FR2921697A3 - Exhaust gas inlet flow control valve opening or closing control method for e.g. diesel engine, involves controlling valve based on acquired pressure difference between filling and swirl plenum chambers and acquired characteristics value - Google Patents

Exhaust gas inlet flow control valve opening or closing control method for e.g. diesel engine, involves controlling valve based on acquired pressure difference between filling and swirl plenum chambers and acquired characteristics value Download PDF

Info

Publication number
FR2921697A3
FR2921697A3 FR0706867A FR0706867A FR2921697A3 FR 2921697 A3 FR2921697 A3 FR 2921697A3 FR 0706867 A FR0706867 A FR 0706867A FR 0706867 A FR0706867 A FR 0706867A FR 2921697 A3 FR2921697 A3 FR 2921697A3
Authority
FR
France
Prior art keywords
pressure difference
acquired
internal combustion
combustion engine
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
FR0706867A
Other languages
French (fr)
Inventor
Denis Bousseau
Thomas Guerineau
Alain Gabriel Lefebvre
Stephane Ruby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Priority to FR0706867A priority Critical patent/FR2921697A3/en
Publication of FR2921697A3 publication Critical patent/FR2921697A3/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10045Multiple plenum chambers; Plenum chambers having inner separation walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10216Fuel injectors; Fuel pipes or rails; Fuel pumps or pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/108Intake manifolds with primary and secondary intake passages
    • F02M35/1085Intake manifolds with primary and secondary intake passages the combustion chamber having multiple intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/112Intake manifolds for engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

The method involves acquiring difference of pressure between filling and swirl plenum chambers (25, 26) of an air distributor (24) in an internal combustion engine (1) using pressure transducers (101, 102), and acquiring a value of determined characteristics such as speed value or load value, relative to an operation point of the combustion engine. An exhaust gas inlet flow control valve (27) is controlled based on the acquired pressure difference and the acquired characteristics value. An independent claim is also included for an internal combustion engine including two cylinders and an air distributor.

Description

1 DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION La présente invention concerne de manière générale l'admission d'un moteur à combustion interne. Elle concerne plus particulièrement un procédé de pilotage d'une vanne de régulation du débit de gaz d'admission entrant dans l'un de deux plenums d'un répartiteur d'air d'un moteur à combustion interne. Elle concerne également un moteur à combustion interne comportant au moins deux cylindres et un répartiteur d'air qui comprend, d'une part, un plenum de remplissage débouchant en sortie dans chaque cylindre et dont l'entrée est munie d'une vanne de régulation, et, d'autre part, un plenum de swirl débouchant en sortie dans chaque cylindre. L'invention trouve une application particulièrement avantageuse dans la réalisation des moteurs à combustion interne de type Diesel. ARRIÈRE-PLAN TECHNOLOGIQUE Dans les moteurs à combustion interne du type précité, chaque cylindre comporte deux conduits d'admission distincts respectivement raccordés aux deux plenums. Les débits des gaz d'admission circulant dans chacun de ces deux conduits d'admission sont alors d'une importance primordiale pour le bon fonctionnement du moteur. TECHNICAL FIELD TO WHICH THE INVENTION RELATES The present invention generally relates to the admission of an internal combustion engine. It relates more particularly to a method of controlling an inlet gas flow control valve entering one of two plenums of an air distributor of an internal combustion engine. It also relates to an internal combustion engine comprising at least two cylinders and an air distributor which comprises, on the one hand, a filling plenum opening out into each cylinder and whose inlet is provided with a control valve. and, on the other hand, a swirl plenum opening out into each cylinder. The invention finds a particularly advantageous application in the production of internal combustion engines of the Diesel type. BACKGROUND ART In internal combustion engines of the aforementioned type, each cylinder comprises two separate inlet ducts respectively connected to the two plenums. The flow rates of the intake gas flowing in each of these two intake ducts are then of paramount importance for the proper functioning of the engine.

Ces débits influencent en effet non seulement le débit total d'air frais entrant dans le cylindre, mais aussi l'importance des mouvements tourbillonnaires dans le cylindre. La différence de débits des gaz d'admission entre les deux conduits d'admission génère effectivement dans le cylindre des mouvements tourbillonnaires d'axes parallèles à l'axe de ce cylindre, communément appelés mouvements de swirl. Ces mouvements de swirl influencent le bon fonctionnement du moteur dans la mesure où ils améliorent l'homogénéisation du carburant et des gaz d'admission au sein du cylindre. Afin de générer de tels mouvements de swirl, il est connu de faire varier le débit d'air frais entrant dans le plenum de remplissage, à l'aide de la vanne de régulation, de manière à modifier la différence de débits des gaz d'admission entre les deux conduits d'admission de chaque cylindre. Il convient alors de piloter avec précision cette vanne de régulation en fonction de l'importance des mouvements de swirl que l'on désire obtenir dans le cylindre, c'est-à-dire en fonction du point de fonctionnement instantané du moteur. A cet effet, il est connu d'utiliser une cartographie qui donne pour chaque point de fonctionnement du moteur une consigne de positionnement de la vanne. These flow rates in fact influence not only the total flow of fresh air entering the cylinder, but also the importance of swirling movements in the cylinder. The difference in flow rates of the intake gases between the two intake ducts effectively generates in the cylinder swirling movements of axes parallel to the axis of this cylinder, commonly called swirl movements. These swirl movements influence the good functioning of the engine as they improve the homogenization of the fuel and the intake gases within the cylinder. In order to generate such swirl movements, it is known to vary the flow of fresh air entering the filling plenum, with the aid of the control valve, so as to modify the difference in gas flow rates. intake between the two intake ducts of each cylinder. It is then necessary to control precisely this control valve according to the importance of the swirl movements that one wishes to obtain in the cylinder, that is to say according to the point of instantaneous operation of the engine. For this purpose, it is known to use a map that gives for each point of operation of the engine a positioning instruction of the valve.

