FR2932219A3 - Air intake device for direct injection diesel engine, has vertical separation wall dividing intake duct into two parts, up to proximity of rod of valve, where parts have asymmetrical profile and different sections on entire length of parts - Google Patents

Air intake device for direct injection diesel engine, has vertical separation wall dividing intake duct into two parts, up to proximity of rod of valve, where parts have asymmetrical profile and different sections on entire length of parts Download PDF

Info

Publication number
FR2932219A3
FR2932219A3 FR0853800A FR0853800A FR2932219A3 FR 2932219 A3 FR2932219 A3 FR 2932219A3 FR 0853800 A FR0853800 A FR 0853800A FR 0853800 A FR0853800 A FR 0853800A FR 2932219 A3 FR2932219 A3 FR 2932219A3
Authority
FR
France
Prior art keywords
parts
duct
intake device
engine
flap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0853800A
Other languages
French (fr)
Inventor
Julien Ange Maestroni
Alexandre Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0853800A priority Critical patent/FR2932219A3/en
Publication of FR2932219A3 publication Critical patent/FR2932219A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/02Modifying induction systems for imparting a rotation to the charge in the cylinder in engines having inlet valves arranged eccentrically to cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/042Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors induction channel having a helical shape around the intake valve axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4235Shape or arrangement of intake or exhaust channels in cylinder heads of intake channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4235Shape or arrangement of intake or exhaust channels in cylinder heads of intake channels
    • F02F1/4242Shape or arrangement of intake or exhaust channels in cylinder heads of intake channels with a partition wall inside the channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

The device has a single intake duct (1) connecting a cylinder head of an internal combustion engine to an intake zone or chamber (2) in a cylinder (3) of the engine. The duct is tangentially opened in the intake zone, and is sealed by an intake valve (4). An internal vertical separation wall (6) divides the duct into two parts (1a, 1b), up to proximity of a rod (4a) of the valve. The parts of the duct have an asymmetrical profile, and different sections on the entire length of the parts.

Description

- 1 - DISPOSITIF D'ADMISSION D'AIR A CONDUIT DIVISE EN PARTIES DISYMETRIQUES - 1 - DEVICE FOR AIR INTAKE DEVICE DIVIDED IN DISYMETRIC PARTS

