FR2936723A1 - Catalytic reaction chamber, e.g. for steam reforming, includes system, preferably passage reduction tube, in catalytic tube to promote heat exchange between reactants and product gas - Google Patents

Catalytic reaction chamber, e.g. for steam reforming, includes system, preferably passage reduction tube, in catalytic tube to promote heat exchange between reactants and product gas Download PDF

Info

Publication number
FR2936723A1
FR2936723A1 FR0805537A FR0805537A FR2936723A1 FR 2936723 A1 FR2936723 A1 FR 2936723A1 FR 0805537 A FR0805537 A FR 0805537A FR 0805537 A FR0805537 A FR 0805537A FR 2936723 A1 FR2936723 A1 FR 2936723A1
Authority
FR
France
Prior art keywords
tube
catalytic
catalyst
disposed
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0805537A
Other languages
French (fr)
Other versions
FR2936723B1 (en
Inventor
Christophe Boyer
Fabrice Giroudiere
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Priority to FR0805537A priority Critical patent/FR2936723B1/en
Priority to FR0805800A priority patent/FR2936724B1/en
Priority to EP09290692A priority patent/EP2174705A1/en
Priority to BRPI0903930-9A priority patent/BRPI0903930B1/en
Priority to US12/573,376 priority patent/US8133445B2/en
Publication of FR2936723A1 publication Critical patent/FR2936723A1/en
Application granted granted Critical
Publication of FR2936723B1 publication Critical patent/FR2936723B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/0257Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical annular shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0278Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0285Heating or cooling the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0292Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00203Coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00477Controlling the temperature by thermal insulation means
    • B01J2208/00495Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/00849Stationary elements outside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/02Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
    • B01J2208/023Details
    • B01J2208/024Particulate material
    • B01J2208/025Two or more types of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

In a chamber for carrying out a catalytic raction, having a catalytic tube (CT) (10) with an internal product gas evacuation tube (ET) (12), catalyst (13) between the ET and the CT internal surface, reactant and catalyst supplies (15, 16) in the upper part of the chamber and a CT heater in the lower part of the chamber, heat exchange between reactants and product gas is promoted in the upper part of the CT (above the catalyst). A chamber for carrying out a chemical reaction in presence of catalyst comprises at least one catalytic tube (CT) (10) containing an internal product gas evacuation tube (ET) (12) leading to the exterior; catalyst (13) located between the evacuation tube and the CT internal surface; a reactant supply (15) and catalyst supply (16) in the upper part of the chamber; and a CT heater in the lower part of the chamber. The novel feature is that the upper part of the CT (above the catalyst) contains a system promoting heat exchange between the reactants and the product gas. An independent claim is included for a steam reforming process carried out using a reactor-heat exchanger as above.

Description

La présente invention concerne le domaine de la production de gaz de synthèse formé d'un mélange d'hydrogène de monoxyde de carbone, de dioxyde de carbone et d'eau, et plus particulièrement un dispositif de type réacteur-échangeur permettant la production de ce gaz de synthèse par vaporeformage. The present invention relates to the field of production of synthesis gas formed of a mixture of hydrogen of carbon monoxide, carbon dioxide and water, and more particularly a reactor-exchanger type device allowing the production of this type of reactor. synthesis gas by steam reforming.

Le vaporeformage est un procédé de production d'hydrogène en présence de vapeur d'eau et de chaleur. C'est le procédé qui est aujourd'hui le plus utilisé au niveau industriel. Ce procédé a lieu en général dans un réacteur en présence de catalyseur et/ou de brûleurs. L'énergie nécessaire à la réaction endothermique de vaporeformage doit être fournie par transfert thermique au milieu réactionnel catalytique. Le gaz de synthèse doit généralement être produit en pression de façon à permettre sa purification dans des étapes en aval sans avoir à le re-comprimer. Lors de la production d'hydrogène par vaporeformage, le rendement de production d'hydrogène et de conversion de la charge utilisée dépend de l'équilibre thermodynamique de la réaction de vaporeformage qui est directement fonction de la température de sortie du catalyseur. Typiquement, la température permettant de maximiser le rendement varie entre 750°C pour de l'éthanol et 900°C pour du méthane. A ces niveaux de température, les pertes thermiques sont très élevées, il est donc important de les minimiser. Par ailleurs, les réactifs étant en pression et à des températures très élevées, les contraintes sur les matériaux sont très importantes. Il est très difficile voire impossible de faire des entrées ou sorties de réacteur sous pression au-delà de certaines températures. Par exemple l'apport extérieur de fumées très chaudes ne peut se faire par un piquage standard car les fumées sont typiquement au-delà de 1000°C. Une autre contrainte dont il est nécessaire de tenir compte est la tenue des matériaux dans des conditions de forts risques de corrosion (également appelé métal dusting dans la terminologie anglo-saxonne), qui se produit en atmosphère carburante (présence CO, CO2) surtout lorsque les températures sont comprises entre 600°C et 800°C. Steamforming is a process for producing hydrogen in the presence of water vapor and heat. This is the process that is today the most used at the industrial level. This process generally takes place in a reactor in the presence of catalyst and / or burners. The energy required for the endothermic steam reforming reaction must be provided by heat transfer to the catalytic reaction medium. The synthesis gas must generally be produced under pressure so as to allow its purification in downstream stages without having to re-compress it. When producing hydrogen by steam reforming, the hydrogen production and conversion efficiency of the feed used depends on the thermodynamic equilibrium of the steam reforming reaction which is directly a function of the outlet temperature of the catalyst. Typically, the temperature to maximize the yield varies between 750 ° C for ethanol and 900 ° C for methane. At these temperature levels, the heat losses are very high, so it is important to minimize them. Furthermore, the reactants being in pressure and at very high temperatures, the stresses on the materials are very important. It is very difficult or even impossible to make pressurized reactor entries or exits beyond certain temperatures. For example the external supply of very hot fumes can not be done by standard stitching because the fumes are typically above 1000 ° C. Another constraint that must be taken into account is the behavior of the materials under conditions of high risks of corrosion (also called metal dusting in the English terminology), which occurs in a fuel atmosphere (presence CO, CO2) especially when the temperatures are between 600 ° C and 800 ° C.