Dans ce cas, on utilise un capteur de position qui permet de connaître en temps réel la position de la vanne pour vérifier que cette position réelle correspond à la consigne de positionnement donnée. Toutefois, malgré une mise au point précise des moteurs, on constate qu'il subsiste un décalage entre la position réelle de la vanne et la position que devrait présenter cette vanne pour que les mouvements de swirl soient optimisés. OBJET DE L'INVENTION Afin de remédier à l'inconvénient précité de l'état de la technique, la présente invention propose un nouveau procédé de pilotage de la vanne de régulation plus précis. Plus particulièrement, on propose selon l'invention un procédé de pilotage tel que défini dans l'introduction, comportant les étapes consistant à : a) acquérir un écart de pressions entre les deux plenums du répartiteur d'air, b) acquérir une valeur d'au moins une caractéristique déterminée relative à un point de fonctionnement du moteur à combustion interne, c) piloter ladite vanne de régulation en fonction dudit écart de pressions et de chaque valeur acquise. Ainsi, grâce à l'invention, pour le pilotage de la vanne de régulation, on se réfère, non plus à la position de la vanne de régulation, mais plutôt à une donnée thermodynamique indépendante de la géométrie du moteur, à savoir l'écart de pressions entre les deux plenums. De ce fait, le pilotage de la vanne n'est pas dépendant des différences de géométries entre les moteurs, si bien qu'il présente une fiabilité accrue. In this case, a position sensor is used which makes it possible to know in real time the position of the valve to verify that this actual position corresponds to the given positioning instruction. However, despite a precise focus of the engines, it is found that there remains a gap between the actual position of the valve and the position that should present this valve for the swirl movements are optimized. OBJECT OF THE INVENTION In order to overcome the above-mentioned drawback of the state of the art, the present invention proposes a new method for controlling the more precise control valve. More particularly, it is proposed according to the invention a control method as defined in the introduction, comprising the steps of: a) acquire a pressure difference between the two plenums of the air distributor, b) acquire a value of d at least one determined characteristic relating to an operating point of the internal combustion engine, c) controlling said control valve as a function of said pressure difference and of each acquired value. Thus, thanks to the invention, for the control of the control valve, reference is no longer to the position of the control valve, but rather to a thermodynamic data independent of the geometry of the engine, namely the difference pressures between the two plenums. As a result, the control of the valve is not dependent on the differences in geometries between the motors, so that it has increased reliability.

D'autres caractéristiques avantageuses et non limitatives du procédé de pilotage conforme à l'invention sont les suivantes : - à l'étape c), on détermine en fonction de chaque valeur acquise un écart de pressions optimal, on compare ledit écart de pressions acquis à l'étape a) avec cet écart de pressions optimal, et on en déduit une consigne d'ouverture ou de fermeture de ladite vanne de régulation ; - à l'étape c), on pilote l'ouverture ou la fermeture de ladite vanne de régulation d'un pas invariable ; - à l'étape c), on pilote l'ouverture ou la fermeture de ladite vanne de régulation d'un pas variable déduit de la différence entre ledit écart de pressions acquis à l'étape a) et ledit écart de pressions optimal ; - à l'étape b), on acquiert une valeur du régime du moteur à combustion interne ; et - à l'étape b), on acquiert une valeur de la charge du moteur à combustion interne. L'invention concerne également un moteur à combustion interne tel que défini en introduction, comportant un capteur de pression dans chaque plenum et des moyens électroniques de pilotage de ladite vanne de régulation qui sont aptes à calculer un écart de pressions entre les pressions relevées par lesdits capteurs de pression, à acquérir une valeur d'au moins une caractéristique déterminée relative à un point de fonctionnement du moteur à combustion interne, et à piloter ladite vanne de régulation en fonction dudit écart de pressions calculé et de chaque valeur acquise. D'autres caractéristiques avantageuses et non limitatives du moteur à combustion interne conforme à l'invention sont les suivantes : - les moyens électroniques de pilotage, d'une part, comportent une cartographie de la plage de fonctionnement du moteur à combustion interne qui fait correspondre, à chaque valeur de chaque caractéristique déterminée, une valeur d'un écart de pressions optimal, et, d'autre part, sont aptes à piloter ladite vanne de régulation en fonction de la différence entre ledit écart de pressions calculé et l'écart de pressions optimal déduit de chaque valeur acquise ; - ladite vanne de régulation est une vanne papillon réglable en position angulaire ; et - il est prévu une ligne d'admission d'air frais débouchant dans ledit répartiteur d'air, une ligne d'échappement de gaz brûlés prenant naissance dans lesdits cylindres et une ligne de recirculation des gaz brûlés qui prend naissance dans cette ligne d'échappement et qui débouche dans le plenum de swirl du répartiteur d'air. DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATION La description qui va suivre, en regard des dessins annexés, donnée à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée. Other advantageous and non-limiting characteristics of the piloting method according to the invention are the following: in step c), as a function of each acquired value, an optimum pressure difference is determined, the said difference in acquired pressures is compared. in step a) with this optimum pressure difference, and a set opening or closing instruction of said control valve is deduced therefrom; in step c), the opening or closing of said control valve is controlled with an invariable pitch; in step c), the opening or closing of said regulation valve is controlled by a variable step deduced from the difference between said pressure difference acquired in step a) and said optimum pressure difference; in step b), a value of the speed of the internal combustion engine is acquired; and in step b), a value of the load of the internal combustion engine is acquired. The invention also relates to an internal combustion engine as defined in the introduction, comprising a pressure sensor in each plenum and electronic control means of said control valve which are able to calculate a pressure difference between the pressures noted by said pressure sensors, to acquire a value of at least one determined characteristic relating to an operating point of the internal combustion engine, and to drive said control valve according to said calculated pressure difference and each acquired value. Other advantageous and non-limiting characteristics of the internal combustion engine according to the invention are the following: the electronic control means, on the one hand, include a mapping of the operating range of the internal combustion engine which matches , at each value of each determined characteristic, a value of an optimum pressure difference, and, on the other hand, are able to drive said control valve as a function of the difference between said calculated pressure difference and the difference in optimal pressures deducted from each acquired value; said regulation valve is an adjustable butterfly valve in angular position; and - there is provided a fresh air intake line opening into said air distributor, a burnt gas exhaust line originating in said cylinders and a flue gas recirculation line which originates in this line. exhaust and that opens into the plenum of swirl air distributor. DETAILED DESCRIPTION OF AN EXEMPLARY EMBODIMENT The following description, with reference to the appended drawings, given by way of non-limiting example, will make it clear what the invention consists of and how it can be achieved.