La présente invention est relative à un conduit d'admission d'air dans un cylindre de moteur à combustion, en particulier pour moteur Diesel à injection directe, n'ayant qu'un seul conduit d'admission par cylindre, qui débouche de façon tangentielle dans la chambre de combustion Plus précisément, elle a pour objet un dispositif d'admission d'air pour moteur à combustion interne, comportant un seul conduit d'admission reliant la culasse du moteur à la zone d'admission dans le cylindre et débouchant tangentiellement dans celui-ci, qui peut être obturé par une soupape d'admission, et une paroi interne de séparation verticale divisant le conduit en deux parties jusqu'à proximité de l'axe de la soupape. Le mouvement de rotation autour de l'axe du cylindre, ou mouvement de swirl, est un mouvement tourbillonnaire imprimé aux gaz d'admission à leur entrée dans la chambre de combustion. Ce mouvement est nécessaire pour assurer un mélange satisfaisant entre le carburant et les gaz d'admission, notamment dans le cas des moteurs Diesel au moment de la phase d'injection, particulièrement lorsque le moteur fonctionne à faible charge. On parle ainsi de rapport de swirl, pour caractériser le rapport de la vitesse de rotation de l'air dans le cylindre, à la vitesse de rotation du moteur. - 2 - On définit par ailleurs la perméabilité d'un cylindre de moteur à combustion interne, comme le rapport entre le débit d'air qui aurait été admis dans des conditions idéales, c'est-à-dire sans pertes de charge, et le débit effectivement admis dans le cylindre. Lors du dimensionnement d'un moteur, on peut viser à optimiser son fonctionnement à pleine charge, où le swirl n'est pas prioritaire, ou au contraire, rechercher une valeur de swirl plus favorable aux faibles charges, mais diminuant la perméabilité. Un compromis est donc recherché entre le swirl et la perméabilité. Par la publication EP 1 247 957, on connaît un dispositif d'admission à conduit tangentiel, qui permet d'obtenir naturellement un niveau de swirl suffisant associé à une perméabilité élevée, au travers de la présence d'une paroi de séparation verticale sur toute la longueur du conduit d'admission. La paroi fixe, peut être réalisée brute de fonderie, ou rapportée à la coulée. Elle contribue à un meilleur remplissage du moteur, pour les charges élevées de celui-ci. Son effet sur la perméabilité est donc positif, sur tous les points de fonctionnement du moteur. Toutefois, le flux du conduit intérieur a moins d'impact sur le swirl, que celui du conduit extérieur, car il débouche dans une zone moins périphérique du cylindre. Pour assurer une perméabilité (débit) maximale, lorsque le niveau de swirl est bas, tout en maintenant une perméabilité la plus élevée possible lorsque le swirl est élevé, il a déjà été proposé de faire varier la géométrie du conduit en cours de fonctionnement en le déformant, ou en déplaçant une paroi à l'intérieur de celui-ci. The present invention relates to an air intake duct in a combustion engine cylinder, in particular for a direct injection diesel engine, having only one inlet duct per cylinder, which opens tangentially. in the combustion chamber More specifically, it relates to an air intake device for an internal combustion engine, comprising a single intake duct connecting the cylinder head of the engine to the intake zone in the cylinder and opening tangentially. therein, which can be closed by an intake valve, and an inner vertical partition wall dividing the conduit into two portions to near the axis of the valve. The rotational movement about the axis of the cylinder, or swirl movement, is a swirling motion imparted to the inlet gases as they enter the combustion chamber. This movement is necessary to ensure a satisfactory mixture between the fuel and the intake gases, especially in the case of diesel engines at the time of the injection phase, particularly when the engine is operating at low load. This is called swirl ratio, to characterize the ratio of the speed of rotation of the air in the cylinder, to the speed of rotation of the engine. Furthermore, the permeability of an internal combustion engine cylinder is defined, such as the ratio between the air flow rate that would have been allowed under ideal conditions, that is to say without loss of head, and the flow actually admitted into the cylinder. When sizing an engine, one can aim to optimize its operation at full load, where the swirl is not a priority, or on the contrary, look for a swirl value more favorable to low loads, but decreasing the permeability. A compromise is therefore sought between the swirl and the permeability. Publication EP 1 247 957 discloses a tangential duct intake device, which naturally provides a sufficient swirl level associated with high permeability, through the presence of a vertical partition wall on any the length of the intake duct. The fixed wall, can be made gross casting, or reported casting. It contributes to a better filling of the engine, for the high loads of it. Its effect on the permeability is therefore positive, on all operating points of the engine. However, the flow of the inner duct has less impact on the swirl than that of the outer duct, because it opens into a less peripheral area of the cylinder. To ensure maximum permeability (flow), when the swirl level is low, while maintaining the highest permeability possible when the swirl is high, it has already been proposed to vary the geometry of the duct during operation by the deforming, or moving a wall inside of it.

Toutefois, les systèmes à swirl variable connus, ne permettent pas d'assurer le meilleur compromis swirl / perméabilité, sur toute la plage de fonctionnement du moteur. La présente invention vise à proposer une nouvelle architecture de conduit d'admission, à paroi de séparation interne, propre à optimiser un système de swirl variable, sur la plage de fonctionnement du moteur. Dans ce but, elle propose que les deux parties du conduit aient un profil dissymétrique, avec de préférence des sections différentes sur l'ensemble de leur longueur. Selon un mode de réalisation particulier, la partie du conduit la plus proche du fût du cylindre, a une section plus importante que la partie la plus proche du centre. La partie de conduit la plus proche du centre peut avantageusement être obturée par un volet placé à distance de son arrivée dans le cylindre. However, known variable swirl systems, do not ensure the best compromise swirl / permeability over the entire operating range of the engine. The present invention aims to propose a new inlet duct architecture, with an internal partition wall, capable of optimizing a variable swirl system, over the operating range of the engine. For this purpose, it proposes that the two parts of the conduit have an asymmetrical profile, preferably with different sections over their entire length. According to a particular embodiment, the portion of the duct closest to the barrel of the cylinder has a larger section than the part closest to the center. The duct portion closest to the center may advantageously be closed by a shutter placed at a distance from its arrival in the cylinder.

