inertes vis-à-vis de la combustion ont pour effet de diminuer la température maximale de combustion et de réduire ainsi l'excès d'oxygène en comparaison avec un même moteur dépourvu de recirculation de gaz d'échappement. Or, la formation des oxydes d'azote est favorisée lors d'une combustion dont la température et le taux d'oxygène sont élevés tandis que la formation des particules de suie est favorisée par un taux d'oxygène faible. La recirculation partielle des gaz d'échappement a donc pour conséquence directe de diminuer la quantité des oxydes d'azote et d'augmenter le nombre de particules de suie issues de la combustion. Afin de pallier à cette augmentation de particules de suie, on installe dans la ligne d'échappement, entre la turbine du turbocompresseur et le silencieux, un filtre à particules qui peut par exemple être composé d'un ensemble de microcanaux dans lesquels la majeure partie des particules de suie se trouvent piégées. Une fois le filtre saturé en particules, il convient de le vider en brûlant les particules, au cours d'une phase appelée régénération. Cette régénération est déclenchée à un instant approprié et est réalisée par une augmentation de température produite par un dispositif de chauffage ou par des réglages de moteur spécifiques ayant pour effet d'augmenter la température des gaz qui traversent le filtre. Afin de diminuer encore la quantité des oxydes d'azote produits par la combustion, on a imaginé de refroidir le mélange des gaz admis dans le moteur au moyen d'un dispositif de refroidissement air/eau placé dans la boucle de recirculation des gaz d'échappement. La diminution de la température des gaz admis dans le moteur permet d'introduire une masse plus importante de gaz d'échappement puisque le remplissage du moteur augmente avec la diminution de la température du mélange admis. La quantité d'oxydes d'azote émis diminue ainsi à la fois sous l'effet de la diminution de la température et sous l'effet de l'augmentation de la masse des gaz d'échappement recyclés. FIELD OF THE INVENTION The present invention relates to the control of an internal combustion engine, that is to say to the engine management technique. with all of its sensors and actuators. The supercharged diesel type internal combustion engines comprising a partial recirculation loop of the exhaust gases will mainly be considered. The set of control laws or software strategy and characterization parameters such as the different calibrations of the engine are contained in a computer or electronic control unit (ECU). Standards limiting the amount of pollutants produced in the exhaust of a vehicle, including nitrogen oxides (so-called NOx, where x varies depending on the oxide in question) and soot particles, are increasingly severe. In order to comply with these standards, it is known to provide on a diesel type engine, a partial exhaust gas recirculation loop (called EGR for, in English, Exhaust Gas Recirculation) part of the exhaust gas is then reintroduced to the engine. 'admission. Therefore, the mixture of gases admitted to the engine is composed of fresh air from the compressor, mixed with exhaust gases from the exhaust manifold. A controlled valve is generally inserted to regulate the flow of recycled exhaust gas (called EGR valve). The recycled exhaust gases being inert with respect to combustion have the effect of reducing the maximum combustion temperature and thus reducing the excess oxygen compared with the same engine without exhaust gas recirculation. . However, the formation of nitrogen oxides is favored during a combustion whose temperature and oxygen content are high while the formation of soot particles is favored by a low oxygen level. The partial recirculation of the exhaust gas therefore has the direct consequence of reducing the quantity of nitrogen oxides and of increasing the number of soot particles resulting from the combustion. In order to overcome this increase in soot particles, a particulate filter is installed in the exhaust line between the turbine of the turbocharger and the silencer, which may for example be composed of a set of microchannels in which the major part soot particles are trapped. Once the filter is saturated with particles, it should be emptied by burning the particles, during a phase called regeneration. This regeneration is triggered at a suitable time and is performed by a temperature rise produced by a heater or by specific engine settings that have the effect of increasing the temperature of the gases passing through the filter. In order to further reduce the amount of nitrogen oxides produced by the combustion, it has been imagined to cool the mixture of gases admitted to the engine by means of an air / water cooling device placed in the gas recirculation loop. exhaust. The reduction of the temperature of the gases admitted to the engine makes it possible to introduce a larger mass of exhaust gases since the filling of the engine increases with the decrease in the temperature of the admitted mixture. The quantity of nitrogen oxides emitted thus decreases both under the effect of the decrease in temperature and under the effect of the increase in the mass of the recycled exhaust gases.