Sur le dessin annexé, la figure unique est une vue schématique d'un moteur à combustion interne selon l'invention. Dans la description, les termes amont et aval seront utilisés suivant le sens de l'écoulement des gaz, depuis le point de prélèvement de l'air frais dans l'atmosphère jusqu'à la sortie des gaz brûlés par un silencieux 35 d'échappement. Dispositif Sur la figure, on a représenté schématiquement un moteur à combustion 4 interne 1, qui comprend un bloc-moteur 10 pourvu ici de quatre cylindres 11. En sortie des cylindres 11, le moteur à combustion interne 1 comporte un collecteur d'échappement 31 de gaz brûlés qui est raccordé à une ligne d'échappement 30 s'étendant jusqu'à des moyens d'oxydation des gaz brûlés, formés ici par un catalyseur d'oxydation auxiliaire 33 et par un pot catalytique 34. La ligne d'échappement 30 comporte par ailleurs, entre le collecteur d'échappement 31 et lesdits moyens d'oxydation, une turbine 32 qui actionne un compresseur 22. En amont des cylindres 11, le moteur à combustion interne 1 comporte une ligne d'admission 20 pourvue d'un filtre à air 21 qui filtre l'air frais prélevé dans l'atmosphère. Cette ligne d'admission 20 comporte en outre le compresseur 22 précité qui comprime l'air frais filtré par le filtre à air 21, ainsi qu'un refroidisseur d'air principal 23 qui refroidit cet air frais comprimé. La ligne d'admission 20 débouche dans une entrée 24A d'un répartiteur d'air 24 qui se charge de répartir l'air frais vers chacun des cylindres 11 du bloc-moteur 10. Tel que représenté sur cette figure, le répartiteur d'air 24 est dit biplenum, c'est-à-dire qu'il comporte deux plenums distincts, dont un plenum de remplissage 25 et un plenum de swirl 26. Ces deux plenums 25, 26 présentent des formes allongées et s'étendent longitudinalement parallèlement l'un par rapport à l'autre. L'entrée 24A du répartiteur d'air 24 se divise alors en deux entrées 25A, 26A distinctes débouchant dans les deux plenums 25, 26. L'entrée 25A du plenum de remplissage 25 est en particulier pourvue d'une vanne de régulation 27 du débit d'air frais entrant dans ce plenum. Cette vanne de régulation 27 comporte ici un volet papillon d'orientation réglable, qui est commandé par un moteur électrique pas-à-pas (non représenté). L'entrée 26A du plenum de swirl 26 est quant à elle préférentiellement dépourvue de vanne. En variante, cette entrée peut être munie d'une vanne de gaz permettant, en combinaison avec la vanne de régulation, de piloter le débit total d'air frais entrant dans les cylindres. En variante encore et dans le même but, cette vanne de gaz pourrait être installée dans l'entrée 24A du répartiteur d'air 24. Quoi qu'il en soit, chaque plenum 25, 26 du répartiteur d'air 24 débouche dans les quatre cylindres 11 via quatre conduits d'admission 28,29 propres. On comprend alors que les débits de gaz d'admission circulant dans les conduits d'admission 28 du plenum de remplissage 25 dépendent de la position de la vanne de régulation 27. Au contraire, les débits de gaz d'admission circulant dans les conduits d'admission 29 du plenum de swirl 26 ne dépendent pas de la position de cette vanne. Le moteur à combustion interne 1 comporte par ailleurs une ligne de recirculation 40 des gaz brûlés, appelée ligne EGR, qui prend naissance dans la ligne d'échappement 30 et qui débouche dans l'entrée 26A du plenum de swirl 26. 5 En variante, cette ligne EGR pourrait déboucher dans la ligne d'admission 20, au niveau de l'entrée 24A du répartiteur d'air 24, ou en amont de celle-ci. La ligne EGR accueille un échangeur thermique EGR 42 prévu pour refroidir les gaz EGR, ainsi qu'une vanne EGR 41 prévue pour réguler le débit de gaz EGR injecté dans le plenum de swirl 26. Cette ligne EGR permet de réduire le volume d'émissions polluantes du moteur à combustion interne 1. Le moteur à combustion interne 1 comporte enfin des moyens de pilotage 100 électroniques de ses différents organes. Ces moyens de pilotage 100 comprennent de manière classique une mémoire vive et une mémoire de masse permanente. In the accompanying drawing, the single figure is a schematic view of an internal combustion engine according to the invention. In the description, the upstream and downstream terms will be used in the direction of the gas flow, from the fresh air intake point in the atmosphere to the exhaust gas outlet by an exhaust silencer . Device In the figure is schematically shown an internal combustion engine 4, which comprises a motor unit 10 provided here with four cylinders 11. At the output of the cylinders 11, the internal combustion engine 1 comprises an exhaust manifold 31 of burnt gas which is connected to an exhaust line 30 extending to the oxidation means of the flue gas, formed here by an auxiliary oxidation catalyst 33 and a catalytic converter 34. The exhaust line 30 further comprises, between the exhaust manifold 31 and said oxidation means, a turbine 32 which actuates a compressor 22. Upstream of the cylinders 11, the internal combustion engine 1 comprises an inlet line 20 provided with an air filter 21 which filters the fresh air taken from the atmosphere. This intake line 20 further comprises the aforementioned compressor 22 which compresses the fresh air filtered by the air filter 21, as well as a main air cooler 23 which cools this compressed fresh air. The intake line 20 opens into an inlet 24A of an air distributor 24 which is responsible for distributing the fresh air to each of the cylinders 11 of the engine block 10. As shown in this figure, the distributor of air 24 is said to be biplenum, that is to say that it comprises two distinct plenums, including a filling plenum 25 and a plenum of swirl 26. These two plenums 25, 26 have elongated shapes and extend longitudinally in parallel relative to each other. The inlet 24A of the air distributor 24 then divides into two separate inlets 25A, 26A opening into the two plenums 25, 26. The inlet 25A of the filling plenum 25 is in particular provided with a regulating valve 27 of the fresh air flow entering this plenum. This control valve 27 here comprises a butterfly flap with an adjustable orientation, which is controlled by an electric stepper motor (not shown). The entry 26A of the swirl plenum 26 is in turn preferably devoid of valve. Alternatively, this inlet may be provided with a gas valve allowing, in combination with the control valve, to control the total flow of fresh air entering the cylinders. In another variant and for the same purpose, this gas valve could be installed in the inlet 24A of the air distributor 24. In any case, each plenum 25, 26 of the air distributor 24 opens into the four 11 cylinders via four inlet ducts 28.29 clean. It is then understood that the flow rates of intake gas flowing in the intake ducts 28 of the filling plenum 25 depend on the position of the control valve 27. On the contrary, the flow rates of intake gas flowing in the ducts Admission 29 of the swirl plenum 26 does not depend on the position of this valve. The internal combustion engine 1 also comprises a recirculation line 40 of the flue gases, called the EGR line, which originates in the exhaust line 30 and which opens into the inlet 26A of the swirl plenum 26. In a variant, this line EGR could lead into the inlet line 20, at the inlet 24A of the air distributor 24, or upstream thereof. The EGR line accommodates an EGR heat exchanger 42 provided for cooling the EGR gas, as well as an EGR valve 41 designed to regulate the flow of EGR gas injected into the swirl plenum 26. This EGR line makes it possible to reduce the emission volume pollutants of the internal combustion engine 1. The internal combustion engine 1 finally comprises electronic control means 100 of its various organs. These control means 100 conventionally comprise a random access memory and a permanent mass memory.