D'autres caractéristiques et avantages de l'invention apparaîtront clairement à la lecture de la description suivante d'un mode de réalisation non limitatif de celle-ci, en se reportant aux dessins annexés, sur lesquels : - 4 - - la figure 1 correspond à une coupe longitudinale d'un conduit d'admission tangentiel, passant pas un plan diamétral de celui-ci, la figure 2 est une coupe transversale du 5 conduit selon A-A de la figure 1, les figures 3A à 3C, illustrent un pilotage on/off du volet de swirl, et les figures 4A à 4C illustrent un pilotage continu de celui-ci. 10 Sur les figures 1 et 2, on a représenté le même un dispositif d'admission d'air pour moteur à combustion interne, comportant un seul conduit d'admission 1 reliant la culasse du moteur (non représentée), à sa zone d'admission 2 (ou chapelle 2), dans le cylindre 3. 15 Le conduit 1 débouche tangentiellement dans le cylindre, et il peut être obturé par une soupape d'admission 4, actionnée par l'intermédiaire de sa tige de soupape 4a. Une paroi interne de séparation verticale 6 divise le conduit en deux parties la, lb, jusqu'à proximité de 20 l'axe de la soupape 4a. Enfin, on note la présence d'un volet 7, à l'entrée du conduit intérieur lb. Conformément aux schémas, la partie du conduit la, la plus proche du fût 3a du cylindre 3, a une section plus importante que la partie lb, la plus proche de son 25 centre. Les deux parties la, lb du conduit peuvent ainsi avoir des sections différentes, avec un profil différencié, non seulement aux abords de la chapelle d'admission 2, mais sur toute leur longueur. - 5 - Selon les essais effectués, la répartition optimale des sections pour obtenir le compromis recherché, consiste à attribuer 57% de la section totale du conduit à la partie la plus large la. Toutefois d'excellents résultats sont obtenus entre 54% et 61%. Comme indiqué plus haut, une des deux parties du volet, à savoir la partie la plus étroite lb, peut être obturée par un volet de swirl 7 placé à distance de son arrivée dans le cylindre. Dans le cadre de l'invention, la position du volet 7 être pilotée en fonction de la charge du moteur, entre une position d'ouverture complète et une position de fermeture complète, soit selon un pilotage on/off (cf. figures 3a à 3C), soit selon un pilotage continu (cf. figures 4A à 4C). Other characteristics and advantages of the invention will become clear from reading the following description of a nonlimiting embodiment thereof, with reference to the accompanying drawings, in which: FIG. to a longitudinal section of a tangential inlet duct, passing not a diametral plane thereof, Figure 2 is a cross section of the duct AA of Figure 1, Figures 3A to 3C, illustrate a control on / off the swirl flap, and Figures 4A to 4C illustrate continuous steering thereof. FIGS. 1 and 2 show the same an air intake device for an internal combustion engine, comprising a single intake duct 1 connecting the cylinder head of the engine (not represented) to its engine zone. inlet 2 (or chapel 2), in the cylinder 3. The conduit 1 opens out tangentially in the cylinder, and it can be closed by an intake valve 4, actuated through its valve stem 4a. A vertical partition wall 6 divides the conduit into two portions 1a, 1b, near the axis of the valve 4a. Finally, there is the presence of a flap 7 at the inlet of the inner duct 1b. According to the drawings, the portion of the duct 1a, the closest to the barrel 3a of the cylinder 3, has a larger section than the portion lb, the closest to its center. The two parts 1a, 1b of the duct can thus have different sections, with a different profile, not only around the intake chapel 2, but over their entire length. According to the tests carried out, the optimal distribution of the sections to obtain the desired compromise consists in attributing 57% of the total section of the duct to the widest part 1a. However, excellent results are obtained between 54% and 61%. As indicated above, one of the two parts of the shutter, namely the narrowest part lb, can be closed by a swirl flap 7 placed at a distance from its arrival in the cylinder. In the context of the invention, the position of the flap 7 can be controlled as a function of the engine load, between a full open position and a complete closed position, either according to an on / off steering (see FIGS. 3C), or in a continuous manner (see FIGS. 4A to 4C).