II est déjà connu des systèmes permettant de tenir compte de certaines de ces contraintes. On peut citer notamment le brevet US 4 861 348 qui propose un réacteur échangeur de type baïonnette pour des réactions catalytiques dans lequel le catalyseur est inséré entre deux tubes concentriques et chauffé par l'écoulement des fumées issues d'un brûleur situé en partie inférieure du réacteur. Un système de conduits périphériques permet de préchauffer l'air de combustion par écoulement à contre-courant avec les fumées du brûleur et d'aménager ainsi des parois froides en périphérie du réacteur. On peut citer également la demande de brevet déposée auprès de l'INPI le 20 juillet 2007 sous le numéro 07/05-316FR qui décrit un réacteur de vaporeformage à tube baïonnette permettant de fonctionner avec des différences de pression de l'ordre de 10 MPa entre le coté tube et le coté calandre. Un inconvénient de ces dispositifs est qu'ils ne comportent pas de système pour préchauffer le gaz à convertir avant la zone réactionnelle et limiter la température de sortie du gaz produite par la réaction. Un autre inconvénient est que le gaz de synthèse est évacué à une température peu compatible avec le design d'un équipement sous pression. Un autre inconvénient est d'évacuer du gaz à des conditions de température pour lesquelles il favorise des phénomènes de corrosions incompatible avec la plupart des aciers inox standard. There are already known systems for taking into account some of these constraints. There may be mentioned in particular US Pat. No. 4,861,348, which proposes a bayonet-type exchanger reactor for catalytic reactions in which the catalyst is inserted between two concentric tubes and heated by the flow of smoke from a burner located in the lower part of the tube. reactor. A system of peripheral ducts makes it possible to preheat the combustion air by countercurrent flow with the burner fumes and thus to create cold walls on the periphery of the reactor. We can also mention the patent application filed with the INPI on July 20, 2007 under the number 07 / 05-316FR which describes a bayonet tube steam reforming reactor to operate with pressure differences of the order of 10 MPa between the tube side and the radiator side. A disadvantage of these devices is that they do not have a system for preheating the gas to be converted before the reaction zone and limiting the outlet temperature of the gas produced by the reaction. Another disadvantage is that the synthesis gas is discharged at a temperature incompatible with the design of a pressure equipment. Another disadvantage is to evacuate gas at temperature conditions for which it promotes corrosions phenomena incompatible with most standard stainless steels.

La présente invention a donc pour objet de palier un ou plusieurs des inconvénients de l'art antérieur en proposant un réacteur-échangeur de vaporeformage permettant d'amener les réactifs et le gaz de synthèse à une température compatible avec le dispositif et limitant ainsi les pertes thermiques, en favorisant l'échange de chaleur entre les réactifs et les gaz produits. The object of the present invention is therefore to overcome one or more of the disadvantages of the prior art by proposing a steam reforming reactor-exchanger making it possible to bring the reagents and the synthesis gas to a temperature compatible with the device and thus limiting the losses. thermal, by promoting the exchange of heat between the reactants and the gases produced.

Pour cela la présente invention propose une enceinte dans laquelle s'effectue une réaction chimique en présence de catalyseur et de réactifs, comportant : au moins un tube catalytique dans lequel est disposé un tube interne d'évacuation du gaz produit, en relation avec l'extérieur, le catalyseur étant disposé entre le tube interne d'évacuation et la surface interne du tube catalytique, des moyens d'introduction des réactifs situés dans la partie supérieure de l'enceinte, - des moyens d'introduction du catalyseur situés dans la partie supérieure de l'enceinte, des moyens de chauffage du tube catalytique disposés dans la partie inférieure de l'enceinte, et dans laquelle le tube catalytique comporte dans sa partie supérieure au dessus du catalyseur des moyens favorisant l'échange de chaleur entre les réactifs et le gaz produit. Dans un mode de réalisation de l'invention les moyens favorisant l'échange de chaleur entre les réactifs et le gaz produit sont constitués d'un tube de réduction de passage disposé contre la surface interne du tube catalytique de façon a laisser un passage pour les réactifs entre le tube de réduction de passage et le tube interne d'évacuation. Selon un mode de réalisation de l'invention l'épaisseur du tube de réduction de passage est définie de façon à ce que la surface de sa paroi interne soit disposée à une distance comprise entre 1 mm et 40 mm de la surface externe du tube interne d'évacuation. Dans un mode de réalisation de l'invention le tube de réduction de passage comporte un canal reliant les moyens d'introduction du catalyseur et la zone du tube catalytique où est disposé le catalyseur. Selon un mode de réalisation de l'invention les moyens de chauffage sont constitués d'une chambre de combustion comportant à sa base un tube injecteur de l'air et d'un gaz inflammable, un interne disposé dans le tube injecteur au niveau de la jonction avec la chambre, un brise-jet disposé dans la chambre au dessus de l'interne, une grille de distribution du mélange air/gaz disposée au dessus du brise-jet, un matériau poreux disposé au dessus de la grille de distribution et une deuxième grille au dessus du matériau poreux pour initier la combustion. Dans un mode de réalisation de l'invention la grille de distribution a une porosité 5 de 30%. Dans un autre mode de réalisation de l'invention le matériau poreux est un monolithe en cordiérite de 400 cpsi. Selon un mode de réalisation de l'invention le tube catalytique est disposé dans un tube supplémentaire, la distance entre la surface externe du tube catalytique et le 10 tube supplémentaire est comprise entre 1 mm et 40 mm. Dans un mode de réalisation de l'invention un matériau de type calorifuge est disposé entre le tube supplémentaire et la paroi de l'enceinte. Selon un mode de réalisation de l'invention l'enceinte a un diamètre compris entre 50 mm et 10 m. 15 L'invention concerne également le procédé de vaporeformage mettant en oeuvre le dispositif décrit ci-dessus en tant que réacteur-échangeur pour réaliser une réaction de vaporeformage. Selon un mode de réalisation de l'invention le gaz de synthèse est évacué à une température inférieure à 600°C. 20 Selon un mode de réalisation de l'invention les réactifs sont préchauffés à une température supérieure à 350°C. D'autres caractéristiques et avantages de l'invention seront mieux compris et apparaîtront plus clairement à la lecture de la description faite, ci-après, en se référant à 25 aux figures annexées et données à titre d'exemple: la figure 1 représente une vue schématique de l'enceinte selon l'invention, la figure 2 représente les résultats d'une simulation numérique de l'écoulement gaz combustible/air dans la chambre de combustion du dispositif selon l'invention 2a) contours de vitesses dans la chambre de combustion 2b) contours de concentration en méthane dans la chambre de combustion. For this purpose, the present invention proposes an enclosure in which a chemical reaction is carried out in the presence of catalyst and reagents, comprising: at least one catalytic tube in which is disposed an internal evacuation tube of the product gas, in connection with the outside, the catalyst being disposed between the inner evacuation tube and the inner surface of the catalytic tube, means for introducing the reagents located in the upper part of the enclosure, - catalyst introduction means located in the part upper chamber, means for heating the catalytic tube disposed in the lower part of the chamber, and wherein the catalytic tube comprises in its upper part above the catalyst means for promoting heat exchange between the reagents and the gas produced. In one embodiment of the invention, the means for promoting the exchange of heat between the reactants and the product gas consist of a passage reduction tube disposed against the inner surface of the catalytic tube so as to leave a passage for them. reagents between the passage reduction tube and the internal evacuation tube. According to one embodiment of the invention the thickness of the passage reduction tube is defined so that the surface of its inner wall is disposed at a distance of between 1 mm and 40 mm from the external surface of the inner tube. discharge. In one embodiment of the invention, the passage reduction tube comprises a channel connecting the means for introducing the catalyst and the zone of the catalytic tube where the catalyst is placed. According to one embodiment of the invention, the heating means consist of a combustion chamber comprising at its base an air injector tube and a flammable gas, an internal disposed in the injector tube at the level of the junction with the chamber, a jetbreaker disposed in the chamber above the internal, a distribution grid of the air / gas mixture disposed above the jet-breaker, a porous material disposed above the distribution grid and a second grid above the porous material to initiate combustion. In one embodiment of the invention the distribution grid has a porosity of 30%. In another embodiment of the invention the porous material is a cordierite monolith of 400 cpsi. According to one embodiment of the invention, the catalytic tube is arranged in an additional tube, the distance between the external surface of the catalytic tube and the additional tube is between 1 mm and 40 mm. In one embodiment of the invention, a heat insulating material is disposed between the additional tube and the wall of the enclosure. According to one embodiment of the invention the enclosure has a diameter of between 50 mm and 10 m. The invention also relates to the steam reforming process using the device described above as reactor-exchanger for carrying out a steam reforming reaction. According to one embodiment of the invention, the synthesis gas is discharged at a temperature below 600 ° C. According to one embodiment of the invention the reactants are preheated to a temperature above 350 ° C. Other features and advantages of the invention will be better understood and will appear more clearly on reading the description given hereinafter with reference to the appended figures given by way of example: FIG. schematic view of the enclosure according to the invention, Figure 2 shows the results of a numerical simulation of the fuel gas / air flow in the combustion chamber of the device according to the invention 2a) velocity contours in the chamber of combustion 2b) methane concentration contours in the combustion chamber.