La mémoire vive est en particulier prévue pour stocker, en temps réel, une valeur d'au moins une caractéristique déterminée relative au point de fonctionnement du moteur à combustion interne 1, ainsi qu'un écart de pressions DeltaP entre les deux plenums 25, 26. A cet effet, les moyens de pilotage 100 comportent des moyens d'acquisition aptes, d'une première part, à relever la valeur du régime R du moteur, d'une deuxième part, à calculer la valeur de la charge PME du moteur, et, d'une troisième part, à acquérir les pressions P1, P2 des gaz d'admission contenus dans les deux plenums. Pour cela, ces moyens d'acquisition comportent un capteur de vitesse 25 prévu pour relever la vitesse angulaire du vilebrequin du moteur, ce qui fournit le régime R du moteur. Ils comportent en outre des moyens de calcul de la charge PME du moteur. Cette charge du moteur correspond au rapport du travail fourni par le moteur à un instant et à un régime donnés, sur le travail maximal que peut 30 développer le moteur pour ce régime donné. Cette charge peut être quantifiée à l'aide d'une pression moyenne effective PME dont le calcul est classique pour l'Homme du métier. Les moyens d'acquisition comportent enfin deux capteurs de pression 101, 102 aptes à relever les pressions P1, P2 des gaz d'admission dans les deux 35 plenums 25, 26, et des moyens de calcul de la différence DeltaP entre ces deux pressions P1, P2 relevées. La mémoire de masse stocke quant à elle une cartographie de la plage 6 de fonctionnement du moteur à combustion interne 1 et un logiciel d'exécution qui est apte à piloter en position la vanne de régulation 27. Cette cartographie mémorise, pour chaque valeur de chaque caractéristique déterminée, une valeur d'un écart de pressions optimal DeltaPo. The random access memory is in particular designed to store, in real time, a value of at least one determined characteristic relating to the operating point of the internal combustion engine 1, as well as a difference in DeltaP pressures between the two plenums 25, 26 For this purpose, the control means 100 comprise acquisition means able, firstly, to record the value of the R engine speed, a second part, to calculate the value of the engine load PME and, thirdly, to acquire the pressures P1, P2 of the inlet gases contained in the two plenums. For this, these acquisition means comprise a speed sensor 25 provided to record the angular speed of the crankshaft of the engine, which provides the R engine speed. They furthermore comprise means for calculating the engine's PME load. This engine load corresponds to the ratio of the work supplied by the engine at a given time and at a given speed, to the maximum work that the engine can develop for this given regime. This charge can be quantified using an effective average pressure SME whose calculation is conventional for the skilled person. The acquisition means finally comprise two pressure sensors 101, 102 able to record the pressures P1, P2 of the inlet gases in the two plenums 25, 26, and means for calculating the difference DeltaP between these two pressures P1. , P2 recorded. The mass memory stores a mapping of the operating range 6 of the internal combustion engine 1 and an execution software that is able to control the control valve 27 in position. This map stores, for each value of each determined characteristic, a value of an optimal pressure difference DeltaPo.