On a également imaginé de disposer une boucle de recirculation des gaz d'échappement à basse pression qui prélève les gaz d'échappement à la sortie du filtre à particules, en aval de la turbine du turbocompresseur et les réinjecte en amont du compresseur. Une telle boucle de recirculation à basse pression est plus avantageuse qu'une boucle de recirculation classique à haute pression qui prélève les gaz d'échappement directement dans le collecteur d'échappement et les réinjecte dans le plénum d'admission, en aval du compresseur. Dans une boucle de recirculation à haute pression, en effet, les gaz d'échappement recyclés ne sont pas filtrés et risquent d'encrasser la boucle de recirculation, la vanne de recirculation ainsi que le plénum d'admission et le moteur. Pour déterminer au mieux le compromis entre la quantité d'oxydes d'azote et de particules de suie produites pour un point de fonctionnement déterminé du moteur, il est important de pouvoir réguler avec précision le taux des gaz d'échappement recyclés par l'intermédiaire du débit d'air introduit à travers le filtre à air et admis dans le moteur. Une telle régulation du débit d'air se fait généralement en agissant sur deux organes, à savoir d'une part, la vanne de régulation des gaz d'échappement recyclés ou vanne EGR située dans la boucle de recirculation à basse pression, et, d'autre part, un volet d'échappement, monté dans la ligne d'échappement en aval du piquage de la boucle de recirculation, et en amont du silencieux installé dans la ligne d'échappement. On connaît par la demande de brevet US 2004/0006978 l'utilisation d'une boucle de recirculation des gaz d'échappement à basse pression, dans laquelle le piquage des gaz d'échappement à recycler est fait entre le filtre à particules et le silencieux, le retour des gaz d'échappement étant fait entre le filtre à air et le compresseur. Une vanne commandée de recirculation ou vanne EGR, ainsi qu'un dispositif refroidisseur, sont montés dans la boucle de recirculation à basse pression. Celle-ci comprend également un dispositif de venturi créant une dépression qui permet d'aspirer les gaz d'échappement recyclés. Le brevet US 5 806 308 ainsi que la demande de brevet US 2005/0045407 proposent de supprimer le venturi et de le remplacer par un volet d'échappement placé dans la ligne d'échappement. I1 est alors possible de créer une différence de pression aux bornes de la vanne EGR, indépendante du point de fonctionnement du moteur. La demande de brevet WO 2007/066033 (RENAULT) propose un procédé de commande d'un moteur suralimenté avec une boucle de recirculation à basse pression avec régulation du débit d'air admis, par action sur la vanne EGR disposée dans la boucle de recirculation et un volet d'échappement monté dans la ligne d'échappement. L'écart entre la valeur de consigne et la valeur mesurée pour le débit d'air admis est envoyé dans un régulateur d'air qui traduit cet écart en consigne de position. Cette consigne est envoyée dans un séparateur de consigne qui fournit deux consignes distinctes, l'une, pour la position de la vanne EGR et l'autre, pour la position du volet d'échappement. Bien que le dispositif proposé dans ce document antérieur soit satisfaisant, on constate cependant que sa calibration est complexe et que la loi de commande manque de robustesse, le régulateur devant non seulement compenser les perturbations mais également tenir compte de la non-linéarité du système à réguler constitué par l'ensemble de la vanne EGR et du volet d'échappement. La présente invention a pour objet d'améliorer cette régulation et de rendre le régulateur plus robuste, mieux adapté aux systèmes à piloter et plus simple à calibrer. Dans un mode de réalisation, un moteur à combustion interne du type Diesel suralimenté comprend : un filtre à particules et un volet d'échappement commandé, montés dans la conduite d'échappement ; et une boucle de recirculation partielle des gaz d'échappement à basse pression incluant une vanne de recirculation commandée, ladite boucle reliant la conduite d'échappement, en aval du filtre à particules avec la conduite d'arrivée d'air, en amont du compresseur de suralimentation. Une unité électronique de commande est capable de recevoir des valeurs de paramètres de fonctionnement du moteur et de commander différents organes du moteur. L'unité électronique de commande est capable de déterminer les pertes de charge subies par l'écoulement des gaz d'échappement et par l'air admis dans le moteur. L'unité électronique de commande comprend notamment des moyens pour calculer des valeurs de consigne de position de la vanne de recirculation ou du volet d'échappement à partir de valeurs de consigne du débit d'air admis dans le moteur, en fonction desdites pertes de charge. La valeur de consigne du débit des gaz d'échappement recyclés par la boucle de recirculation à basse pression est séparée en deux valeurs de consigne de position, l'une pour la vanne de recirculation et l'autre pour le volet d'échappement. Pour un fonctionnement optimal avec consommation minimale de carburant, seul l'un de ces organes est commandé, l'autre étant maintenu en position ouverte. Le choix de l'organe à commander est fait à partir des pertes de charge subies par les gaz d'échappement et par l'air admis dans le moteur. Dans un mode de réalisation avantageux, l'unité électronique de commande comprend des moyens pour comparer une valeur estimée de la perte de charge subie par l'écoulement des gaz d'échappement dans la boucle de recirculation lorsque la vanne de recirculation ou le volet d'échappement sont en position complètement ouverte, avec la somme des pertes de charge subies par l'écoulement d'air dans la conduite d'arrivée d'air et par l'écoulement des gaz dans la conduite d'échappement, ces pertes de charge étant estimées à partir des valeurs de consigne du débit d'air. L'unité électronique de commande comprend de préférence des moyens pour déduire de la comparaison effectuée, une valeur de consigne de position de la vanne de recirculation ou du volet d'échappement qui ne se trouve pas en position ouverte. Avantageusement, l'unité électronique de commande comprend des moyens de modélisation de la perte de charge sous la forme de cartographies mémorisées des coefficients de perte de charge en fonction de la position de la vanne de recirculation et du volet d'échappement. La régulation du débit d'air admis se fait ainsi en utilisant une modélisation des pertes de charges subies par les gaz d'échappement dans la boucle de recirculation à basse pression et dans la ligne d'échappement ainsi que des pertes de charge subies par l'air admis dans le moteur. I1 en résulte une linéarisation du système contrôlé par le régulateur d'air, ce qui améliore les performances de la régulation. Dans un autre mode de réalisation, le moteur peut comprendre en outre une boucle de recirculation partielle des gaz d'échappement à haute pression incluant une vanne de recirculation haute pression commandée. L'unité électronique de commande comprend alors des moyens pour calculer des valeurs de consigne de position de la vanne de recirculation haute pression. Selon un autre aspect, il est proposé un procédé de commande du débit d'air dans un moteur à combustion interne du type Diesel suralimenté comprenant : un filtre à particules et un volet d'échappement commandé, montés dans la conduite d'échappement ; et une boucle de recirculation partielle des gaz d'échappement à basse pression incluant une vanne de recirculation commandée, ladite boucle reliant la conduite d'échappement, en aval du filtre à particules avec la conduite d'arrivée d'air, en amont du compresseur de suralimentation. Selon ce procédé, on détermine les pertes de charge subies par l'écoulement des gaz d'échappement et par l'air admis dans le moteur et on régule un paramètre lié à l'admission des gaz dans le moteur en agissant sur la vanne de recirculation ou sur le volet d'échappement en tenant compte desdites pertes de charge. Avantageusement, on régule le débit d'air admis dans le moteur en agissant uniquement sur le volet d'échappement, la vanne de recirculation étant maintenue en position ouverte, la position du volet d'échappement étant déterminée à partir de la perte de charge qui en résulte. Alternativement, on régule le débit d'air admis dans le moteur en agissant uniquement sur la vanne de recirculation, le volet d'échappement étant maintenu en position ouverte la position de la vanne de recirculation étant déterminée à partir de la perte de charge qui en résulte. L'invention sera mieux comprise à l'étude d'un mode de réalisation décrit à titre d'exemple nullement limitatif, et illustré par les dessins annexés sur lesquels : - la figure 1 montre les principaux éléments d'un moteur à combustion interne de type Diesel suralimenté selon l'invention ; - la figure 2 illustre les principaux organes d'un système de régulation du débit d'air ; et - la figure 3 illustre un mode de réalisation pratique d'un dispositif de séparation de consigne selon l'invention. Tel qu'il est illustré sur la figure 1, un moteur à combustion 1, par exemple un moteur de type Diesel, comprend quatre cylindres 2. L'air frais admis dans le moteur 1 traverse un filtre à air 3 avant d'être amené par une conduite d'amenée d'air 4 qui comprend un débitmètre 5, à l'entrée d'un compresseur 6, qui fait partie d'un turbocompresseur 7 comprenant le compresseur 6 et une turbine 8 montée sur le même arbre mécanique 9, le compresseur 6 étant ainsi entraîné en rotation par la turbine 8. Les gaz d'échappement issus de la combustion dans le moteur 1, repris par le collecteur d'échappement 10, sont amenés par une conduite l0a à l'entrée de la turbine 8 où ils cèdent une partie de leur énergie afin d'entraîner en rotation le compresseur 6. A la sortie de la turbine 8, les gaz d'échappement qui s'écoulent dans la conduite d'échappement 11 traversent tout d'abord un filtre à particules 12, puis un dispositif silencieux 13, avant d'être rejetés à l'atmosphère. Un volet d'échappement commandé 14 est monté dans la conduite d'échappement 11 en amont du silencieux 13. On comprendra bien entendu que d'autres dispositifs de traitement des gaz d'échappement pourraient être également montés dans la ligne d'échappement, par exemple un catalyseur d'oxydation ou analogue. Une boucle de recirculation partielle des gaz d'échappement à basse pression référencée 15 inclut une vanne de recirculation commandée 16 dite vanne EGR et relie la conduite d'échappement 11 à la conduite d'arrivée d'air 4 en amont du compresseur 6. Le piquage de la boucle de recirculation 15 sur la conduite d'échappement 11 est disposé en amont du volet d'échappement 14. De cette manière, une partie des gaz d'échappement ayant déjà traversé la turbine de détente 8 et le filtre à particules 