Le dispositif selon l'invention illustré sur la figure est composé d'une enceinte (1) dans laquelle est inséré, par la partie supérieure, un tube ou plusieurs catalytique (10). Ce tube ou ces tubes peuvent être maintenus à la paroi supérieure de l'enceinte grâce à un système de brides (11), ou tout autre système du même type bien connu de l'homme du métier, pour permettre sont démontage. L'enceinte est en général de forme cylindrique allongée et son diamètre est compris entre 100 mm et 10 m, de préférence entre 300 mm et 2 m. Le diamètre de l'enceinte est déterminé, dans les limites données ci-dessus, en fonction du nombre de tubes catalytiques que l'on souhaite mettre en oeuvre et en fonction de la taille des tubes utilisés. Le ou les tubes catalytiques sont disposés le long de l'axe longitudinal (A) de l'enceinte (1). Le diamètre externe de ces tubes (10) est compris entre 20 mm et 200 mm, de préférence entre 30 mm et 100 mm. Le diamètre interne du tube catalytique est facilement déductible pour l'homme du métier sachant que la distance annulaire de la zone catalytique est comprise entre 5 mm et 40 mm, de préférence entre 8 mm et 50 mm. Ainsi le nombre de tubes catalytiques (10) utilisés varie entre 1 et 40, et de préférence entre 1 et 10. L'intérieur du ou des tubes catalytiques est disposé un tube interne d'évacuation (12) concentrique qui permet d'évacuer le gaz produit par la réaction catalytique. Le diamètre externe de ce tube d'évacuation (12) est compris entre 5 mm et 50 mm, de préférence entre 10 mm et 20 mm. Le diamètre interne de ce tube d'évacuation (12) est compris entre 3 mm et 40 mm, de préférence entre 8 mm et 15 mm. Le catalyseur (13) nécessaire pour la réaction de vaporéformage est disposé dans l'espace annulaire entre la paroi du tube d'évacuation (12) et la paroi du tube catalytique (10). Le tube d'évacuation (12) est utilisé pour évacuer le gaz produit par la réaction, aussi appelé gaz de synthèse, en sortie du lit catalytique. Ce gaz de synthèse chaud circule donc à contre-courant des réactifs, qui sont l'eau et le réactif de type hydrocarbure ou alcool, dans le lit catalytique. The device according to the invention illustrated in the figure is composed of an enclosure (1) in which is inserted, by the upper part, a tube or several catalytic (10). This tube or tubes can be held at the top wall of the enclosure through a system of flanges (11), or any other system of the same type well known to those skilled in the art, to allow disassembly. The enclosure is generally of elongated cylindrical shape and its diameter is between 100 mm and 10 m, preferably between 300 mm and 2 m. The diameter of the chamber is determined, within the limits given above, according to the number of catalytic tubes that one wishes to implement and depending on the size of the tubes used. The catalytic tube or tubes are arranged along the longitudinal axis (A) of the enclosure (1). The outer diameter of these tubes (10) is between 20 mm and 200 mm, preferably between 30 mm and 100 mm. The internal diameter of the catalytic tube is easily deductible for those skilled in the art knowing that the annular distance of the catalytic zone is between 5 mm and 40 mm, preferably between 8 mm and 50 mm. Thus, the number of catalytic tubes (10) used varies between 1 and 40, and preferably between 1 and 10. The interior of the catalytic tube or tubes is arranged a concentric internal discharge tube (12) which makes it possible to evacuate the gas produced by the catalytic reaction. The outer diameter of this discharge tube (12) is between 5 mm and 50 mm, preferably between 10 mm and 20 mm. The internal diameter of this discharge tube (12) is between 3 mm and 40 mm, preferably between 8 mm and 15 mm. The catalyst (13) necessary for the steam reforming reaction is arranged in the annular space between the wall of the evacuation tube (12) and the wall of the catalytic tube (10). The evacuation tube (12) is used to evacuate the gas produced by the reaction, also called synthesis gas, at the outlet of the catalytic bed. This hot synthesis gas circulates countercurrent reactants, which are water and the hydrocarbon-type reagent or alcohol in the catalyst bed.