Plus précisément, cette cartographie fait ici correspondre à chaque couple de régime R et de charge PME une valeur d'un écart de pressions optimal DeltaPo. Cet écart de pressions optimal DeltaPo correspond à la différence de pressions idéale entre les deux plenums 25, 26, qui est telle que les mouvements tourbillonnaires dans les cylindres 11 présentent des amplitudes optimales pour le rendement du moteur. Le logiciel d'exécution est quant à lui prévu pour piloter le moteur électrique d'actionnement du volet papillon de la vanne de régulation 27, selon une consigne de pilotage élaborée en fonction des valeurs contenues dans la cartographie et dans la mémoire vive. Procédé Lorsque le moteur à combustion interne 1 fonctionne, l'air frais prélevé dans l'atmosphère par la ligne d'admission 20 est filtré par le filtre à air 21, comprimé par le compresseur 22, puis refroidi par le refroidisseur d'air 23, et enfin brûlé dans les cylindres 11. A sa sortie des cylindres 11, une partie des gaz brûlés, les gaz EGR, est prélevée par la ligne EGR 40, refroidie par l'échangeur thermique EGR 42, puis réinjectée dans le plenum de swirl 26 du répartiteur d'air 24. L'autre partie des gaz brûlés est détendue dans la turbine 32, puis traitée et filtrée par le catalyseur d'oxydation auxiliaire 33 et par le pot catalytique 34 avant d'être rejetée dans l'atmosphère. Simultanément, les moyens de pilotage 100 du moteur à combustion interne 1 pilotent la vanne de régulation 27 selon un procédé de pilotage prédéfini. Selon une caractéristique particulièrement avantageuse de l'invention, ce procédé de pilotage comporte une première étape d'acquisition de l'écart de pressions DeltaP entre les deux plenums 25, 26 du répartiteur d'air 24, une seconde étape d'acquisition d'une valeur d'au moins une caractéristique déterminée R, PME relative à un point de fonctionnement du moteur à combustion interne 1, et une troisième étape de pilotage de ladite vanne de régulation 27 en fonction dudit écart de pressions DeltaP et de chaque valeur acquise. Au cours de la première étape, les moyens d'acquisition relèvent les pressions P1 et P2 des gaz d'admission circulant respectivement dans le plenum de remplissage 25 et dans le plenum de swirl 26, puis calculent l'écart de pressions DeltaP entre ces deux pressions P1, P2 selon la formule : DeltaP = P2 ù P1. L'écart de pressions DeltaP ainsi calculé est alors mémorisé par la mémoire vive des moyens de pilotage. Bien sûr, en variante, cet écart de pressions pourrait être acquis différemment, par exemple par une mesure directe au moyen d'une sonde raccordée d'un côté au plenum de remplissage 25, et, de l'autre, au plenum de swirl 26. More precisely, this map here corresponds to each R-speed torque and the PME load a value of an optimal pressure difference DeltaPo. This optimum pressure difference DeltaPo corresponds to the ideal pressure difference between the two plenums 25, 26, which is such that the swirling movements in the cylinders 11 have optimum amplitudes for the engine efficiency. The execution software is provided for controlling the electric motor for actuating the throttle flap of the control valve 27, according to a control instruction developed according to the values contained in the map and in the RAM. Method When the internal combustion engine 1 is operating, the fresh air taken from the atmosphere through the intake line 20 is filtered by the air filter 21, compressed by the compressor 22, and then cooled by the air cooler 23 and finally burned in the cylinders 11. At its outlet from the cylinders 11, a part of the burned gases, the EGR gases, is withdrawn by the EGR line 40, cooled by the heat exchanger EGR 42, and then re-injected into the plenum of swirls. The other part of the flue gas is expanded in the turbine 32, then treated and filtered by the auxiliary oxidation catalyst 33 and the catalytic converter 34 before being discharged into the atmosphere. Simultaneously, the control means 100 of the internal combustion engine 1 drive the control valve 27 according to a predefined control method. According to a particularly advantageous characteristic of the invention, this control method comprises a first step of acquiring the DeltaP pressure difference between the two plenums 25, 26 of the air distributor 24, a second acquisition step of a value of at least one determined characteristic R, PME relative to an operating point of the internal combustion engine 1, and a third step of controlling said control valve 27 as a function of said pressure difference DeltaP and of each acquired value. During the first step, the acquisition means record the pressures P1 and P2 of the intake gases flowing respectively in the filling plenum 25 and in the swirl plenum 26, and then calculate the difference in pressure DeltaP between these two. pressures P1, P2 according to the formula: DeltaP = P2 ù P1. The pressure difference DeltaP thus calculated is then stored by the RAM of the control means. Of course, alternatively, this pressure difference could be acquired differently, for example by a direct measurement by means of a probe connected on one side to the filling plenum 25, and, on the other, to the swirl plenum 26 .

Au cours de la deuxième étape, les moyens d'acquisition relèvent la valeur du régime R du moteur à combustion interne 1 et calculent la valeur de sa charge PME. Ces valeurs ainsi acquises sont alors mémorisées par la mémoire vive des moyens de pilotage. Bien sûr, en variante, les moyens d'acquisition pourraient relever les valeurs d'autres caractéristiques relatives au point de fonctionnement du moteur, telles que le débit de gaz frais circulant dans la ligne d'admission. Enfin, au cours de la troisième étape, le logiciel d'exécution recherche dans la cartographie l'écart de pressions optimal DeltaPo qui correspond aux valeurs acquises de la charge PME et du régime R. During the second step, the acquisition means report the value of the R-speed of the internal combustion engine 1 and calculate the value of its load PME. These values thus acquired are then stored by the RAM memory of the control means. Of course, alternatively, the acquisition means could record the values of other characteristics relating to the point of operation of the engine, such as the flow of fresh gas flowing in the intake line. Finally, during the third step, the execution software searches in the cartography for the DeltaPo optimal pressure difference corresponding to the acquired values of the PME load and the R load.

Puis, ils comparent l'écart de pressions DeltaP acquis avec cet écart de pressions optimal DeltaPo. Si l'écart de pressions DeltaP acquis est supérieur à l'écart de pressions optimal DeltaPo, alors le logiciel d'exécution pilote la vanne de régulation 27 selon une consigne d'ouverture. Then, they compare the acquired DeltaP pressure difference with this DeltaPo optimal pressure difference. If the deviation of acquired DeltaP pressures is greater than the optimal pressure difference DeltaPo, then the execution software controls the control valve 27 according to an opening instruction.