12 est reprise par la boucle de recirculation 15 afin d'être mélangée à l'air d'admission dans la conduite 4, le mélange étant comprimé par le compresseur 6. Le mélange comprimé dont la température a été élevée en raison de la compression est amené par la conduite 17 à un échangeur de chaleur 18, qui permet le refroidissement du mélange avant son admission dans le moteur 1 par la conduite d'admission 19 et le collecteur d'admission 19a. Un volet d'admission commandé 20 est en outre monté dans la conduite d'admission 19 en aval de l'échangeur 18. It has also been conceived to have a low-pressure exhaust gas recirculation loop which draws the exhaust gas at the outlet of the particulate filter downstream of the turbine of the turbocharger and reinjects it upstream of the compressor. Such a low pressure recirculation loop is more advantageous than a conventional high pressure recirculation loop which draws the exhaust directly into the exhaust manifold and feeds back into the intake plenum, downstream of the compressor. In a high pressure recirculation loop, in fact, the recycled exhaust gas is not filtered and may foul the recirculation loop, the recirculation valve and the intake plenum and the engine. In order to best determine the trade-off between the amount of nitrogen oxides and soot particles produced for a given operating point of the engine, it is important to be able to precisely regulate the rate of the exhaust gases recycled via the engine. the air flow introduced through the air filter and admitted into the engine. Such a regulation of the air flow is generally done by acting on two organs, namely on the one hand, the control valve of the recycled exhaust gas or EGR valve located in the low-pressure recirculation loop, and, on the other hand, an exhaust flap, mounted in the exhaust line downstream of the tapping of the recirculation loop, and upstream of the silencer installed in the exhaust line. Patent application US 2004/0006978 discloses the use of a low-pressure exhaust gas recirculation loop in which the stitching of the exhaust gases to be recycled is made between the particulate filter and the silencer , the return of the exhaust gas being made between the air filter and the compressor. A controlled recirculation valve or EGR valve, as well as a chiller device, are mounted in the low pressure recirculation loop. This also includes a venturi device creating a vacuum that sucks the recycled exhaust gas. US Patent 5,806,308 and US Patent Application 2005/0045407 propose to remove the venturi and replace it with an exhaust flap placed in the exhaust line. It is then possible to create a pressure difference across the EGR valve, independent of the operating point of the motor. The patent application WO 2007/066033 (RENAULT) proposes a method for controlling a supercharged engine with a low pressure recirculation loop with regulation of the intake air flow, by acting on the EGR valve disposed in the recirculation loop. and an exhaust flap mounted in the exhaust line. The difference between the set point and the measured value for the intake air flow is sent to an air regulator which translates this difference into a position setpoint. This setpoint is sent to a setpoint separator which provides two separate setpoints, one for the position of the EGR valve and the other for the position of the exhaust flap. Although the device proposed in this prior document is satisfactory, however, it is found that its calibration is complex and that the control law lacks robustness, the regulator must not only compensate for disturbances but also take into account the non-linearity of the system. regulate constituted by all of the EGR valve and the exhaust flap. The object of the present invention is to improve this regulation and to make the regulator more robust, better suited to systems to be controlled and simpler to calibrate. In one embodiment, a supercharged diesel type internal combustion engine comprises: a particulate filter and a controlled exhaust flap, mounted in the exhaust duct; and a partial recirculation loop of low pressure exhaust gas including a controlled recirculation valve, said loop connecting the exhaust pipe, downstream of the particulate filter with the air inlet pipe, upstream of the compressor of overeating. An electronic control unit is capable of receiving engine operating parameter values and controlling different engine components. The electronic control unit is able to determine the pressure losses experienced by the flow of exhaust gas and by the air admitted into the engine. The electronic control unit notably comprises means for calculating position setpoint values of the recirculation valve or the exhaust flap from set values of the air flow rate admitted into the engine, as a function of said losses of charge. The flow control value of the exhaust gas recirculated by the low pressure recirculation loop is separated into two position setpoints, one for the recirculation valve and the other for the exhaust flap. For optimum operation with minimum fuel consumption, only one of these devices is controlled, the other being kept in the open position. The choice of the organ to be controlled is made from the pressure losses experienced by the exhaust gases and by the air admitted into the engine. In an advantageous embodiment, the electronic control unit comprises means for comparing an estimated value of the pressure drop experienced by the flow of the exhaust gases in the recirculation loop when the recirculation valve or the shutter exhaust are in the fully open position, with the sum of the pressure drops experienced by the flow of air in the air supply pipe and by the flow of gases in the exhaust pipe, these pressure losses being estimated from the set values of the air flow. The electronic control unit preferably comprises means for deriving from the comparison made, a set point value of the recirculation valve or the exhaust flap which is not in the open position. Advantageously, the electronic control unit comprises means for modeling the pressure drop in the form of memorized maps of the pressure drop coefficients as a function of the position of the recirculation valve and the exhaust flap. The regulation of the intake air flow is thus done using a modeling of the losses of loads experienced by the exhaust gases in the low-pressure recirculation loop and in the exhaust line as well as the pressure drops experienced by the air admitted into the engine. This results in a linearization of the system controlled by the air regulator, which improves the performance of the regulation. In another embodiment, the engine may further include a high pressure partial exhaust gas recirculation loop including a controlled high pressure recirculation valve. The electronic control unit then comprises means for calculating position reference values of the high pressure recirculation valve. In another aspect, there is provided a method of controlling the air flow rate in a supercharged diesel type internal combustion engine comprising: a particulate filter and a controlled exhaust flap, mounted in the exhaust duct; and a partial recirculation loop of low pressure exhaust gas including a controlled recirculation valve, said loop connecting the exhaust pipe, downstream of the particulate filter with the air inlet pipe, upstream of the compressor of overeating. According to this method, the pressure losses experienced by the flow of the exhaust gas and by the air admitted into the engine are determined and a parameter related to the admission of the gases into the engine is regulated by acting on the valve of the engine. recirculation or on the exhaust flap taking into account said pressure losses. Advantageously, the air flow admitted into the engine is regulated by acting solely on the exhaust flap, the recirculation valve being kept in the open position, the position of the exhaust flap being determined from the pressure drop which results. Alternatively, the flow rate of air admitted into the engine is regulated by acting solely on the recirculation valve, the exhaust flap being held in the open position, the position of the recirculation valve being determined from the pressure drop which in results. The invention will be better understood from the study of an embodiment described by way of non-limiting example, and illustrated by the accompanying drawings in which: - Figure 1 shows the main elements of an internal combustion engine of supercharged diesel type according to the invention; FIG. 2 illustrates the main components of an air flow control system; and FIG. 3 illustrates a practical embodiment of a set separation device according to the invention. As illustrated in FIG. 1, a combustion engine 1, for example a Diesel type engine, comprises four cylinders 2. The fresh air admitted into the engine 1 passes through an air filter 3 before being conveyed. by an air supply line 4 which comprises a flowmeter 5, at the inlet of a compressor 6, which is part of a turbocharger 7 comprising the compressor 6 and a turbine 8 mounted on the same mechanical shaft 9, the compressor 6 is thus rotated by the turbine 8. The exhaust gases from the combustion in the engine 1, taken up by the exhaust manifold 10, are fed through a pipe 10a to the inlet of the turbine 8 where they give up some of their energy in order to drive the compressor 6 in rotation. At the outlet of the turbine 8, the exhaust gases flowing in the exhaust pipe 11 pass firstly through a filter. particles 12, then a silent device 13, before being rejected to the atmo sphere. A controlled exhaust flap 14 is mounted in the exhaust pipe 11 upstream of the silencer 13. Of course it will be understood that other exhaust gas treatment devices could also be mounted in the exhaust line, for example an oxidation catalyst or the like. A partial recirculation loop of the low-pressure exhaust gas referenced 15 includes a controlled recirculation valve 16 called EGR valve and connects the exhaust pipe 11 to the air inlet pipe 4 upstream of the compressor 6. tapping of the recirculation loop 15 on the exhaust pipe 11 is disposed upstream of the exhaust flap 14. In this way, a portion of the exhaust gas having already passed through the expansion turbine 8 and the particulate filter 12 is taken up by the recirculation loop 15 to be mixed with the intake air in line 4, the mixture being compressed by the compressor 6. The compressed mixture whose temperature has been raised due to the compression is brought by the pipe 17 to a heat exchanger 18, which allows the cooling of the mixture before admission into the engine 1 through the intake pipe 19 and the intake manifold 19a. A controlled intake flap 20 is further mounted in the intake duct 19 downstream of the exchanger 18.

