FR2914040A1 - Flexible sub-marine conduit for transporting hydrocarbon, has maintaining layer including ribbon rolled around armoring plies, where ribbon is covered with reinforcing layer for increasing resistance to deformation of maintaining layer - Google Patents

Flexible sub-marine conduit for transporting hydrocarbon, has maintaining layer including ribbon rolled around armoring plies, where ribbon is covered with reinforcing layer for increasing resistance to deformation of maintaining layer Download PDF

Info

Publication number
FR2914040A1
FR2914040A1 FR0702065A FR0702065A FR2914040A1 FR 2914040 A1 FR2914040 A1 FR 2914040A1 FR 0702065 A FR0702065 A FR 0702065A FR 0702065 A FR0702065 A FR 0702065A FR 2914040 A1 FR2914040 A1 FR 2914040A1
Authority
FR
France
Prior art keywords
layer
holding tape
reinforcing layer
flexible
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0702065A
Other languages
French (fr)
Other versions
FR2914040B1 (en
Inventor
Anh Tuan Do
Patrice Joel Louis Jung
Alain Coutarel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technip Energies France SAS
Original Assignee
Technip France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to FR0702065A priority Critical patent/FR2914040B1/en
Application filed by Technip France SAS filed Critical Technip France SAS
Priority to PCT/FR2008/000383 priority patent/WO2008135663A2/en
Priority to MX2009009837A priority patent/MX2009009837A/en
Priority to BRPI0808908A priority patent/BRPI0808908B1/en
Priority to CA2680411A priority patent/CA2680411C/en
Priority to MYPI20093820 priority patent/MY150895A/en
Priority to EP08787830.2A priority patent/EP2137445B2/en
Priority to US12/531,984 priority patent/US8640739B2/en
Priority to AU2008248467A priority patent/AU2008248467B2/en
Priority to DK08787830.2T priority patent/DK2137445T4/en
Publication of FR2914040A1 publication Critical patent/FR2914040A1/en
Application granted granted Critical
Publication of FR2914040B1 publication Critical patent/FR2914040B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/156Coating two or more articles simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2883Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of preformed parts, e.g. inserts fed and transported generally uninfluenced through the extruder or inserts fed directly to the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/32Extrusion nozzles or dies with annular openings, e.g. for forming tubular articles
    • B29C48/34Cross-head annular extrusion nozzles, i.e. for simultaneously receiving moulding material and the preform to be coated

Abstract

The conduit has a tensile armoring internal ply (16) and a tensile armoring external ply (14) wrapped around an internal sealing sheath (18). A deformable maintaining layer (12) has a flexible maintaining ribbon rolled around the tensile armoring plies, and a tubular structure (10) supports the layer. The ribbon is provided with fiber tufts that are oriented along a longitudinal direction of the ribbon. The ribbon is covered with a reinforcing layer made of thermoplastic material, for increasing resistance to the deformation of the maintaining layer.

Description

Conduite flexible pour le transport des hydrocarbures à couche de maintienFlexible pipe for transporting hydrocarbons with a maintenance layer