En revanche, si l'écart de pressions DeltaP acquis est inférieur à l'écart de pressions optimal DeltaPo, alors le logiciel d'exécution pilote la vanne de régulation 27 selon une consigne de fermeture. Enfin, si l'écart de pressions DeltaP acquis est égal à l'écart de pressions optimal DeltaPo, aucune consigne d'ouverture ou de fermeture n'est transmise à la vanne de régulation 27, de manière qu'elle conserve sa position. Préférentiellement, le logiciel d'exécution pilote l'ouverture et la fermeture de la vanne de régulation 27 d'un pas (ou angle de pivotement) invariable. Ainsi, si l'écart de pressions DeltaP acquis est différent de l'écart de pressions optimal DeltaPo, le moteur d'actionnement commande le pivotement du volet papillon de la vanne de régulation 27 d'un angle fixe et invariable, par exemple égal à 1 degré. De cette manière, tant que l'écart de pressions DeltaP acquis ne 8 s'égalise pas avec l'écart de pressions optimal DeltaPo, le volet papillon va s'ouvrir ou se fermer progressivement, par paliers de 1 degré. En variante, le logiciel d'exécution peut piloter l'ouverture et la fermeture de la vanne de régulation 27 d'un pas variable. Ce pas est alors plus précisément calculé par le logiciel d'exécution en fonction de la différence entre ledit écart de pressions DeltaP acquis et ledit écart de pressions optimal DeltaPo. Ainsi, si l'écart de pressions DeltaP acquis est différent de l'écart de pressions optimal DeltaPo, le moteur d'actionnement commande le pivotement du volet papillon de la vanne de régulation 27 d'un angle tel que l'écart de pressions DeltaP acquis s'égalise directement avec l'écart de pressions optimal DeltaPo. De cette manière, l'admission en air frais et en carburant des cylindres se fait de manière à engendrer dans les cylindres des mouvements tourbillonnaires d'amplitudes optimales, de sorte que le moteur présente un rendement optimisé. On the other hand, if the deviation of acquired DeltaP pressures is less than the optimal pressure difference DeltaPo, then the execution software controls the control valve 27 according to a closing instruction. Finally, if the acquired DeltaP pressure difference is equal to the optimum pressure difference DeltaPo, no opening or closing instruction is transmitted to the control valve 27, so that it maintains its position. Preferably, the execution software controls the opening and closing of the control valve 27 with an invariable pitch (or pivot angle). Thus, if the acquired DeltaP pressure difference is different from the optimal pressure difference DeltaPo, the actuating motor controls the pivoting of the throttle flap of the regulating valve 27 by a fixed and invariable angle, for example equal to 1 degree. In this way, as long as the deviation of acquired DeltaP pressures does not equalize with the optimal pressure difference DeltaPo, the butterfly flap will open or close gradually, in increments of 1 degree. Alternatively, the execution software can control the opening and closing of the control valve 27 with a variable pitch. This step is then more precisely calculated by the execution software as a function of the difference between said acquired DeltaP pressure difference and said optimal DeltaPo pressure difference. Thus, if the acquired DeltaP pressure difference is different from the optimal pressure difference DeltaPo, the actuation motor controls the pivoting of the butterfly valve of the regulating valve 27 by an angle such as the DeltaP pressure difference. acquired equals directly with the DeltaPo optimal pressure differential. In this way, the intake of fresh air and fuel of the cylinders is made so as to generate in the cylinders vortex movements of optimum amplitudes, so that the engine has an optimized efficiency.

La présente invention n'est nullement limitée aux modes de réalisation décrits et représentés, mais l'homme du métier saura y apporter toute variante conforme à son esprit. The present invention is not limited to the embodiments described and shown, but the skilled person will be able to make any variant within his mind.

Claims (10)