Une unité électronique de commande (ECU) référencée 21 sur la figure 1, reçoit différentes informations sur le fonctionnement du moteur et des organes qui lui sont associés et permet le calcul de différents signaux pour des actionneurs nécessaires au contrôle du moteur. An electronic control unit (ECU) referenced 21 in Figure 1, receives various information on the operation of the engine and associated bodies and allows the calculation of different signals for actuators necessary for the control of the engine.

La régulation du débit d'air admis dans le moteur 1 se fait en agissant à la fois sur la position de la vanne EGR 16 et sur la position du volet d'échappement 14. A cet effet, l'unité électronique de commande 21 comprend un régulateur 26 ou régulateur d'air qui reçoit sur son entrée l'écart entre une valeur de consigne de débit d'air Qair_cons et la valeur du débit d'air Qair telle que mesurée par le débitmètre 5 et amenée à l'unité électronique de commande 21 par la connexion 27. Le signal de sortie du régulateur d'air 26 représente le débit QEGR BP des gaz d'échappement dans la boucle de recirculation à basse pression 15. On notera que la régulation peut également être faite sur le débit des gaz d'échappement recyclés Qegr ou sur le taux des gaz d'échappement recyclés (Tegr), ces différentes grandeurs étant reliées entre elles par les relations : = Qegr egr Qegr + Qair Qegr 1 ~ r Qair = Qmot ù Qair egr où Qä2ot est le débit des gaz admis dans le moteur 1. The regulation of the air flow admitted into the engine 1 is done by acting on both the position of the EGR valve 16 and on the position of the exhaust flap 14. For this purpose, the electronic control unit 21 comprises a regulator 26 or air regulator which receives on its input the difference between an air flow setpoint value Qair_cons and the airflow value Qair as measured by the flowmeter 5 and fed to the electronic unit The output signal of the air regulator 26 represents the flow rate QEGR LP of the exhaust gases in the low-pressure recirculation loop 15. It will be noted that the regulation can also be made on the flow rate. recycled exhaust gas Qegr or the recycled exhaust gas rate (Tegr), these different quantities being connected to each other by the relations: = Qegr Qegr Qair Qair Qair Qair Qair qqqqq Qair is the flow of gases admitted da ns the engine 1.

30 L'unité électronique de commande 21 comprend également un bloc de séparation de consigne 28 qui reçoit le signal de sortie QBP du25 régulateur d'air 26 et qui est capable de déterminer des valeurs de consigne de position, respectivement pour la vanne EGR 16 et pour le volet d'échappement 14. La valeur de consigne pour la vanne EGR 16 est transmise à la vanne 16 par la connexion 29. La valeur de consigne pour le volet d'échappement 14 est transmise au volet 14 par la connexion 30. On a également illustré sur la figure 1 une connexion 20a qui permet à l'unité électronique de commande 21 de transmettre une valeur de consigne de position au volet d'admission 20. The electronic control unit 21 also comprises a setpoint separation block 28 which receives the output signal QBP from the air regulator 26 and which is capable of determining position setpoints, respectively for the EGR valve 16 and for the exhaust flap 14. The set point for the EGR valve 16 is transmitted to the valve 16 via the connection 29. The set value for the exhaust flap 14 is transmitted to the flap 14 via the connection 30. a connection 20a is also illustrated in FIG. 1 which enables the electronic control unit 21 to transmit a position reference value to the admission flap 20.

La figure 2 illustre de manière plus précise un mode de réalisation du régulateur d'air 26. Dans l'exemple illustré, le régulateur 26 est un régulateur de type proportionnel intégral. Le signal d'entrée qui correspond à l'écart entre le débit d'air mesuré Qair et la valeur de consigne Qair cops, est amené à l'entrée du bloc proportionnel 29 qui présente un gain Kp ainsi qu'à l'entrée du bloc intégral 30 qui présente un gain K. I1 est également possible, comme représenté dans l'exemple de la figure 2, de prévoir un pré-positionnement du signal de consigne de façon à accélérer la réponse de la régulation. A cet effet, la valeur de consigne Qair cops est amenée à un bloc de pré-positionnement 31, qui reçoit également une estimation du débit Qmot des gaz admis dans le moteur et qui est capable d'émettre un signal de pré-positionnement amené par la connexion 32 sur un additionneur 33 qui reçoit également les signaux de sortie respectifs de la branche proportionnelle et de la branche intégrale du régulateur 26. Le signal de sortie QEGR BP est amené comme il a été dit précédemment, sur le dispositif de séparation de consigne 28. La séparation de consigne se fait à partir du calcul des pertes de charge dans le circuit de recirculation partielle des gaz d'échappement à basse pression, comme illustré sur la figure 3 à titre d'exemple. Si l'on considère l'ensemble de la boucle de recirculation 15, on note que la pression atmosphérique se trouve à la fois en amont du filtre à air 3 et en aval du silencieux 13. On peut donc écrire l'équation : (Patmo ùPamont volet ) + (Pamont volet ù Paval FaA )+ (Paval FaA ù Patmo o (1) Figure 2 illustrates more precisely one embodiment of the air regulator 26. In the example shown, the regulator 26 is a proportional integral type regulator. The input signal which corresponds to the difference between the measured airflow Qair and the setpoint Qaircop is brought to the input of the proportional block 29 which has a gain Kp and to the input of integral block 30 which has a gain K. It is also possible, as shown in the example of Figure 2, to provide a pre-positioning of the reference signal so as to accelerate the response of the control. For this purpose, the setpoint value Qair cops is fed to a pre-positioning block 31, which also receives an estimate of the flow Qmot of the gases admitted into the engine and which is capable of emitting a pre-positioning signal brought by the connection 32 on an adder 33 which also receives the respective output signals of the proportional branch and the integral branch of the regulator 26. The output signal QEGR BP is fed, as has been said previously, to the setpoint separation device 28. The setpoint separation is made from the calculation of pressure losses in the partial recirculation circuit of the low pressure exhaust gas, as illustrated in Figure 3 by way of example. If we consider the whole of the recirculation loop 15, we note that the atmospheric pressure is both upstream of the air filter 3 and downstream of the silencer 13. We can therefore write the equation: (Patmo Pamont flap) + (Pamont flap to Paval FaA) + (Paval FaA to Patmo o (1)

où Patmo est la pression atmosphérique, mesurée par un capteur non représenté sur les figures, Pavai FaA est la pression en aval du filtre à air 3, et Pamont volet est la pression en amont du volet d'échappement 14. Les pertes de charge subies par les gaz d'échappement lors de la traversée du volet d'échappement 14 et du dispositif silencieux 13, dépendent du débit d'air de consigne et du débit de carburant injecté dans le moteur. La valeur de ces pertes de charge est : where Patmo is the atmospheric pressure, measured by a sensor not shown in the figures, Pavai FaA is the pressure downstream of the air filter 3, and Pamont flap is the pressure upstream of the exhaust flap 14. The pressure losses incurred by the exhaust gas during the passage of the exhaust flap 14 and the silencer 13, depend on the set air flow rate and the fuel flow injected into the engine. The value of these pressure drops is:

°volet = Patmo ù Pamont volet De la même manière, on peut définir la perte de charge subie par les gaz d'échappement dans la boucle de recirculation 15, qui dépend du débit QEGR BP des gaz d'échappement dans ladite boucle de recirculation à basse pression. Cette perte de charge est : In the same manner, it is possible to define the pressure drop experienced by the exhaust gases in the recirculation loop 15, which depends on the flow rate QEGR BP of the exhaust gases in the said recirculation loop. low pressure. This loss of load is:

dPBP Paval FaA ùPamont volet dPBP Paval FaA ùPamont component

Enfin, les pertes de charge subies par l'air traversant le filtre à air, qui dépendent du débit d'air de consigne peuvent s'écrire : Finally, the pressure drops experienced by the air passing through the air filter, which depend on the set air flow, can be written as:

dPFaA = Pavai FaA ùPatmo dPFaA = Pavai FaA ùPatmo

On peut donc écrire en tenant compte de l'équation (1), We can therefore write taking into account equation (1),

dP olet ù dPBP + dPFaA = 0 (2) 30 ce qui permet d'indiquer qu'à chaque instant, on a : dP olet ù dPBP + dPFaA = 0 (2) 30 which indicates that at each moment, we have:

dP olet + dPFaA = dPBP (3) 25 Pour déterminer quel actionneur utiliser pour la régulation, c'est-à-dire soit la vanne EGR 16, soit le volet d'échappement 14, le bloc de séparation de consigne 28 tient compte de la valeur de la perte de charge estimée dans la boucle de recirculation à basse pression, lorsque la vanne EGR 16 est ouverte, et pour un débit de gaz d'échappement recyclés QEGR BP égal à la valeur de consigne du débit des gaz d'échappement recyclés (dits EGR). Cette valeur estimée de perte de charge est notée dPBp ouvert. Comme on peut le voir dans le mode de réalisation du bloc de séparation 28, illustré à titre d'exemple sur la figure 3, un bloc de comparaison 34 reçoit sur l'une de ses entrées la valeur de cette perte de charge estimée dPBp ouvert et sur son autre entrée, la somme des pertes de charge du filtre à air dPFaA et du volet d'échappement dPvolet ouvert, cette somme étant calculée dans un sommateur 34a qui reçoit les mesures effectuées respectivement par les capteurs 23 et 25. La perte de charge dPvoret ouvert est la perte de charge provoquée par le volet d'échappement 14 en position ouverte. Le signal de sortie du comparateur 34 est amené à un bloc décisionnel 35 qui peut alors émettre un signal d'activation à l'un des blocs de commande 36a ou 36b. Lorsque le bloc de commande 36a est activé, la consigne de position de la vanne EGR 16 émise sur la connexion de sortie 37a maintient la vanne EGR en position ouverte. La connexion de sortie 38a transmet un signal qui déclenche un calcul dans le bloc 39, pour la détermination de la valeur de consigne de position du volet d'échappement 14. Cette valeur de consigne de position peut être obtenue par exemple en modélisant la perte de charge subie par l'écoulement des gaz qui traverse le volet d'échappement 14, c'est-à-dire au moyen d'une cartographie mémorisée dans l'unité électronique de commande 21, de la valeur du coefficient de perte de charge en fonction de la position du volet d'échappement 14. On a en effet la relation : dP olet + dPFaA = dPBP (3) To determine which actuator to use for regulation, i.e. either the EGR valve 16 or the exhaust flap 14, the reference separation block 28 takes into account the value of the estimated pressure drop in the low-pressure recirculation loop, when the EGR valve 16 is open, and for a recycled exhaust gas flow QEGR BP equal to the set-point value of the exhaust gas flow rate recycled (called EGR). This estimated value of pressure loss is noted open dPBp. As can be seen in the embodiment of the separation block 28, illustrated by way of example in FIG. 3, a comparison block 34 receives on one of its inputs the value of this estimated pressure drop dPBp open. and on its other input, the sum of the pressure losses of the air filter dPFaA and the open exhaust flap, this sum being calculated in an adder 34a which receives the measurements made respectively by the sensors 23 and 25. The loss of open pore charge is the pressure drop caused by the exhaust flap 14 in the open position. The output signal of the comparator 34 is brought to a decision block 35 which can then transmit an activation signal to one of the control blocks 36a or 36b. When the control block 36a is activated, the position setpoint of the EGR valve 16 emitted on the output connection 37a keeps the EGR valve in the open position. The output connection 38a transmits a signal which triggers a calculation in the block 39, for the determination of the position reference value of the exhaust flap 14. This position reference value can be obtained for example by modeling the loss of charge undergone by the flow of gas through the exhaust flap 14, that is to say by means of a map stored in the electronic control unit 21, the value of the pressure drop coefficient in function of the position of the exhaust flap 14. There is indeed the relation:

dPvolet kvolet Y.volet cons (4) où : dvvolet kvolet Y.volet cons (4) where:

Qvoiet cons = Qmot_cons ùQEGR BP+Qin) où Qvoiet cons est la valeur de consigne du débit traversant le volet d'échappement, Qtnj est le débit de carburant injecté dans le moteur et Qmot cons est la valeur de consigne du débit des gaz admis dans le moteur. En effet, le débit traversant le volet d'échappement 14 est égal au débit des gaz issus du moteur moins le débit des gaz recyclés dans la boucle de recirculation partielle 15. Le coefficient de perte de charge kvoiet est fonction de la position du volet d'échappement. I1 est donc possible, à l'inverse de définir une fonction donnant la position du volet d'échappement en fonction du coefficient de perte de charge. Qvoiet cons = Qmot_cons ùQEGR BP + Qin) where Qvoiet cons is the setpoint value of the flow through the exhaust flap, Qtnj is the fuel flow injected into the engine and Qmot cons is the setpoint of the flow of the gases admitted into the exhaust flap engine. Indeed, the flow rate through the exhaust flap 14 is equal to the flow rate of the gases from the engine less the flow rate of the recycled gases in the partial recirculation loop 15. The pressure drop coefficient kvoiet is a function of the position of the flap d 'exhaust. It is therefore possible, unlike to define a function giving the position of the exhaust flap as a function of the pressure drop coefficient.

En tenant compte de l'équation précédente, on peut calculer le coefficient de perte de charge kvoiet par l'équation : Taking into account the previous equation, one can calculate the coefficient of loss of load kvoiet by the equation:

kvoiet = dPvoiet / Qvoiet cons soit : kvoiet dPvoiet I(Qmotcons +Qinj ùQEGRBP ) Lorsque le bloc 36b est au contraire activé, un signal de consigne de position pour le volet d'échappement 14 est donné par la connexion 38b, afin de maintenir le volet 14 en position ouverte. Sur la connexion de sortie 37b au contraire, un signal déclenche un calcul dans le bloc de calcul 40 pour déterminer la valeur de consigne de position pour la vanne EGR 16. Le calcul se fait de la même manière que précédemment dans le bloc de calcul 39, à partir d'une modélisation de la perte de charge à travers la vanne de recirculation 16. On a en effet : dPBP kvanne QEGR BP Comme précédemment, le coefficient de perte de charge à travers la vanne de recirculation EGR 16, noté kvanne, dépend de la position de la vanne, de sorte qu'en inversant la fonction, il est 13 possible de déterminer la position de la vanne correspondant à un coefficient de perte de charge déterminé. Une cartographie mémorisée dans l'unité électronique de commande permet de fournir les valeurs du coefficient de perte de charge en fonction de la position de la vanne. En fonction du résultat de la comparaison effectuée par le comparateur 34, deux situations sont alors possibles. Dans une première situation, la perte de charge estimée de la boucle de recirculation à basse pression 15 lorsque la vanne EGR est ouverte, est supérieure à la somme des pertes de charge subies à travers, respectivement, le filtre à air et le volet d'échappement à l'état ouvert. On a donc : kvoiet = dPvoiet / Qvoiet cons is: kvoiet dvvoiet I (Qmotcons + Qinj ùQEGRBP) When the block 36b is activated instead, a position set signal for the exhaust flap 14 is given by the connection 38b, in order to maintain the flap 14 in the open position. On the output connection 37b, on the contrary, a signal triggers a calculation in the calculation block 40 to determine the position reference value for the EGR valve 16. The calculation is done in the same way as previously in the calculation block. , based on a modeling of the pressure drop across the recirculation valve 16. In fact: dPBP kvanne QEGR BP As previously, the coefficient of pressure drop across the recirculation valve EGR 16, denoted kvanne, depends on the position of the valve, so that by reversing the function, it is possible to determine the position of the valve corresponding to a determined coefficient of pressure loss. A map memorized in the electronic control unit makes it possible to provide the values of the pressure drop coefficient as a function of the position of the valve. Depending on the result of the comparison made by the comparator 34, two situations are then possible. In a first situation, the estimated pressure drop of the low-pressure recirculation loop 15 when the EGR valve is open is greater than the sum of the pressure losses experienced through, respectively, the air filter and the shutter. exhaust in the open state. So we have :