Ainsi une partie de l'enthalpie nécessaire à la réaction est fournie par le gaz de synthèse qui se refroidi le long du tube d'évacuation (12). Le catalyseur utilisé dans le cadre de l'invention peut être constitué de grains de formes diverses (sphères, cylindres pleins ou usinés..) ou de monolithes dans lesquels sont usinés des canaux de petits diamètres. Les réactifs sont introduits dans le tube catalytique (10) grâce à la conduite (15). Cette conduite peut être disposée orthogonalement à la paroi du tube (10) ou de façon tangentielle pour donner un mouvement de rotation à l'écoulement à l'entrée du tube catalytique (10) et favoriser ainsi la distribution de l'écoulement sur toute la section annulaire où est situé le catalyseur (13). Le dispositif selon l'invention comporte dans sa partie supérieure des moyens de préchauffage des réactifs et de refroidissement du gaz de synthèse produit. Ces moyens permettant un échange de chaleur entre les réactifs et le gaz de synthèse sont formés par un tube de réduction de passage (14) inséré dans la partie supérieure du tube catalytique (10) contre la paroi interne du tube catalytique (10) pour réduire la section de passage de l'écoulement des réactifs. Ce tube de réduction de passage (14) est cylindrique, et en général à une forme équivalente à celle de l'intérieur du tube catalytique (10) de façon à bien adhérer à la paroi interne du tube catalytique (10). Le tube de réduction de passage à une épaisseur définie de façon à ce que sa paroi interne soit disposée à une distance comprise entre 1 mm et 40 mm de la surface externe du tube interne d'évacuation (12), de préférence entre 1,5 mm et 20 mm, et de manière très préférée est égale à 2 mm. Le matériau utilisé est bien connu de l'homme du métier et permet au tube de réduction de passage (14) de résister à la température et gaz circulants. Le calcul de l'épaisseur du tube de réduction de passage (14) se fait par rapport à la valeur du diamètre (ou rayon) externe du tube d'évacuation (12) et du diamètre (ou rayon) interne du tube catalytique (10). Par exemple pour un tube catalytique avec un diamètre interne de 35,1 mm et un tube d'évacuation (12) avec un diamètre externe de 13,7 mm, l'épaisseur du tube de réduction de passage (14) est comprise entre 2 mm et 8 mm, de préférence entre 6 mm et 8 mm. Dans cette partie du tube catalytique (10) où est introduit le tube de réduction de passage (14) il n'y a pas de catalyseur. Cette réduction de la section de passage (17) a pour objectif d'accélérer les vitesses de l'écoulement des réactifs et intensifier ainsi le transfert de chaleur entre le gaz de synthèse et l'écoulement des réactifs. De cette façon, les réactifs sont préchauffés jusqu'à la température de démarrage de la réaction de façon optimisée puisque les pertes thermiques sont minimisées entre la zone de préchauffe et la zone réactionnelle. De plus de cette façon le gaz de synthèse est évacué de l'enceinte à une température modérée : inférieure à 600°C et de préférence inférieure à 400°C. Ainsi il est possible de confiner la zone de corrosion due à la composition du gaz de synthèse (H2, CO, CO2) dans le réacteur et limiter l'utilisation d'aciers spéciaux résistant à cette corrosion au seul tube d'évacuation (12). Pour l'introduction du catalyseur, le dispositif comporte un tube d'arrivée (16) situé sur la paroi externe du tube catalytique (10) avec un angle compris entre 30° et 60° par rapport à l'axe longitudinal (A) du dispositif pour faciliter l'écoulement du catalyseur. Le catalyseur peut ensuite s'écouler au travers de la section de passage (17) si la partie supérieure du tube catalytique (10) possède un système de brides démontables et si son diamètre est suffisant ou s'écouler via un canal (18) usiné dans le tube de réduction de passage (14). De cette façon il est possible de charger le catalyseur une fois le tube d'évacuation (12) et le tube de réduction de passage (14) installés. Pour le déchargement du catalyseur, il est possible d'envisager le démontage du tube d'évacuation (12) par un système de bride ou d'utiliser le passage (18). En partie basse de l'enceinte du réacteur est disposé un brûleur qui peut faire partie intégrante de l'enceinte (1) où être maintenu par un système de brides pour faciliter son démontage. Ce brûleur est composé d'une chambre (20) de combustion pour le mélange et la distribution de l'écoulement d'air et du gaz inflammable. A la base de cette chambre est situé un tube injecteur (21). L'air est injecté par un conduit (31) orthogonal ou tangentiel au tube injecteur (21) et le gaz inflammable est injecté par un tube concentrique (22). Un interne (23) composé d'un convergent et d'un divergent est ajouté en partie supérieure du tube injecteur (21) pour favoriser le mélange air/gaz inflammable. Dans la chambre (20) une plaque brise-jet (24) et une grille de distribution (25) sont disposées l'une au dessus de l'autre pour favoriser la distribution du mélange air/gaz inflammable sur toute la section de la chambre (20). La plaque brise-jet (24) est disposée au dessus de l'arrivée du tube injecteur (21) et la grille de distribution (25) est donc disposée au dessus de la plaque brise-jet (24). Un tronçon de matériau poreux (26) ou de type monolithe est ajouté au dessus de la grille de distribution (25) dans la chambre (20) pour éliminer les risques de retournement de flammes vers l'amont du brûleur. Une deuxième grille (27) est disposée au dessus du matériau poreux pour initier la combustion et accrocher la flamme si une flamme se développe. Cette grille peut être enduite ou non d'un matériau catalytique ou non catalytique. Cette grille peut être également remplacée par un tronçon de monolithe catalytique. Cette grille peut également être disposée sous la forme d'un ou plusieurs tubes perforés de façon à développer plus de surface pour l'établissement de la flamme. La valeur de la surface de cette grille (27) est comprise entre la valeur de la surface de la section du tube catalytique (équivalente à pi/4 fois son diamètre externe au carré) et 10 fois la valeur de la surface de la section du tube catalytique (10), et de préférence 5 fois la valeur de la surface de la section du tube catalytique (10). La combustion est initiée grâce à une électrode (29) d'allumage traversant la base de l'enceinte (1). Les fumées issues de la combustion sont ensuite canalisées entre le tube catalytique (10) et un tube supplémentaire (28). L'espace entre ces deux tubes (10, 28) est calculé de façon à optimiser le transfert thermique entre les fumées issues du brûleur et la zone catalytique. Cette distance tient compte des dimensions de l'enceinte (1), de la zone catalytique et de la chambre de combustion (20). Elle est comprise entre 1 mm et 40 mm, de préférence entre 1,5 mm et 20 mm et de manière très préférée est égal à 2,5 mm. Les perte thermiques très importantes qui peuvent apparaître à ces niveaux thermiques très élevés (> 1000°C) sont réduites puisque la distance entre la zone de combustion et la zone d'échange est minimisée et un matériau (2) de type calorifuge est disposé entre le tube supplémentaire (28) et la paroi de l'enceinte (1). Les fumées sont ensuite évacuées en partie supérieure au travers d'un conduit (30) traversant l'enceinte (1). Un échangeur tubulaire en spirale peut être inséré autour de la partie supérieure du tube catalytique (10) pour vaporiser l'un des réactifs en utilisant les fumées refroidies avant leur évacuation. De cette façon on limite encore les pertes thermiques dans le système. Exemple de mode réalisation : Un réacteur/échangeur de vaporéformage d'éthanol a été dimensionné avec la technologie décrite dans l'invention. L'objectif est d'effectuer la réaction de réformage 10 d'un mélange éthanol/eau de débit 4,7 kg/h. Le volume de catalyseur est de 240 cc. La température souhaitée en sortie de la zone catalytique est de 750°C et la réaction doit démarrée au delà de 350°C en entrée de la zone catalytique. Le réacteur comporte un tube catalytique qui est chauffé par les fumées d'un brûleur catalytique alimenté par un gaz combustible contenant de l'hydrogène et du méthane (composition résumée dans le 15 tableau 1). Le débit de gaz combustible est de 3,4 kg/h. La combustion étant catalysée, il est possible de fonctionner avec un large excès d'air. Le débit d'air est donc calculé pour obtenir une température des fumées de 1100°C en sortie du brûleur. CH4 (% mol) 1,56 H2 (% mol) 40,03 H2O (% mol) 10,54 (% mol) 47,87 20 Tableau 1 : Composition du gaz combustible Le diamètre (k) de l'enceinte (1) du réacteur est de 400 mm. Le diamètre extérieur (h) du tube catalytique (10) est de 42,2 mm et le diamètre intérieur (i) est de 35,1 mm. Le diamètre intérieur (j) du tube supplémentaire (28) est de 47,2 mm. L'épaisseur (b) de la 25 veine de fumées autour du tube catalytique (10) pour intensifier le transfert thermique entre les fumées et le tube catalytique (10) est ainsi de 2,5 mm. La hauteur (c) de la zone catalytique est de 1200 mm et la distance de la zone annulaire catalytique est de5 10,7 mm. Le diamètre interne du tube d'évacuation (12) du gaz de synthèse (e) est de 9,2 mm. La section échangeur du réacteur situé en amont de la zone catalytique a pour longueur (f) 800 mm. Un tube de réduction de passage (14) est inséré en périphérie du tube catalytique (10) pour réduire la section de passage du mélange éthanol+eau qui pénètre dans le réacteur. Le diamètre de cette section de passage annulaire (g) est de 2 mm. Au niveau de la chambre (20) la grille catalytique a un diamètre (I) de 100 mm, la grille de distribution (25) dont la porosité est de 30% est disposée à une distance (m) de 40 mm de la plaque brise jet (24). Le tube d'arrivée d'air (31) a un diamètre interne (n) de 10,4 mm. Le tube