Dans le premier cas, le volet bascule directement dans les deux sens entre une position d'ouverture complète aux faibles charges du moteur, et une position de fermeture complète aux fortes charges. Conformément à la figure 3A, le basculement du volet peut avantageusement intervenir (dans les deux sens) au passage par une charge intermédiaire d'environ 30% de la charge maximale. La figure 3B met en évidence l'impact de la dissymétrie du conduit sur la perméabilité lorsque le volet est fermé (faibles charges), avec une répartition de sections entre les parties du conduit de 50/50 (courbe a), de 57/43 (courbe b), et de 7 0 / 3 0 (courbe c). La figure 3C illustre la baisse du niveau de swirl lorsqu'on passe d'une répartition de 57/43 ou 50/50 (courbe i) à une répartition différente de 70/30 (courbe J) Dans le deuxième cas le volet passe progressivement dans les deux sens, entre une position d'ouverture complète aux faibles charges du moteur, et une position de fermeture complète entre une charge intermédiaire et la charge maximale. L'ouverture du volet peut ainsi être opérée progressivement entre une charge a d'environ 10%, et une charge a d'environ 50%. In the first case, the flap switches directly in both directions between a full open position at low engine loads, and a full closed position at high loads. According to FIG. 3A, the tilting of the flap can advantageously intervene (in both directions) in passing by an intermediate load of approximately 30% of the maximum load. Figure 3B shows the impact of the dissymmetry of the duct on the permeability when the flap is closed (low loads), with a distribution of sections between the parts of the duct of 50/50 (curve a), of 57/43 (curve b), and 7 0/30 (curve c). Figure 3C illustrates the drop in the level of swirl when moving from a distribution of 57/43 or 50/50 (curve i) to a different distribution of 70/30 (curve J) In the second case the flap gradually in both directions, between a full open position at low engine loads, and a fully closed position between an intermediate load and the maximum load. The opening of the shutter can thus be operated progressively between a load of about 10%, and a load of about 50%.

Ce déplacement est illustré par la figure 4A. La figure 4B met en évidence l'influence de la répartition sur la perméabilité en période transitoire : courbe 1 répartition = 50/50, courbe m répartition = 57/43, et courbe n répartition = 70/30. Enfin la figure 4C montre que le niveau de swirl est plus élevé en période transitoire pour une répartition de 57/43 ou 50/50 (courbe r), que de 70/30 (courbe s). En conclusion, la séparation du conduit en deux parties de sections différentes, permet de mettre en oeuvre un swirl variable à une soupape par cylindre, apte à maintenir un très bon compromis swirl / perméabilité, sur une large plage de variation du niveau de swirl. Les différentes courbes annexées mettent en évidence l'effet de la répartition des sections entre les deux parties du conduit, sur la perméabilité et le swirl, tant en position complètement fermée du volet qu'en période transitoire de fermeture ou d'ouverture. This displacement is illustrated in Figure 4A. Figure 4B shows the influence of the distribution on the transient permeability: curve 1 distribution = 50/50, distribution curve = 57/43, and distribution curve = 70/30. Finally, Figure 4C shows that the swirl level is higher in transient period for a distribution of 57/43 or 50/50 (curve r) than 70/30 (curve s). In conclusion, the separation of the duct into two parts of different sections makes it possible to implement a variable swirl at one valve per cylinder, able to maintain a very good swirl / permeability compromise, over a wide range of variation of the swirl level. The various appended curves highlight the effect of the distribution of the sections between the two parts of the duct, on the permeability and the swirl, both in the fully closed position of the shutter and in a transitional period of closure or opening.

Claims (9)