dPBP ouvert > dPF + dPvolet ouvert Dans cette situation, le bloc décisionnel 35 émet un signal de façon à activer le bloc de calcul 39. La vanne EGR 16 est maintenue grande ouverte et la consigne de position du volet d'échappement 14 est déterminée en fonction de la perte de charge : 20 dl volet ouvert = dPBP ouvert ù dPFaA Dans une deuxième situation au contraire, la perte de charge estimée dans la boucle de recirculation EGR pour une position ouverte de la vanne EGR est inférieure à la somme des pertes de charge subies 25 à travers le filtre à air et le volet d'échappement ouvert, on a : In this situation, the decision block 35 emits a signal so as to activate the calculation block 39. The EGR valve 16 is kept wide open and the position of the position of the exhaust flap 14 is determined in FIG. function of the pressure drop: 20 dl open flap = dPBP open ù dPFaA In a second situation on the contrary, the estimated pressure drop in the EGR recirculation loop for an open position of the EGR valve is less than the sum of the losses of load undergone 25 through the air filter and the open exhaust flap, we have:

dPBP ouvert < dPF + dPvolet ouvert Le bloc décisionnel 35 active le bloc de calcul 40, de sorte que le volet d'échappement 14 est maintenu en position grande ouverte et 30 la position de la vanne EGR 16 est déterminée en fonction de la perte de charge dans la boucle de recirculation basse pression selon la formule :15 dPBP = dPFaA + dPvolet ouvert où dPvolet ouvert est la perte de charge estimée de l'ensemble constitué par le volet d'échappement 14 et le silencieux 13 lorsque le volet d'échappement est maintenu en position ouverte, pour un débit traversant le volet d'échappement égal au débit d'air de consigne augmenté du débit de carburant injecté dans le moteur. Toutes les pertes de charge mentionnées ci-dessus sont estimées à partir des valeurs de consigne de débit des gaz d'échappement recyclés QEGR BP et du débit des gaz admis dans le moteur Qmot cons. Grâce à cette architecture de régulation utilisant une modélisation physique par estimation des pertes de charge dans la boucle de recirculation partielle des gaz d'échappement à basse pression, il est possible de linéariser le système contrôlé par le régulateur d'air, ce qui améliore les performances de la régulation. On notera que la même structure de commande peut être utilisée dans le cas où deux circuits de recirculation des gaz d'échappement sont prévus. Dans ce cas, la boucle de recirculation à basse pression mentionnée précédemment est associée à une deuxième boucle de recirculation partielle des gaz d'échappement, cette fois à haute pression, reliant le collecteur d'échappement directement à la conduite d'admission. Dans ce cas, on pourra modifier la valeur de pré-positionnement de la régulation tel qu'illustré sur la figure 2, en prenant en compte également l'estimation du débit des gaz d'échappement recyclés à haute pression selon la relation : dPBP open <dPF + open gun The decision block 35 activates the calculation block 40, so that the exhaust flap 14 is kept in the wide open position and the position of the EGR valve 16 is determined according to the loss of charge in the low-pressure recirculation loop according to the formula: dPBP = dPFaA + dPVole open where dPVolet open is the estimated pressure drop of the assembly formed by the exhaust flap 14 and the silencer 13 when the exhaust flap is maintained in the open position, for a flow rate through the exhaust flap equal to the set air flow rate increased fuel flow injected into the engine. All of the pressure losses mentioned above are estimated from the recycled flow rate reference values QEGR BP and the flow rate of gases admitted into the engine Qmot cons. Thanks to this control architecture using physical modeling by estimating the pressure losses in the partial recirculation loop of the low-pressure exhaust gas, it is possible to linearize the system controlled by the air regulator, which improves the performance of regulation. It should be noted that the same control structure can be used in the case where two exhaust gas recirculation circuits are provided. In this case, the low pressure recirculation loop mentioned above is associated with a second partial exhaust gas recirculation loop, this time at high pressure, connecting the exhaust manifold directly to the intake pipe. In this case, it will be possible to modify the pre-positioning value of the regulation as illustrated in FIG. 2, taking also into account the estimation of the flow rate of the recycled exhaust gases at high pressure according to the relation:

Qmot = Qair + QEGR BP + QEGR HP où QEGR BP est le débit des gaz d'échappement recyclés à basse pression dans la boucle 15, et où QEGR HP est le débit des gaz d'échappement recyclés à haute pression. Qmot = Qair + QEGR BP + QEGR HP where QEGR BP is the flow of the exhaust gases recycled at low pressure in the loop 15, and where QEGR HP is the flow rate of the exhaust gases recycled at high pressure.

Le débit des gaz d'échappement recyclés à haute pression peut être estimé en utilisant la formule de Barré Saint Venant, selon la formule : /~ Pavt LEGRHP Seff .BSV JR.T vt OÙ Seff est la section de passage de la vanne de commande EGR de la boucle de recirculation à haute pression, Pavt est la pression en amont de la turbine 8, qui est également 10 la pression à l'entrée de la vanne EGR haute pression. Tavt est la température en amont de la turbine qui est également la température à l'entrée de la vanne EGR à haute pression, Peol est la pression dans le collecteur d'admission relié à la conduite d'admission.The flow rate of the recycled exhaust gases at high pressure can be estimated using the Barré Saint Venant formula, according to the formula: / ~ Pavt LEGRHP Seff .BSV JR.T vt Where Seff is the passage section of the control valve EGR of the high pressure recirculation loop, Pavt is the pressure upstream of the turbine 8, which is also the pressure at the inlet of the high pressure EGR valve. Tavt is the temperature upstream of the turbine which is also the temperature at the inlet of the high pressure EGR valve, Peol is the pressure in the intake manifold connected to the intake pipe.

15 La fonction BSV, qui regroupe plusieurs termes de la formule de Barré Saint Venant est une fonction qui varie en fonction du rapport de pression en aval et en amont de la vanne EGR à haute pression. The BSV function, which groups together several terms of the Barré Saint Venant formula, is a function that varies according to the pressure ratio downstream and upstream of the high pressure EGR valve.

Claims (8)