concentrique d'arrivée du gaz (22) a un diamètre interne (o) compris entre 6 et 8 mm et le tube injecteur (21) a un diamètre interne (p) de 17,1 mm. L'interne (23) est disposé à une distance (q) d'environ 40 mm au dessus de la sortie du tube injecteur (21). Le tronçon de matériau poreux (26) est un monolithe en cordiérite (400 cpsi). Thus part of the enthalpy required for the reaction is provided by the synthesis gas which is cooled along the discharge tube (12). The catalyst used in the context of the invention may consist of grains of various shapes (spheres, solid or machined rolls) or monoliths in which are machined channels of small diameters. The reagents are introduced into the catalytic tube (10) through the pipe (15). This pipe may be arranged orthogonally to the wall of the tube (10) or tangentially to give a rotational movement to the flow at the inlet of the catalytic tube (10) and thus promote the distribution of the flow over the entire annular section where the catalyst (13) is located. The device according to the invention comprises in its upper part means for preheating the reagents and for cooling the synthesis gas produced. These means allowing a heat exchange between the reactants and the synthesis gas are formed by a passage reduction tube (14) inserted in the upper part of the catalytic tube (10) against the inner wall of the catalytic tube (10) to reduce the passage section of the reagent flow. This passage reduction tube (14) is cylindrical, and generally has a shape equivalent to that of the inside of the catalytic tube (10) so as to adhere well to the inner wall of the catalytic tube (10). The passage reduction tube has a thickness defined so that its inner wall is disposed at a distance of between 1 mm and 40 mm from the outer surface of the inner discharge tube (12), preferably between 1.5 mm and 20 mm, and very preferably is equal to 2 mm. The material used is well known to those skilled in the art and allows the passage reduction tube (14) to withstand temperature and circulating gases. The thickness of the passage reduction tube (14) is calculated in relation to the value of the outer diameter (or radius) of the discharge tube (12) and the inner diameter (or radius) of the catalytic tube (10). ). For example, for a catalytic tube with an inner diameter of 35.1 mm and a discharge tube (12) with an outer diameter of 13.7 mm, the thickness of the passage reduction tube (14) is between 2 mm and 8 mm, preferably between 6 mm and 8 mm. In this part of the catalytic tube (10) where is introduced the passage reduction tube (14) there is no catalyst. This reduction of the passage section (17) aims to accelerate the flow rates of the reagents and thus intensify the heat transfer between the synthesis gas and the flow of reagents. In this way, the reactants are preheated to the start temperature of the reaction optimally since the heat losses are minimized between the preheating zone and the reaction zone. In addition in this way the synthesis gas is removed from the enclosure at a moderate temperature: below 600 ° C and preferably below 400 ° C. Thus it is possible to confine the corrosion zone due to the composition of the synthesis gas (H2, CO, CO2) in the reactor and limit the use of special steels resistant to this corrosion to the single evacuation tube (12) . For the introduction of the catalyst, the device comprises an inlet tube (16) located on the external wall of the catalytic tube (10) with an angle of between 30 ° and 60 ° with respect to the longitudinal axis (A) of the device for facilitating the flow of the catalyst. The catalyst can then flow through the passage section (17) if the upper part of the catalytic tube (10) has a system of removable flanges and if its diameter is sufficient or flow via a channel (18) machined in the passage reduction tube (14). In this way it is possible to load the catalyst once the discharge tube (12) and the passage reduction tube (14) are installed. For the unloading of the catalyst, it is possible to envisage disassembly of the evacuation tube (12) by a flange system or to use the passage (18). In the lower part of the enclosure of the reactor is disposed a burner which can be an integral part of the enclosure (1) where to be maintained by a system of flanges to facilitate disassembly. This burner is composed of a combustion chamber (20) for mixing and distributing the air flow and the flammable gas. At the base of this chamber is an injector tube (21). The air is injected through a conduit (31) orthogonal or tangential to the injector tube (21) and the flammable gas is injected by a concentric tube (22). An internal (23) composed of a convergent and a divergent is added to the upper part of the injector tube (21) to promote the flammable air / gas mixture. In the chamber (20), a jet baffle plate (24) and a distribution grid (25) are arranged one above the other to promote the distribution of the flammable air / gas mixture over the entire section of the chamber. (20). The jet-blast plate (24) is disposed above the inlet of the injector tube (21) and the distribution grid (25) is thus disposed above the jet-blast plate (24). A section of porous material (26) or monolithic type is added above the distribution grid (25) in the chamber (20) to eliminate the risk of flames turning upstream of the burner. A second grid (27) is disposed above the porous material to initiate combustion and catch the flame if a flame develops. This grid may or may not be coated with a catalytic or non-catalytic material. This grid can also be replaced by a section of catalytic monolith. This grid can also be arranged in the form of one or more perforated tubes so as to develop more surface for the establishment of the flame. The value of the surface of this grid (27) lies between the value of the cross-sectional area of the catalytic tube (equivalent to pi / 4 times its outside diameter squared) and 10 times the value of the cross-sectional surface area. catalytic tube (10), and preferably 5 times the value of the cross-sectional area of the catalytic tube (10). The combustion is initiated by means of an ignition electrode (29) passing through the base of the enclosure (1). The fumes from the combustion are then channeled between the catalytic tube (10) and an additional tube (28). The space between these two tubes (10, 28) is calculated so as to optimize the heat transfer between the fumes from the burner and the catalytic zone. This distance takes into account the dimensions of the enclosure (1), the catalytic zone and the combustion chamber (20). It is between 1 mm and 40 mm, preferably between 1.5 mm and 20 mm and very preferably is equal to 2.5 mm. The very large thermal losses that can occur at these very high thermal levels (> 1000 ° C) are reduced since the distance between the combustion zone and the exchange zone is minimized and a material (2) of the heat insulating type is arranged between the additional tube (28) and the wall of the enclosure (1). The fumes are then discharged in the upper part through a conduit (30) passing through the enclosure (1). A spiral tubular exchanger may be inserted around the top of the catalytic tube (10) to vaporize one of the reactants using the cooled fumes prior to evacuation. In this way the thermal losses in the system are further limited. Embodiment Example: A reactor / ethanol vaporeforming exchanger was sized with the technology described in the invention. The objective is to carry out the reforming reaction of an ethanol / water mixture with a flow rate of 4.7 kg / h. The catalyst volume is 240 cc. The desired temperature at the outlet of the catalytic zone is 750 ° C. and the reaction is started above 350 ° C. at the inlet of the catalytic zone. The reactor comprises a catalytic tube which is heated by the fumes of a catalytic burner fed with a fuel gas containing hydrogen and methane (composition summarized in Table 1). The fuel gas flow rate is 3.4 kg / h. Since combustion is catalyzed, it is possible to operate with a large excess of air. The air flow is calculated to obtain a flue gas temperature of 1100 ° C at the burner outlet. CH 4 (% mol) 1.56 H 2 (% mol) 40.03 H 2 O (% mol) 10.54 (% mol) 47.87 Table 1: Composition of the combustible gas The diameter (k) of the enclosure (1 ) of the reactor is 400 mm. The outer diameter (h) of the catalytic tube (10) is 42.2 mm and the inner diameter (i) is 35.1 mm. The inner diameter (j) of the additional tube (28) is 47.2 mm. The thickness (b) of the smoke stream around the catalytic tube (10) to intensify the heat transfer between the flue gases and the catalytic tube (10) is thus 2.5 mm. The height (c) of the catalytic zone is 1200 mm and the distance from the catalytic annular zone is 10.7 mm. The internal diameter of the discharge tube (12) of the synthesis gas (e) is 9.2 mm. The exchanger section of the reactor located upstream of the catalytic zone has a length (f) of 800 mm. A passage reduction tube (14) is inserted at the periphery of the catalytic tube (10) to reduce the flow section of the ethanol + water mixture entering the reactor. The diameter of this annular passage section (g) is 2 mm. At the chamber (20) the catalytic gate has a diameter (I) of 100 mm, the distribution grid (25) whose porosity is 30% is arranged at a distance (m) of 40 mm from the baffle plate jet (24). The air inlet tube (31) has an internal diameter (n) of 10.4 mm. The concentric gas inlet pipe (22) has an internal diameter (o) of between 6 and 8 mm and the injector pipe (21) has an internal diameter (p) of 17.1 mm. The internal (23) is disposed at a distance (q) of about 40 mm above the outlet of the injector tube (21). The section of porous material (26) is a cordierite monolith (400 cpsi).