REVENDICATIONS1. Dispositif d'admission d'air pour moteur à combustion interne, comportant un seul conduit d'admission (1) reliant la culasse du moteur à la zone d'admission (2) dans le cylindre (3) et débouchant tangentiellement dans celui-ci, qui peut être obturé par une soupape d'admission (4), et une paroi interne de séparation verticale (6) divisant le conduit en deux parties (la, lb) jusqu'à proximité de l'axe (4a) de la soupape, caractérisé en ce que les deux parties (la, lb) du conduit (1) ont un profil dissymétrique, et des sections différentes sur l'ensemble de leur longueur. REVENDICATIONS1. Air intake device for an internal combustion engine, comprising a single intake duct (1) connecting the cylinder head of the engine to the intake zone (2) in the cylinder (3) and emerging tangentially therein , which can be closed by an inlet valve (4), and an inner vertical partition wall (6) dividing the conduit into two parts (1a, 1b) up to the axis (4a) of the valve , characterized in that the two parts (la, lb) of the duct (1) have an asymmetrical profile, and different sections over their entire length. 2. Dispositif d'admission selon la revendication 1, caractérisé en ce que la partie du conduit (la) la plus proche du fût (3a) du cylindre (3), a une section plus importante que la partie (lb) la plus proche de son centre. 2. An intake device according to claim 1, characterized in that the portion of the duct (la) closest to the barrel (3a) of the cylinder (3), has a larger section than the portion (lb) nearest from its center. 3. Dispositif d'admission selon la revendication 2, caractérisé en ce que la section de la partie la plus importante (la) du conduit (1) est comprise entre 54% et 61% de la section totale du conduit. 3. An intake device according to claim 2, characterized in that the section of the largest part (la) of the duct (1) is between 54% and 61% of the total section of the duct. 4. Dispositif d'admission selon la revendication 2 ou 3, caractérisé en ce que la partie de conduit la plus proche (lb) du centre est obturée par un volet (7) placé à distance de son arrivée dans le cylindre. 4. An intake device according to claim 2 or 3, characterized in that the portion of the nearest conduit (lb) of the center is closed by a flap (7) placed at a distance from its arrival in the cylinder. 5. Dispositif d'admission selon la revendication 4, caractérisé en ce que la position du volet (7) est pilotée en fonction de la charge (a) du moteur entre une- 8 - position d'ouverture complète et une position de fermeture complète. An intake device according to claim 4, characterized in that the position of the flap (7) is controlled as a function of the load (a) of the engine between a fully open position and a fully closed position. . 6 .Dispositif d'admission selon la revendication 5, caractérisé en ce que le volet (7) bascule directement dans les deux sens entre une position d'ouverture complète aux faibles charges (a) du moteur, et une position de fermeture complète aux fortes charges. 6.Advantage device according to claim 5, characterized in that the flap (7) switches directly in both directions between a fully open position at low loads (a) of the engine, and a closed position to the strong loads. 7. Dispositif d'admission selon la revendication 6, caractérisé en ce que le basculement du volet (7) est opéré au passage par une charge (a) intermédiaire d'environ 30% de la charge maximale. 7. An intake device according to claim 6, characterized in that the tilting of the flap (7) is operated in passing by a load (a) intermediate about 30% of the maximum load. 8. Dispositif d'admission selon la revendication 5, caractérisé en ce que le volet (7) passe progressivement dans les deux sens, entre une position d'ouverture complète aux faibles charges (a) du moteur, et une position de fermeture complète entre une charge intelmédiaire et la charge maximale. 8. An intake device according to claim 5, characterized in that the flap (7) gradually passes in both directions, between a fully open position to the low loads (a) of the engine, and a fully closed position between an intermediate load and the maximum load. 9. Dispositif d'admission selon la revendication 20 8, caractérisé en ce que, l'ouverture du volet (7) est opérée progressivement entre une charge (a) d'environ 10%, et une charge (a) d'environ 50%. 9. An intake device according to claim 8, characterized in that the opening of the flap (7) is operated progressively between a load (a) of about 10%, and a load (a) of about 50 %.
FR0853800A 2008-06-09 2008-06-09 Air intake device for direct injection diesel engine, has vertical separation wall dividing intake duct into two parts, up to proximity of rod of valve, where parts have asymmetrical profile and different sections on entire length of parts Withdrawn FR2932219A3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0853800A FR2932219A3 (en) 2008-06-09 2008-06-09 Air intake device for direct injection diesel engine, has vertical separation wall dividing intake duct into two parts, up to proximity of rod of valve, where parts have asymmetrical profile and different sections on entire length of parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0853800A FR2932219A3 (en) 2008-06-09 2008-06-09 Air intake device for direct injection diesel engine, has vertical separation wall dividing intake duct into two parts, up to proximity of rod of valve, where parts have asymmetrical profile and different sections on entire length of parts

Publications (1)

Publication Number Publication Date
FR2932219A3 true FR2932219A3 (en) 2009-12-11

Family

ID=39828979

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0853800A Withdrawn FR2932219A3 (en) 2008-06-09 2008-06-09 Air intake device for direct injection diesel engine, has vertical separation wall dividing intake duct into two parts, up to proximity of rod of valve, where parts have asymmetrical profile and different sections on entire length of parts