REVENDICATIONS 1. Procédé de pilotage d'une vanne de régulation (27) du débit de gaz d'admission entrant dans l'un de deux plenums (25, 26) d'un répartiteur d'air (24) 5 d'un moteur à combustion interne (1), caractérisé en ce qu'il comporte des étapes consistant à : a) acquérir un écart de pressions (DeltaP) entre les deux plenums (25, 26) du répartiteur d'air (24), b) acquérir une valeur d'au moins une caractéristique déterminée (R, 10 PME) relative à un point de fonctionnement du moteur à combustion interne (1), c) piloter ladite vanne de régulation (27) en fonction dudit écart de pressions (DeltaP) acquis et de chaque valeur acquise. 1. A method of controlling a control valve (27) of the intake gas flow entering one of two plenums (25, 26) of an air distributor (24) 5 of a motor internal combustion (1), characterized in that it comprises the steps of: a) acquiring a pressure difference (DeltaP) between the two plenums (25, 26) of the air distributor (24), b) acquiring a value of at least one determined characteristic (R, 10 PME) relative to an operating point of the internal combustion engine (1), c) controlling said control valve (27) according to said acquired pressure difference (DeltaP) and of each value acquired. 2. Procédé de pilotage selon la revendication précédente, dans lequel à l'étape c), on détermine en fonction de chaque valeur acquise à l'étape b) un écart 15 de pressions optimal (DeltaPo), on compare ledit écart de pressions (DeltaP) acquis à l'étape a) avec cet écart de pressions optimal (DeltaPo), et on en déduit une consigne d'ouverture ou de fermeture de ladite vanne de régulation (27). 2. A control method according to the preceding claim, wherein in step c), is determined as a function of each value acquired in step b) an optimal pressure difference (DeltaPo), the pressure difference is compared ( DeltaP) acquired in step a) with this optimum pressure difference (DeltaPo), and a setpoint of opening or closing of said control valve (27) is deduced therefrom. 3. Procédé de pilotage selon l'une des revendications précédentes, dans lequel à l'étape c), on pilote l'ouverture ou la fermeture de ladite vanne de 20 régulation (27) d'un pas invariable. 3. Control method according to one of the preceding claims, wherein in step c), the opening or closing of said control valve (27) is controlled by an invariable pitch. 4. Procédé de pilotage selon la revendication 2, dans lequel à l'étape c), on pilote l'ouverture ou la fermeture de ladite vanne de régulation (27) d'un pas variable déduit de la différence entre ledit écart de pressions (DeltaP) acquis à l'étape a) et ledit écart de pressions optimal (DeltaP0). 25 4. A control method according to claim 2, wherein in step c), it controls the opening or closing of said control valve (27) of a variable step deduced from the difference between said pressure difference ( DeltaP) acquired in step a) and said optimal pressure difference (DeltaP0). 25 5. Procédé de pilotage selon l'une des revendications précédentes, dans lequel à l'étape b), on acquiert la valeur du régime (R) du moteur à combustion interne (1). 5. Driving method according to one of the preceding claims, wherein in step b), acquires the value of the regime (R) of the internal combustion engine (1). 6. Procédé de pilotage selon l'une des revendications précédentes, dans lequel à l'étape b), on acquiert la valeur de la charge (PME) du moteur à 30 combustion interne (1). 6. Driving method according to one of the preceding claims, wherein in step b), acquires the value of the load (PME) of the internal combustion engine (1). 7. Moteur à combustion interne (1) comportant au moins deux cylindres (11) et un répartiteur d'air (24) qui comprend, d'une part, un plenum de remplissage (25) débouchant en sortie dans chaque cylindre (11) et dont l'entrée (25A) est munie d'une vanne de régulation (27), et, d'autre part, un plenum de 35 swirl (26) débouchant en sortie dans chaque cylindre (11), caractérisé en ce qu'il comporte un capteur de pression (101, 102) dans chaque plenum (25, 26) et des moyens électroniques de pilotage (100) de ladite vanne de régulation (27) qui sontaptes à : - calculer un écart de pressions (DeltaP) entre les pressions (P1, P2) relevées par lesdits capteurs de pression (101, 102), - acquérir une valeur d'au moins une caractéristique déterminée (R, PME) relative à un point de fonctionnement du moteur à combustion interne (1), et - piloter ladite vanne de régulation (27) en fonction dudit écart de pressions (DeltaP) calculé et de chaque valeur acquise. 7. Internal combustion engine (1) comprising at least two cylinders (11) and an air distributor (24) which comprises, on the one hand, a filling plenum (25) opening out into each cylinder (11) and whose inlet (25A) is provided with a regulating valve (27), and on the other hand a plenum of 35 swirl (26) opening out into each cylinder (11), characterized in that it comprises a pressure sensor (101, 102) in each plenum (25, 26) and electronic control means (100) of said control valve (27) which are able to: calculate a pressure difference (DeltaP) between the pressures (P1, P2) detected by said pressure sensors (101, 102), - acquiring a value of at least one determined characteristic (R, PME) relative to an operating point of the internal combustion engine (1), and - driving said regulating valve (27) according to said calculated pressure difference (DeltaP) and each acquired value. 8. Moteur à combustion interne (1) selon la revendication précédente, dans lequel les moyens électroniques de pilotage (100), d'une part, comportent une cartographie de la plage de fonctionnement du moteur à combustion interne qui fait correspondre, à chaque valeur de chaque caractéristique déterminée (R, PME), une valeur d'un écart de pressions optimal (DeltaPo), et, d'autre part, sont aptes à piloter ladite vanne de régulation (27) en fonction de la différence entre ledit écart de pressions (DeltaP) calculé et un écart de pressions optimal (DeltaPo) déduit de chaque valeur acquise. 8. Internal combustion engine (1) according to the preceding claim, wherein the electronic control means (100), on the one hand, a mapping of the operating range of the internal combustion engine which corresponds to each value. of each determined characteristic (R, PME), a value of an optimum pressure difference (DeltaPo), and, on the other hand, are able to control said control valve (27) as a function of the difference between said difference in calculated pressure (DeltaP) and an optimal pressure difference (DeltaPo) deduced from each acquired value. 9. Moteur à combustion interne (1) selon l'une des deux revendications précédentes, dans lequel ladite vanne de régulation (27) est une vanne papillon réglable en position angulaire. 9. Internal combustion engine (1) according to one of the two preceding claims, wherein said control valve (27) is a butterfly valve adjustable in angular position. 10. Moteur à combustion interne (1) selon l'une des trois revendications précédentes, comportant une ligne d'admission (20) d'air frais débouchant dans ledit répartiteur d'air (24), une ligne d'échappement (30) de gaz brûlés prenant naissance dans lesdits cylindres (11) et une ligne de recirculation (40) des gaz brûlés qui prend naissance dans cette ligne d'échappement (30) et qui débouche dans le plenum de swirl (26) du répartiteur d'air (24). 10 10. Internal combustion engine (1) according to one of the three preceding claims, comprising an intake line (20) of fresh air opening into said air distributor (24), an exhaust line (30). of burnt gases originating in said cylinders (11) and a recirculation line (40) of the flue gases which originates in this exhaust line (30) and which opens into the swirl plenum (26) of the air distributor (24). 10
FR0706867A 2007-10-01 2007-10-01 Exhaust gas inlet flow control valve opening or closing control method for e.g. diesel engine, involves controlling valve based on acquired pressure difference between filling and swirl plenum chambers and acquired characteristics value Withdrawn FR2921697A3 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
FR0706867A FR2921697A3 (en) 2007-10-01 2007-10-01 Exhaust gas inlet flow control valve opening or closing control method for e.g. diesel engine, involves controlling valve based on acquired pressure difference between filling and swirl plenum chambers and acquired characteristics value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0706867A FR2921697A3 (en) 2007-10-01 2007-10-01 Exhaust gas inlet flow control valve opening or closing control method for e.g. diesel engine, involves controlling valve based on acquired pressure difference between filling and swirl plenum chambers and acquired characteristics value

Publications (1)

Publication Number Publication Date
FR2921697A3 true FR2921697A3 (en) 2009-04-03

Family

ID=39386351

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0706867A Withdrawn FR2921697A3 (en) 2007-10-01 2007-10-01 Exhaust gas inlet flow control valve opening or closing control method for e.g. diesel engine, involves controlling valve based on acquired pressure difference between filling and swirl plenum chambers and acquired characteristics value

Country Status (1)