Le fonctionnement du réacteur/échangeur a été simulé en prenant en compte l'avancement et la chaleur de réaction et les échanges thermiques dans le réacteur pour la géométrie telle que décrite ci-dessus. Les valeurs de températures obtenues au sein du réacteur sont résumées dans le tableau 2. Éthanol+eau Gaz de synthèse Fumées Entrée réacteur 238 Entrée zone catalytique 364 505 Sortie zone catalytique 750 750 1100 Sortie réacteur 400 501 Tableau 2 : Température en °C calculée le long du circuit des réactifs et le long du circuit des fumées La géométrie du réacteur selon l'invention permet ainsi d'atteindre la température d'équilibre optimale pour la réaction de vaporéformage en sortie du lit catalytique en utilisant les fumées d'un brûleur catalytique. La section d'échangeur intégré en amont de la zone catalytique est efficace puisque la température de sortie du gaz de synthèse est abaissée à 400°C (plus de corrosion par "metal dusting" en aval du réacteur) et les réactifs sont préchauffés à une température supérieure à 350°C. La géométrie et les dimensions de la chambre de combustion du réacteur selon l'invention permettent un mélange efficace des réactifs en sortie du tube injecteur (21) comme le montre la cartographie de concentration de la figure 2b. De même la distribution de l'écoulement gaz combustible/air est homogène à l'amont de la grille catalytique comme le montre la cartographie des vitesses gaz présentée à la figure 2a. Le dispositif selon l'invention présente donc les avantages suivants: les pertes thermiques sont minimisées car plusieurs fonctions sont incluses dans le même équipement sous pression: préchauffe des réactifs, réaction, refroidissement des réactifs, combustion pour l'apport de chaleur, refroidissement des fumées. les réactifs sont préchauffés efficacement dans la partie supérieure du tube catalytique grâce à la réduction de passage qui permet d'augmenter les coefficients d'échange. le gaz de synthèse cède ses calories avant de quitter le réacteur-échangeur à une température compatible avec la température design d'un équipement sous pression. la plage de corrosion la plus sévère (600-800°C) est confinée dans l'équipement puisque le gaz de synthèse sort à une température en-dessous de 400°C. un passage est gardé pour permettre le chargement du catalyseur; ce passage est conçu de manière à ne pas constituer une zone de by-pass lorsque le bouchon de chargement du catalyseur est refermé. la solution proposée peut également intégrer la vaporisation de la vapeur d'eau nécessaire à la réaction. The operation of the reactor / exchanger was simulated taking into account the progress and the heat of reaction and the heat exchange in the reactor for the geometry as described above. The temperature values obtained within the reactor are summarized in Table 2. Ethanol + water Synthesis gas Smoke Reactor inlet 238 Catalytic zone inlet 364 505 Catalytic zone outlet 750 750 1100 Reactor outlet 400 501 Table 2: Temperature in ° C calculated on The geometry of the reactor according to the invention thus makes it possible to reach the optimum equilibrium temperature for the steam reforming reaction at the outlet of the catalytic bed by using the fumes of a catalytic burner. . The integrated heat exchanger section upstream of the catalytic zone is effective since the output temperature of the synthesis gas is lowered to 400 ° C. (more corrosion by "metal dusting" downstream of the reactor) and the reactants are preheated to a minimum temperature above 350 ° C. The geometry and the dimensions of the reactor combustion chamber according to the invention allow efficient mixing of the reactants at the outlet of the injector tube (21) as shown in the concentration map of FIG. 2b. Similarly, the distribution of the fuel gas / air flow is homogeneous upstream of the catalytic grid, as shown by the gas velocity mapping presented in FIG. 2a. The device according to the invention thus has the following advantages: the thermal losses are minimized because several functions are included in the same equipment under pressure: preheating reagents, reaction, cooling of the reagents, combustion for the supply of heat, cooling of the fumes . the reagents are effectively preheated in the upper part of the catalytic tube thanks to the passage reduction which makes it possible to increase the exchange coefficients. the synthesis gas gives up its calories before leaving the reactor-exchanger at a temperature compatible with the design temperature of a pressure equipment. the most severe corrosion range (600-800 ° C) is confined to the equipment since the synthesis gas exits at a temperature below 400 ° C. a passage is kept to allow the loading of the catalyst; this passage is designed so as not to constitute a bypass zone when the catalyst loading cap is closed. the proposed solution can also incorporate the vaporization of the steam required for the reaction.