REVENDICATIONS1. Moteur à combustion interne du type Diesel suralimenté comprenant : un filtre à particules (12) et un volet d'échappement commandé (14), montés dans la conduite d'échappement ; une boucle de recirculation partielle des gaz d'échappement à basse pression (15) incluant une vanne de recirculation commandée (16), ladite boucle reliant la conduite d'échappement (11), en aval du filtre à particules avec la conduite d'arrivée d'air (4), en amont du compresseur de suralimentation (6) ; et une unité électronique de commande (21) capable de recevoir des valeurs de paramètres de fonctionnement du moteur et de commander différents organes du moteur ; caractérisé par le fait que l'unité électronique de commande est capable de déterminer les pertes de charge subies par l'écoulement des gaz d'échappement et par l'air admis dans le moteur, l'unité électronique de commande comprenant des moyens pour calculer des valeurs de consigne de position de la vanne de recirculation (16) ou du volet d'échappement (14) à partir de valeurs de consigne du débit d'air admis dans le moteur, en fonction desdites pertes de charge. REVENDICATIONS1. A supercharged diesel type internal combustion engine comprising: a particulate filter (12) and a controlled exhaust flap (14) mounted in the exhaust duct; a low pressure partial exhaust gas recirculation loop (15) including a controlled recirculation valve (16), said loop connecting the exhaust pipe (11), downstream of the particulate filter with the inlet pipe air (4) upstream of the supercharger (6); and an electronic control unit (21) capable of receiving engine operating parameter values and controlling different engine components; characterized in that the electronic control unit is capable of determining the pressure losses experienced by the flow of exhaust gases and by the air admitted into the engine, the electronic control unit comprising means for calculating setpoint values of the position of the recirculation valve (16) or the exhaust flap (14) from setpoints of the air flow rate admitted to the engine, as a function of said pressure drops. 2. Moteur selon la revendication 1 dans lequel l'unité électronique de commande comprend des moyens (34) pour comparer une valeur estimée de la perte de charge subie par l'écoulement des gaz d'échappement dans la boucle de recirculation lorsque la vanne de recirculation ou le volet d'échappement sont en position complètement ouverte, avec la somme des pertes de charge subies par l'écoulement d'air dans la conduite d'arrivée d'air et par l'écoulement des gaz dans la conduite d'échappement, ces pertes de charge étant estimées à partir des valeurs de consigne du débit d'air. 2. Motor according to claim 1 wherein the electronic control unit comprises means (34) for comparing an estimated value of the pressure drop experienced by the flow of exhaust gas in the recirculation loop when the valve of recirculation or the exhaust flap are in the fully open position, with the sum of the pressure drops experienced by the air flow in the air supply line and by the flow of gases in the exhaust pipe these pressure losses being estimated from the air flow setpoint values. 3. Moteur selon la revendication 2 dans lequel l'unité électronique de commande comprend des moyens (35, 39, 40) pour déduire de la comparaison effectuée, une valeur de consigne de position de la vanne de recirculation ou du volet d'échappement qui ne se trouve pas en position ouverte. 3. Motor according to claim 2 wherein the electronic control unit comprises means (35, 39, 40) for deriving from the comparison performed, a set position value of the recirculation valve or the exhaust flap which is not in the open position. 4. Moteur selon la revendication 3 dans lequel l'unité électronique de commande comprend des moyens de modélisation de la perte de charge sous la forme de cartographies mémorisées des coefficients de perte de charge en fonction de la position de la vanne de recirculation et du volet d'échappement. 4. Motor according to claim 3 wherein the electronic control unit comprises means for modeling the pressure drop in the form of stored maps of the pressure drop coefficients as a function of the position of the recirculation valve and the flap. exhaust. 5. Moteur selon l'une des revendications précédentes comprenant en outre une boucle de recirculation partielle des gaz d'échappement à haute pression incluant une vanne de recirculation haute pression commandée, l'unité électronique de commande comprenant des moyens pour calculer des valeurs de consigne de position de la vanne de recirculation haute pression. 5. Motor according to one of the preceding claims further comprising a partial recirculation loop of the high pressure exhaust gas including a controlled high pressure recirculation valve, the electronic control unit comprising means for calculating setpoint values. position of the high pressure recirculation valve. 6. Procédé de commande du débit d'air dans un moteur à combustion interne du type Diesel suralimenté comprenant : un filtre à particules (12) et un volet d'échappement commandé (14), montés dans la conduite d'échappement ; une boucle de recirculation partielle des gaz d'échappement à basse pression (15) incluant une vanne de recirculation commandée (16), ladite boucle reliant la conduite d'échappement, en aval du filtre à particules avec la conduite d'arrivée d'air, en amont du compresseur de suralimentation ; caractérisé par le fait qu'on détermine les pertes de charge subies par l'écoulement des gaz d'échappement et par l'air admis dans le moteur et on régule un paramètre lié à l'admission des gaz dans le moteur en agissant sur la vanne de recirculation ou sur le volet d'échappement en tenant compte desdites pertes de charge. A method of controlling air flow in a supercharged diesel type internal combustion engine comprising: a particulate filter (12) and a controlled exhaust flap (14) mounted in the exhaust duct; a low pressure partial exhaust gas recirculation loop (15) including a controlled recirculation valve (16), said loop connecting the exhaust pipe, downstream of the particulate filter with the air supply line upstream of the supercharger; characterized by the fact that the pressure losses experienced by the exhaust gas flow and by the air admitted into the engine are determined and a parameter related to the admission of the gases into the engine is regulated by acting on the recirculation valve or on the exhaust flap taking into account said pressure drops. 7. Procédé selon la revendication 6 dans lequel on régule le débit d'air admis dans le moteur en agissant uniquement sur le volet d'échappement, la vanne de recirculation étant maintenue en position ouverte, la position du volet d'échappement étant déterminée à partir de la perte de charge qui en résulte. 7. The method of claim 6 wherein regulates the flow of air admitted into the engine by acting solely on the exhaust flap, the recirculation valve being held in the open position, the position of the exhaust flap being determined to from the resulting loss of load. 8. Procédé selon la revendication 6 dans lequel on régule le débit d'air admis dans le moteur en agissant uniquement sur la vanne de recirculation, le volet d'échappement étant maintenu en position ouverte la position de la vanne de recirculation étant déterminée à partir de la perte de charge qui en résulte. 8. The method of claim 6 wherein regulates the flow of air admitted into the engine by acting only on the recirculation valve, the exhaust flap being held in the open position the position of the recirculation valve being determined from the resulting pressure drop.
FR0950850A 2009-02-11 2009-02-11 SUPERSIFIED DIESEL TYPE INTERNAL COMBUSTION ENGINE AND METHOD OF CONTROLLING AIR FLOW IN SUCH A MOTOR Expired - Fee Related FR2942003B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FR0950850A FR2942003B1 (en) 2009-02-11 2009-02-11 SUPERSIFIED DIESEL TYPE INTERNAL COMBUSTION ENGINE AND METHOD OF CONTROLLING AIR FLOW IN SUCH A MOTOR
RU2011137422/07A RU2011137422A (en) 2009-02-11 2009-12-16 INTERNAL COMBUSTION ENGINE TYPE OF DIESEL ENGINE WITH SUPPLY AND METHOD OF CONTROL AIR FLOW IN SUCH ENGINE
JP2011548737A JP2012517551A (en) 2009-02-11 2009-12-16 Supercharged diesel internal combustion engine and method for controlling the air flow in such an engine
CN2009801565355A CN102317602A (en) 2009-02-11 2009-12-16 Supercharged diesel internal combustion engine, and method for controlling the airflow in such an engine
PCT/FR2009/052555 WO2010092245A1 (en) 2009-02-11 2009-12-16 Supercharged diesel internal combustion engine, and method for controlling the airflow in such an engine
EP09803868A EP2396529A1 (en) 2009-02-11 2009-12-16 Supercharged diesel internal combustion engine, and method for controlling the airflow in such an engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0950850A FR2942003B1 (en) 2009-02-11 2009-02-11 SUPERSIFIED DIESEL TYPE INTERNAL COMBUSTION ENGINE AND METHOD OF CONTROLLING AIR FLOW IN SUCH A MOTOR

Publications (2)

Publication Number Publication Date
FR2942003A1 true FR2942003A1 (en) 2010-08-13
FR2942003B1 FR2942003B1 (en) 2011-04-15

Family

ID=40751078

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0950850A Expired - Fee Related FR2942003B1 (en) 2009-02-11 2009-02-11 SUPERSIFIED DIESEL TYPE INTERNAL COMBUSTION ENGINE AND METHOD OF CONTROLLING AIR FLOW IN SUCH A MOTOR

Country Status (6)