Country Link
FR (1) FR2921697A3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957980A1 (en) * 2010-03-24 2011-09-30 Renault Sas Intake circuit for diesel engine of e.g. four-cylinder motor, has cooler comprising product storage zone that is connected to circuit in cylinder by purging pipe emerging downstream from regulation valves
WO2015092226A1 (en) * 2013-12-19 2015-06-25 Valeo Systemes De Controle Moteur Combustion engine air intake system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306194A (en) * 1995-10-14 1997-04-30 Ford Motor Co Stratified charge engine
GB2307717A (en) * 1995-11-29 1997-06-04 Ford Motor Co Stratified charge engine with controlled exhaust gas recirculation
EP1705364A1 (en) * 2005-03-21 2006-09-27 Renault s.a.s. Intake air system with two valves
DE102005034274A1 (en) * 2005-07-22 2007-01-25 Daimlerchrysler Ag Device having a unit for actuating an internal combustion engine
FR2892460A1 (en) * 2005-10-21 2007-04-27 Renault Sas Intake system for e.g. diesel engine, has turbochargers divided into compressors and turbines and supplied by exhaust gas for producing identical air pressure in intake manifolds, and ducts having access controlled by valve
FR2893987A1 (en) * 2005-11-30 2007-06-01 Renault Sas Internal combustion engine e.g. petrol type direct injection internal combustion engine, for motor vehicle, has exhaust gas pipe connected to upstream end of cylinder head pipe so that exhaust gas is flown across upper part of latter pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2306194A (en) * 1995-10-14 1997-04-30 Ford Motor Co Stratified charge engine
GB2307717A (en) * 1995-11-29 1997-06-04 Ford Motor Co Stratified charge engine with controlled exhaust gas recirculation
EP1705364A1 (en) * 2005-03-21 2006-09-27 Renault s.a.s. Intake air system with two valves
DE102005034274A1 (en) * 2005-07-22 2007-01-25 Daimlerchrysler Ag Device having a unit for actuating an internal combustion engine
FR2892460A1 (en) * 2005-10-21 2007-04-27 Renault Sas Intake system for e.g. diesel engine, has turbochargers divided into compressors and turbines and supplied by exhaust gas for producing identical air pressure in intake manifolds, and ducts having access controlled by valve
FR2893987A1 (en) * 2005-11-30 2007-06-01 Renault Sas Internal combustion engine e.g. petrol type direct injection internal combustion engine, for motor vehicle, has exhaust gas pipe connected to upstream end of cylinder head pipe so that exhaust gas is flown across upper part of latter pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957980A1 (en) * 2010-03-24 2011-09-30 Renault Sas Intake circuit for diesel engine of e.g. four-cylinder motor, has cooler comprising product storage zone that is connected to circuit in cylinder by purging pipe emerging downstream from regulation valves
WO2015092226A1 (en) * 2013-12-19 2015-06-25 Valeo Systemes De Controle Moteur Combustion engine air intake system
FR3015578A1 (en) * 2013-12-19 2015-06-26 Valeo Sys Controle Moteur Sas AIR INTAKE SYSTEM FOR THERMAL ENGINE

Similar Documents

Publication Publication Date Title
EP2516836B1 (en) Method for controlling an egr circuit of a motor vehicle engine, valve for implementing said method, and engine having said valve
EP2516835B1 (en) Method for controlling an egr circuit in a motor vehicle engine
EP1632668B1 (en) System for controlling a combustion engine with direct injection and engine with such system
WO2014125185A1 (en) Method for determining the exhaust gas pressure upstream of the turbo compressor and for determining the flow rate passing through the turbine thereof
FR2840362A1 (en) METHOD FOR CONTROLLING THE FILLING OF AN INTERNAL COMBUSTION ENGINE
FR2921697A3 (en) Exhaust gas inlet flow control valve opening or closing control method for e.g. diesel engine, involves controlling valve based on acquired pressure difference between filling and swirl plenum chambers and acquired characteristics value
WO2004099594A1 (en) Method and device for controlling the airflow supplied to an internal combustion engine
FR2923544A1 (en) Supercharged diesel internal combustion engine for motor vehicle, has control unit with calculating unit that calculates setpoint position values of valve and flaps from setpoint values of air flow and gas rates in engine
EP1334269B1 (en) Method and device for controlling the temperature of an air mass into an internal combustion engine and engine using said method
FR2768460A1 (en) METHOD FOR IMPLEMENTING AN INTERNAL COMBUSTION ENGINE
FR2872220A1 (en) Internal combustion engine e.g. gasoline engine, controlling process for motor vehicle, involves controlling recirculated exhaust gas flow based on end casing pressure, turbine upstream pressure or temperature of gas in upstream of turbine
FR2849897A1 (en) Internal combustion engine operating method, involves determining curve of counter pressure of exhaust gas based on average pressure on exhaust valve for engine cycle, and average downstream pressure of friction charge unit
EP1671023A1 (en) Engine air supply control method which is intended, for example, for the control of a turbocharged engine
FR2870887A1 (en) Internal combustion engine e.g. gasoline engine, controlling method for motor vehicle, involves controlling overlapping of valve strokes so that inlet and exhaust valves are open and fuel arrives in exhaust gas pipe for being burnt with air
FR2911918A1 (en) Variable geometry type turbocharger controlling system for oil engine of motor vehicle, has control unit including control loops controlling displacement and angular position of blades based on operation point of engine, respectively
FR2724417A1 (en) METHOD FOR CONTROLLING A DIRECT INJECTION INTERNAL COMBUSTION ENGINE
FR2871195A1 (en) Internal combustion engine monitoring process for motor vehicle, involves adjusting controlled variable on value from requests on engine`s output variable if request different from pedal actuation request exists, or on actuation based value
WO2012085443A1 (en) System and method for controlling an internal combustion engine for a motor vehicle in transit
EP1574694B1 (en) Apparatus and method controlling metering of injected fuel in a diesel engine
FR2856432A1 (en) METHOD FOR CONTROLLING A MOTORIZATION SYSTEM WITH A DIESEL ENGINE AND A NITROGEN OXIDE TRAP
FR2886339A1 (en) Control and command system for i.c. engine with exhaust gas recirculation (EGR) has recirculation pipe equipped with gas flow rate measuring unit
FR2858020A1 (en) Internal combustion engine controlling process for vehicle, involves regulating airflow in exchanger and bypass, such that temperature of air in collector approaches predetermined value
EP3475556B1 (en) Method for determining the advance of ignition of an internal combustion engine and method for controlling an engine using such a method
FR2816660A1 (en) Method, for controlling engine operating by auto-ignition technique, involves control of fuel-air mixture and quantity and temperature of air admitted
FR2867811A1 (en) METHOD AND DEVICE FOR MANAGING AN INTERNAL COMBUSTION ENGINE

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20090630