II doit être évident pour l'homme du métier que la présente invention ne doit pas être limitée aux détails donnés ci-dessus et permet des modes de réalisation sous de nombreuses autres formes spécifiques sans s'éloigner du domaine d'application de l'invention. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, et peuvent être modifiés sans toutefois sortir de la portée définie par les revendications jointes. It should be obvious to those skilled in the art that the present invention should not be limited to the details given above and allow embodiments in many other specific forms without departing from the scope of the invention. . Therefore, the present embodiments should be considered by way of illustration, and may be modified without departing from the scope defined by the appended claims.

Claims (13)

REVENDICATIONS1) Enceinte dans laquelle s'effectue une réaction chimique en présence de catalyseur et de réactifs, comportant : au moins un tube catalytique (10) dans lequel est disposé un tube interne d'évacuation (12) du gaz produit, en relation avec l'extérieur, le catalyseur (13) étant disposé entre le tube interne d'évacuation (12) et la surface interne du tube catalytique (10), des moyens d'introduction des réactifs (15) situés dans la partie supérieure de l'enceinte (1), des moyens d'introduction du catalyseur (16) situés dans la partie supérieure de l'enceinte (1), des moyens de chauffage du tube catalytique (10) disposés dans la partie inférieure de l'enceinte (1), et dans laquelle le tube catalytique (10) comporte dans sa partie supérieure au dessus du catalyseur (13) des moyens favorisant l'échange de chaleur entre les réactifs et le gaz produit. CLAIMS1) Enclosure in which a chemical reaction is carried out in the presence of catalyst and reagents, comprising: at least one catalytic tube (10) in which is disposed an internal evacuation tube (12) of the product gas, in relation to the outside, the catalyst (13) being disposed between the inner evacuation tube (12) and the inner surface of the catalytic tube (10), reagent introduction means (15) located in the upper part of the enclosure (1), means for introducing the catalyst (16) located in the upper part of the chamber (1), means for heating the catalytic tube (10) arranged in the lower part of the chamber (1), and wherein the catalytic tube (10) has in its upper part above the catalyst (13) means for promoting heat exchange between the reactants and the product gas. 2) Enceinte selon la revendication 1 dans laquelle les moyens favorisant l'échange de chaleur entre les réactifs et le gaz produit sont constitués d'un tube de réduction de passage (14) disposé contre la surface interne du tube catalytique (10) de façon a laisser un passage (17) pour les réactifs entre le tube de réduction de passage (14) et le tube interne d'évacuation (12). 2) Enclosure according to claim 1 wherein the means for promoting the exchange of heat between the reactants and the product gas consist of a passage reduction tube (14) arranged against the inner surface of the catalytic tube (10) so leaving a passage (17) for the reagents between the passage reduction tube (14) and the inner evacuation tube (12). 3) Enceinte selon la revendication 2 dans laquelle l'épaisseur du tube de réduction de passage (14) est définie de façon à ce que la surface de sa paroi interne soit disposée à une distance comprise entre 1 mm et 40 mm de la surface externe du tube interne d'évacuation (12). 3) Enclosure according to claim 2 wherein the thickness of the passage reduction tube (14) is defined so that the surface of its inner wall is disposed at a distance of between 1 mm and 40 mm from the outer surface internal discharge tube (12). 4) Enceinte selon une des revendications 2 ou 3 dans laquelle le tube de réduction de passage (14) comporte un canal (18) reliant les moyens d'introduction du catalyseur (16) et la zone du tube catalytique (10) où est disposé le catalyseur (13). 4) Enclosure according to one of claims 2 or 3 wherein the passage reduction tube (14) comprises a channel (18) connecting the catalyst introduction means (16) and the region of the catalytic tube (10) where is disposed the catalyst (13). 5) Enceinte selon une des revendications 1 à 4 dans laquelle les moyens de chauffage sont constitués d'une chambre (20) de combustion comportant à sa base un tube injecteur (21) de l'air et d'un gaz inflammable, un interne (23) disposé dans le tube injecteur (21) au niveau de la jonction avec la chambre (20), un brise-jet (24) disposé dans la chambre (20) au dessus de l'interne (23), une grille de distribution (25) du mélange air/gaz disposée au dessus du brise-jet (24), un matériau poreux (26) disposé au dessus de la grille de distribution (25) et une deuxième grille (37) au dessus du matériau poreux pour initier la combustion. 5) Enclosure according to one of claims 1 to 4 wherein the heating means consist of a combustion chamber (20) having at its base an injector tube (21) of air and a flammable gas, an internal (23) disposed in the injector tube (21) at the junction with the chamber (20), a baffle (24) disposed in the chamber (20) above the internal (23), a grid of distribution (25) of the air / gas mixture disposed above the baffle (24), a porous material (26) disposed above the distribution grid (25) and a second gate (37) above the porous material for initiate combustion. 6) Enceinte selon la revendication 5 dans laquelle la grille de distribution (25) a une porosité de 30%. 6) Enclosure according to claim 5 wherein the distribution grid (25) has a porosity of 30%. 7) Enceinte selon une des revendications 6 ou 7 dans laquelle le matériau poreux est un monolithe en cordiérite de 400 cpsi. 7) Enclosure according to one of claims 6 or 7 wherein the porous material is a cordierite monolith of 400 cpsi. 8) Enceinte selon une des revendications 1 à 7 dans laquelle le tube catalytique (10) est disposé dans un tube supplémentaire (28), la distance entre la surface externe du tube catalytique (10) et le tube supplémentaire (28) est comprise entre 1 mm et 40 mm. 8) Enclosure according to one of claims 1 to 7 wherein the catalytic tube (10) is disposed in an additional tube (28), the distance between the outer surface of the catalytic tube (10) and the additional tube (28) is between 1 mm and 40 mm. 9) Enceinte selon une des revendications 1 à 8 dans laquelle un matériau (2) de type calorifuge est disposé entre le tube supplémentaire (28) et la paroi de l'enceinte (1). 9) Enclosure according to one of claims 1 to 8 wherein a material (2) insulating type is disposed between the additional tube (28) and the wall of the enclosure (1). 10) Enceinte selon une des revendications 1 à 9 dont le diamètre est compris entre 50mmet10m. 10) Enclosure according to one of claims 1 to 9 whose diameter is between 50mmet10m. 11) Procédé de vaporeformage mettant en oeuvre le dispositif selon une des revendications 1 à 10 en tant que réacteur-échangeur pour réaliser une réaction de vaporeformage. 11) steam reforming process using the device according to one of claims 1 to 10 as reactor-exchanger for performing a steam reforming reaction. 12) Procédé selon la revendication 11 dans lequel le gaz de synthèse est évacué à 5 une température inférieure à 600°C. 12. The process of claim 11 wherein the synthesis gas is vented at a temperature below 600 ° C. 13) Procédé selon une des revendications 11 ou 12 dans lequel les réactifs sont préchauffés à une température supérieure à 350°C. 13) Method according to one of claims 11 or 12 wherein the reactants are preheated to a temperature above 350 ° C.
FR0805537A 2008-10-07 2008-10-07 REACTIONAL SPEAKER ENHANCING THE EXCHANGE OF HEAT BETWEEN THE REACTORS AND THE PRODUCED GASES Active FR2936723B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR0805537A FR2936723B1 (en) 2008-10-07 2008-10-07 REACTIONAL SPEAKER ENHANCING THE EXCHANGE OF HEAT BETWEEN THE REACTORS AND THE PRODUCED GASES
FR0805800A FR2936724B1 (en) 2008-10-07 2008-10-20 REACTIONAL ENCLOSURE PROMOTING THE EXCHANGE OF HEAT BETWEEN REAGENTS AND GASES PRODUCED
EP09290692A EP2174705A1 (en) 2008-10-07 2009-09-11 Reaction chamber boosting heat exchange between the reagents and the produced gases
BRPI0903930-9A BRPI0903930B1 (en) 2008-10-07 2009-09-30 REACTIVE COMPARTMENT THAT FAVORS HEAT EXCHANGE BETWEEN REAGENTS AND GASES PRODUCED
US12/573,376 US8133445B2 (en) 2008-10-07 2009-10-05 Reaction chamber promoting heat exchange between the reagents and the gases that are produced