Country Link
EP (1) EP2396529A1 (en)
JP (1) JP2012517551A (en)
CN (1) CN102317602A (en)
FR (1) FR2942003B1 (en)
RU (1) RU2011137422A (en)
WO (1) WO2010092245A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093176A1 (en) * 2013-12-20 2015-06-25 Toyota Jidosha Kabushiki Kaisha Egr system for supercharging engine
WO2015128057A1 (en) * 2014-02-27 2015-09-03 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011081949B4 (en) * 2011-09-01 2021-06-10 Robert Bosch Gmbh Method and device for implementing a control, in particular for use in a motor vehicle
US9239020B2 (en) * 2012-10-16 2016-01-19 Ford Global Technologies, Llc Condensate accumulation model for an engine heat exchanger
US9279375B2 (en) * 2013-06-05 2016-03-08 Ford Global Technologies, Llc System and method for controlling an engine that includes low pressure EGR
CN103982334B (en) * 2013-09-03 2016-08-24 江苏大学 The adjustable gas recirculation system in loop
CN104879199B (en) * 2015-06-11 2018-03-09 上海工程技术大学 A kind of self-con-tained unit for realizing motor-vehicle tail-gas Multi-class propagation
DE102017202435A1 (en) * 2017-02-15 2018-08-16 Robert Bosch Gmbh Method and control device for controlling the opening state of an exhaust flap of an internal combustion engine
US10823120B2 (en) 2018-11-16 2020-11-03 Fca Us Llc Spark ignited engine load extension with low pressure exhaust gas recirculation and delta pressure valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010029935A1 (en) * 2000-01-05 2001-10-18 Misonix, Incorporated Diesel engine exhaust gas recirculation (EGR) system and method
WO2007066033A2 (en) * 2005-12-08 2007-06-14 Renault S.A.S. Method for controlling an engine provided with an exhaust gas recycling loop
EP1808591A2 (en) * 2006-01-11 2007-07-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation control apparatus for internal combustion engine and control method of the same
US20070246028A1 (en) * 2006-04-25 2007-10-25 Denso Corporation Exhaust recirculation apparatus for engine and method for controlling the same
DE102006054043A1 (en) * 2006-11-16 2008-05-21 Volkswagen Ag Internal combustion engine with exhaust gas recirculation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5806308A (en) 1997-07-07 1998-09-15 Southwest Research Institute Exhaust gas recirculation system for simultaneously reducing NOx and particulate matter
US6742335B2 (en) 2002-07-11 2004-06-01 Clean Air Power, Inc. EGR control system and method for an internal combustion engine
US7131271B2 (en) 2003-08-28 2006-11-07 International Engine Intellectual Property Company, Llc Clean, low-pressure EGR in a turbocharged engine by back-pressure control
FR2897898B1 (en) * 2006-02-28 2008-04-18 Renault Sas METHOD AND DEVICE FOR MONITORING THE AIR SUPPLY OF AN INTERNAL COMBUSTION ENGINE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010029935A1 (en) * 2000-01-05 2001-10-18 Misonix, Incorporated Diesel engine exhaust gas recirculation (EGR) system and method
WO2007066033A2 (en) * 2005-12-08 2007-06-14 Renault S.A.S. Method for controlling an engine provided with an exhaust gas recycling loop
EP1808591A2 (en) * 2006-01-11 2007-07-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas recirculation control apparatus for internal combustion engine and control method of the same
US20070246028A1 (en) * 2006-04-25 2007-10-25 Denso Corporation Exhaust recirculation apparatus for engine and method for controlling the same
DE102006054043A1 (en) * 2006-11-16 2008-05-21 Volkswagen Ag Internal combustion engine with exhaust gas recirculation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093176A1 (en) * 2013-12-20 2015-06-25 Toyota Jidosha Kabushiki Kaisha Egr system for supercharging engine
CN105829687A (en) * 2013-12-20 2016-08-03 丰田自动车株式会社 EGR system for supercharging engine
WO2015128057A1 (en) * 2014-02-27 2015-09-03 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine
US10316764B2 (en) 2014-02-27 2019-06-11 Mtu Friedrichshafen Gmbh Method for operating an internal combustion engine

Also Published As

Publication number Publication date
JP2012517551A (en) 2012-08-02
WO2010092245A1 (en) 2010-08-19
FR2942003B1 (en) 2011-04-15
RU2011137422A (en) 2013-03-20
EP2396529A1 (en) 2011-12-21
CN102317602A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
FR2942003A1 (en) SUPERSIFIED DIESEL TYPE INTERNAL COMBUSTION ENGINE AND METHOD OF CONTROLLING AIR FLOW IN SUCH A MOTOR
EP1957777B1 (en) Method for controlling an engine provided with an exhaust gas recycling loop
WO2017068297A1 (en) Method for estimating the flow rate of recirculated exhaust gas passing through a valve
FR2897898A1 (en) Air supercharging controlling method for diesel type internal combustion engine of motor vehicle, involves adjusting pressure in upstream of turbine so that pressure in upstream of turbine exceeds predetermined threshold
FR2902466A1 (en) EXHAUST GAS RECIRCULATION SYSTEM FOR SUPERSIZED DIESEL TYPE COMBUSTION ENGINE AND METHOD OF CONTROLLING SUCH ENGINE
FR2910929A1 (en) Fresh air flow estimating method for i.e. oil engine, involves estimating fresh air flow by calculation considering data such as pressure and temperature in intake manifold and temperature conduit, exhaust manifold and exhaust conduit
EP2361349B1 (en) Method of dynamically estimating the fresh air flow rate supplied to an engine with high-pressure and low-pressure egr circuits
FR2903735A1 (en) Internal combustion engine i.e. supercharged diesel engine, controlling system for motor vehicle, has tilting unit tilting control between high and low pressure loops, and ensuring transitions between controls according to operating point
FR2915239A1 (en) Internal combustion engine i.e. oil engine, exhaust gas recirculation rate, estimating method for motor vehicle, involves calculating exhaust gas recirculation rate of engine according to air flow and temperature in upstream of valves
FR2923544A1 (en) Supercharged diesel internal combustion engine for motor vehicle, has control unit with calculating unit that calculates setpoint position values of valve and flaps from setpoint values of air flow and gas rates in engine
FR2947007A1 (en) System for controlling operation of internal combustion engine i.e. diesel engine, of motor vehicle, has estimation or calculation block for estimating flow rate of intake air in internal combustion engine from calculated results
FR2872220A1 (en) Internal combustion engine e.g. gasoline engine, controlling process for motor vehicle, involves controlling recirculated exhaust gas flow based on end casing pressure, turbine upstream pressure or temperature of gas in upstream of turbine
EP1650420B1 (en) System and method for regulation of the particulate filter regeneration of an internal combustion engine
EP1831523A1 (en) Method and device for controlling a richness 1 diesel engine
JP2008038709A (en) Control device for internal combustion engine
FR2909719A1 (en) Internal combustion engine e.g. oil engine, for motor vehicle, has regulation unit for regulating temperature of recycled gas by proportional action on valves based on set point temperature of recycled exhaust gas
FR2866392A1 (en) Control apparatus for air supply to combustion chamber of Diesel engine supercharged by turbocompressor, based on regulating values of the richness and concentration of nitrogen oxides in the exhaust
FR2856432A1 (en) METHOD FOR CONTROLLING A MOTORIZATION SYSTEM WITH A DIESEL ENGINE AND A NITROGEN OXIDE TRAP
FR2945318A1 (en) SYSTEM AND METHOD FOR CONTROLLING OVER-POWERING OF AN INTERNAL COMBUSTION ENGINE
FR2952407A3 (en) System for adjusting flow of recirculation of exhaust gas adopted to exhaust gas recirculation system of combustion engine of motor vehicle, has regulator connected to controller to adjust flow of recycled exhaust gas
FR2886339A1 (en) Control and command system for i.c. engine with exhaust gas recirculation (EGR) has recirculation pipe equipped with gas flow rate measuring unit
FR2917126A1 (en) Exhaust gas recirculation system diagnosing and controlling system for e.g. diesel engine, has regulation block regulating temperature of recycled gas via non linear action on bypass valve based on set point temperature of exhaust gas
FR3059719B1 (en) METHOD FOR CONTROLLING A SUPERIOR THERMAL MOTOR COMPRISING AN EXHAUST GAS RECIRCULATION CIRCUIT
FR2894291A1 (en) ADAPTIVE METHOD FOR CONTROLLING AN ENGINE
FR2923536A3 (en) Physical operating quantity e.g. air rate, estimating method for internal combustion engine of motor vehicle, involves weighting and/or adjusting calculation models to calculate final estimation of quantity from estimations of models

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20151030