Country Status (1)

Country Link
FR (1) FR2932219A3 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235288A1 (en) * 1985-08-23 1987-09-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Variable swirl suction device for engines
DE3828742A1 (en) * 1987-08-25 1989-03-09 Toyota Motor Co Ltd INTERNAL COMBUSTION ENGINE WITH SEVERAL INLET VALVES AND EXHAUST GAS RECIRCULATION
US5765525A (en) * 1994-12-15 1998-06-16 Ford Global Technologies, Inc. Intake system for an internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0235288A1 (en) * 1985-08-23 1987-09-09 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Variable swirl suction device for engines
DE3828742A1 (en) * 1987-08-25 1989-03-09 Toyota Motor Co Ltd INTERNAL COMBUSTION ENGINE WITH SEVERAL INLET VALVES AND EXHAUST GAS RECIRCULATION
US5765525A (en) * 1994-12-15 1998-06-16 Ford Global Technologies, Inc. Intake system for an internal combustion engine

Similar Documents

Publication Publication Date Title
EP0584350B1 (en) Two stroke internal combustion engine exhaust line
EP0577451B1 (en) Device for controlling the pneumatic injection of carburetted mixture for a two stroke internal combustion engine and its use
FR2923886A1 (en) Valve e.g. three-way valve, for air supplying circuit of e.g. heat engine, in motor vehicle, has rotary unit moved inside body in manner to control passage of air via openings with rule defined according to angular position of rotary unit
FR2932219A3 (en) Air intake device for direct injection diesel engine, has vertical separation wall dividing intake duct into two parts, up to proximity of rod of valve, where parts have asymmetrical profile and different sections on entire length of parts
EP1188912B1 (en) Air intake system for an IC engine
EP1591642A1 (en) Air intake system containing an opening provided with a notch to confer a swirling movement on intake gases
EP1870578B1 (en) Intake system for an internal combustion engine
FR2927396A1 (en) DEVICE FOR ADJUSTING VOLUMETRIC FLOW FOR A MEDIUM.
FR2818312A1 (en) GAS INTAKE SYSTEM IN A COMBUSTION CHAMBER WITH INTAKE CONDUIT
EP1247957A1 (en) Air intake system for an internal combustion engine
FR2459876A1 (en) Inlet system for IC engine - has closed side tube between throttle and cylinder to improve flow
EP2212526A1 (en) Cylinder head for internal combustion engine
FR2897396A1 (en) Control chamber filling and draining control valve for e.g. diesel engine, has slots disposed in opposite manner by displacement of throttle valve that is arranged such that restrained passage remains opened between lateral surfaces
FR2886558A1 (en) DEVICE FOR SEPARATING A LIQUID FROM A GAS VEIN
FR2927125A1 (en) Air intake device for direct injection oil engine, has internal vertical separation wall dividing intake duct into two parts up to point close to axle of intake valve, where section of parts of duct is differentiated near intake chamber
EP2767695B1 (en) Valve of a bypass line of a turbocompressor provided with a shutter with deflector
FR2946691A3 (en) Air intake device for cylinder of combustion engine i.e. direct injection diesel engine, of motor vehicle, has filling part having circular shaped section to minimize leakage at level of obturation unit when obturation unit is closed
FR2724414A1 (en) Adjustable swirl on inlet to compression ignition engine
WO1997032115A1 (en) Improvement to loop-scavenged two-stroke internal combustion engines
EP1219798A2 (en) Gas intake device for an internal combustion engine
FR2713282A1 (en) Compression ignition i.c. engine with direct fuel injection
EP0933513B1 (en) Intake device for internal combustion engine
FR2836959A1 (en) I.c. engine cylinder air inlet duct has radially moving inner partition with shutter plate fixed to it
FR2888285A1 (en) Intake system for e.g. diesel engine, has swirl generation system with separator plate articulated at intersection of secondary conduits, and obstructing plate disposed in main conduit at free end of separator plate
FR2894615A1 (en) Air intake device for combustion engine cylinder, with optimum vortex ratio-permeability compromise, has intake pipe partitioned into parts opening into upper and lower parts of intake chamber

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20100226