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0805537A FR2936723B1 (en) 2008-10-07 2008-10-07 REACTIONAL SPEAKER ENHANCING THE EXCHANGE OF HEAT BETWEEN THE REACTORS AND THE PRODUCED GASES

Publications (2)

Publication Number Publication Date
FR2936723A1 true FR2936723A1 (en) 2010-04-09
FR2936723B1 FR2936723B1 (en) 2011-09-16

Family

ID=40469954

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0805537A Active FR2936723B1 (en) 2008-10-07 2008-10-07 REACTIONAL SPEAKER ENHANCING THE EXCHANGE OF HEAT BETWEEN THE REACTORS AND THE PRODUCED GASES

Country Status (1)

Country Link
FR (1) FR2936723B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108261985A (en) * 2018-01-17 2018-07-10 天津中环电炉股份有限公司 A kind of horizontal-type high temperature photo-thermal catalytic reaction device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8802129A (en) * 1987-08-27 1989-03-16 Toyo Engineering Corp Steam reforming device for hydrocarbon(s) and alcohol(s) - has reactor with coaxial cylinder walls with reaction space contg. catalyst and heat delivery space connected to oxygen inlet and outlet
US4861348A (en) * 1986-10-08 1989-08-29 Hitachi, Ltd. Fuel reforming apparatus
GB2359764A (en) * 2000-03-01 2001-09-05 Geoffrey Gerald Weedon An endothermic tube reactor
WO2007118950A1 (en) * 2006-03-17 2007-10-25 Ifp Internal combustion exchanger reactor for endothermic reaction in fixed bed
FR2914395A1 (en) * 2007-03-30 2008-10-03 Inst Francais Du Petrole NEW COMPACT EXCHANGER REACTOR USING A POROUS BURNER

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861348A (en) * 1986-10-08 1989-08-29 Hitachi, Ltd. Fuel reforming apparatus
NL8802129A (en) * 1987-08-27 1989-03-16 Toyo Engineering Corp Steam reforming device for hydrocarbon(s) and alcohol(s) - has reactor with coaxial cylinder walls with reaction space contg. catalyst and heat delivery space connected to oxygen inlet and outlet
GB2359764A (en) * 2000-03-01 2001-09-05 Geoffrey Gerald Weedon An endothermic tube reactor
WO2007118950A1 (en) * 2006-03-17 2007-10-25 Ifp Internal combustion exchanger reactor for endothermic reaction in fixed bed
FR2914395A1 (en) * 2007-03-30 2008-10-03 Inst Francais Du Petrole NEW COMPACT EXCHANGER REACTOR USING A POROUS BURNER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FARNELL P W ED - AMERICAN INSTITUTE OF CHEMICAL ENGINEERS: "ADVANCED GAS-HEATED REFORMER", AMMONIA PLANT SAFETY & RELATED FACILITIES. 44TH ANNUAL AMMONIA SAFETY SYMPOSIUM, SEATTLE, WA., SEPT. 27 - 30, 1999; [SAFETY IN AIR AND AMMONIA PLANTS], NEW YORK : AICHE, US, vol. 40, 27 September 1999 (1999-09-27), pages 173 - 181, XP000989309, ISBN: 978-0-8169-0828-8 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108261985A (en) * 2018-01-17 2018-07-10 天津中环电炉股份有限公司 A kind of horizontal-type high temperature photo-thermal catalytic reaction device

Also Published As

Publication number Publication date
FR2936723B1 (en) 2011-09-16

Similar Documents

Publication Publication Date Title
FR2936724A1 (en) REACTIONAL ENCLOSURE PROMOTING THE EXCHANGE OF HEAT BETWEEN REAGENTS AND GASES PRODUCED
CA2645784C (en) Internal combustion exchanger reactor for endothermic reaction in fixed bed
EP2132486B1 (en) Compact exchanger reactor using a plurality of porous burners and process using said reactor
CA2742639C (en) Reactor exchanger with bayonet tubes and smoke tubes suspended to the upper vault of the reactor
FR2850372A1 (en) New type of reactor for partial oxidation of liquid charges ranging from LPG to gas oil for the production of a synthesis gas
WO2009080937A2 (en) Method for the selective catalytic reduction of nitrogen oxides in combustion flue gases and system for implementing it
CA2041938C (en) Process and facility for producing gas-containing hydrogen from methanol
FR2936723A1 (en) Catalytic reaction chamber, e.g. for steam reforming, includes system, preferably passage reduction tube, in catalytic tube to promote heat exchange between reactants and product gas
CA2603821C (en) Reaction and heat exchange chamber for producing hydrogen from hydrocarbon, water and oxygen and hydrogen generating device
CA2788469C (en) Reactor exchanger for the production of hydrogen with built-in steam generation beam
FR2898517A1 (en) Exchanging reactor to carry out steam reforming reactions, comprises an enclosure, a distribution unit to distribute a charge through a fixed-bed catalytic zone, and a collection unit to collect an effluent from the catalytic zone
FR2932173A1 (en) STEAM REFORMING PROCESS WITH ENHANCED SMOKE FLOW
FR3008626A1 (en) REACTOR FOR PREPARING HYDROGEN CYANIDE BY THE ANDRUSSOW PROCESS, EQUIPMENT COMPRISING SAID REACTOR AND METHOD USING SUCH EQUIPMENT
WO2022043401A1 (en) Integrated reactor-exchanger with two levels of fixed beds in series and related method
US20140170038A1 (en) Fuel reformer with thermal management
JP2001162155A (en) High temperature supercritical reaction device
FR2847489A1 (en) Integrated reactor with two separated channel structures carrying two fluids, one taking part in a reaction generating heat and with heat transfer between the two at the same time, notably for fuel systems
FR3117104A3 (en) Process for steam methane reforming using an improved structured packed catalyst.
BE563945A (en)
BE568010A (en)
BE484089A (en)
BE576847A (en)

Legal Events

Date Code Title Description
CD Change of name or company name
PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 10