renforcéeenhanced

La présente invention se rapporte à une conduite flexible sous- marine destinée au transport des hydrocarbures en eau profonde. Les conduites flexibles de transport des hydrocarbures sont déjà bien connues, et elles comportent généralement de l'intérieur vers l'extérieur de la conduite, une carcasse métallique, une gaine d'étanchéité interne en polymère, une voûte de pression, des nappes d'armures de ~o traction et une gaine externe en polymère pour protéger l'ensemble de la conduite et notamment pour empêcher l'eau de nier de pénétrer dans son épaisseur. La carcasse métallique et la voûte de pression sont constituées d'éléments longitudinaux enroulés à pas court, et elles confèrent à la conduite sa résistance aux efforts radiaux tandis que les nappes 15 d'armures de traction sont constituées de fils métalliques enroulés selon des pas longs pour reprendre les efforts axiaux. La nature, le nombre, le dimensionnement et l'organisation des couches constituant les conduites flexibles sont essentiellement liés à leurs conditions d'utilisation et d'installation. Dans la présente demande, la notion d'enroulement à pas 20 court désigne tout enroulement hélicoïdal selon un angle d'hélice proche de 90 , typiquement compris entre 75 et 90 . La notion d'enroulement à pas long recouvre quant à elle les angles d'hélice inférieurs à 55 , typiquement compris entre 25 et 55 pour les nappes d'armures. Ces conduites flexibles sont destinées au transport des 25 hydrocarbures notamment dans les fonds marins et ce, à de grandes profondeurs. Plus précisément elles sont dites de type non lié ( unbonded en langue anglaise) et elles sont ainsi décrites dans les documents normatifs publiés par l'American Petroleum Institute (API), API 17J et API RP 17B. 30 Lorsque la conduite flexible, quelle que soit sa nature, est soumise à une pression externe qui est plus élevée que la pression interne, il peut se produire une compression axiale qui est connue de l'homme du métier sous le nom d'effet de fond inverse ( reverse end cap effect en langue anglaise). L'effet de fond inverse a tendance à comprimer axialement la conduite flexible, à raccourcir sa longueur et à augmenter son diamètre, ce qui a tendance à provoquer un gonflement des nappes d'armures de traction. Dans le cas où la gaine externe de la conduite est étanche, la pression hydrostatique régnant à l'extérieur de la conduite s'oppose efficacement au gonflement des armures de traction. Par contre, si la gaine externe n'est plus étanche, par exemple suite à une déchirure accidentelle, la pression hydrostatique ne s'oppose plus au gonflement Io des nappes d'armures de traction. Par suite, en l'absence d'un moyen additionnel ayant pour fonction de limiter ce gonflement, les fils composant les nappes d'armures de traction peuvent flamber selon un mode radial, ce qui peut provoquer une déformation locale irréversible desdites nappes d'armures ayant la forme d'une cage d'oiseau , et ainsi ts entraîner la ruine de la conduite. Une solution connue permettant de réduire ce risque de flambement radial en "cage d'oiseau" consiste à enrouler à pas court, autour des nappes d'armures de traction, des rubans renforcés de fibres d'aramide, et plus précisément de fibres commercialisées sous la marque Kevlar par 20 la société DuPont de Nemours. De tels rubans présentent une grande résistance mécanique en traction suivant leur axe longitudinal, ce qui permet de limiter le gonflement des nappes d'armures de traction. Ils présentent en outre une grande souplesse en flexion, ce qui facilite les opérations de manutention et d'enroulement autour des nappes 25 d'armures. Enfin, à caractéristiques mécaniques égales, ils sont beaucoup plus légers que des rubans métalliques, ce qui permet de réduire le poids de la conduite flexible. On pourra notamment se référer au document FR 2 837 899 dans lequel une telle conduite est divulguée. Ces rubans de renfort se présentent sous la forme de faisceaux de 30 mèches de fibres ou mèches filamentaires en Kevlar orientées parallèlement à l'axe longitudinal du ruban. Ces mèches de fibres longitudinales peuvent être assemblées les unes avec les autres sous la forme d'un faisceau relativement plat ayant une section sensiblement rectangulaire du type de celle d'un ruban ou d'une bande. Il est également possible d'utiliser un ruban de renfort constitué d'une section centrale sensiblement rectangulaire et de deux bords longitudinaux plus minces que la section centrale tel que décrit dans le document EP1419338. Les moyens d'assemblage et de contention de ces mèches de fibres ou mèches filamentaires, comportent généralement des éléments transverses qui sont conformés de manière à entourer et à serrer ensemble lesdites mèches de façon à former un faisceau relativement plat. Dans les ~o configurations courantes, ces éléments transverses sont assimilables à des fils de trame, les mèches filamentaires formant la chaîne, et le ruban pouvant alors être considéré comme un matériau tissé. Différents modes de réalisation de ces rubans de renfort sont décrits dans les documents W097/12753 et W09713091. 15 Cependant, il a été constaté malgré cela, que dans des conditions extrêmes d'utilisation, ces rubans de renfort pouvaient se détériorer. Ces conditions extrêmes se rencontrent principalement lorsque la conduite flexible est d'une part immergée à grande profondeur, typiquement à plus de 2000m, et d'autre part simultanément soumise à des sollicitations 20 dynamiques en flexion, ce qui génère un phénomène de fatigue des rubans de renfort. Ces conditions peuvent être réunies au niveau de la partie inférieure des conduites montantes flexibles ( flexible risers en langue anglaise) disposées en caténaire, et assurant la liaison entre le fond marin et un support flottant à la surface. Du fait des mouvements du 25 support flottant, la partie inférieure de la caténaire peut être soumise à des variations importantes de courbure. De plus, cette zone dynamique est localisée à proximité du point de contact avec le fond marin ( touch down point en langue anglaise), c'est-à-dire potentiellement à grande profondeur. 30 Aussi, un problème qui se pose et que vise à résoudre la présente invention est de fournir une conduite flexible sous-marine qui puisse résister dans ces conditions extrêmes de profondeur et de sollicitations dynamiques en flexion, et pour laquelle le gonflement des armures de traction puisse être durablement contenu pour éviter le flambement radial en cage d'oiseau . Dans le but de résoudre ce problème, la présente invention propose conduite flexible sous-marine destinée au transport des hydrocarbures, ladite conduite flexible comprenant, de l'intérieur vers l'extérieur, une gaine d'étanchéité interne, au moins une nappe d'armures de traction enroulée autour de ladite gaine d'étanchéité interne, une couche de maintien déformable comprenant au moins un ruban de maintien flexible enroulé autour de ladite nappe d'armures de traction, et au moins une structure tubulaire qui entoure ladite couche de maintien, ledit ruban de maintien comportant des mèches de fibres, lesdites mèches étant orientées sensiblement selon la direction longitudinale dudit ruban de maintien , et selon l'invention ledit ruban de maintien est revêtu d'une couche de renfort en matériau polymère pour augmenter la résistance à la déformation de ladite couche de maintien. Ainsi, une caractéristique de l'invention réside dans la mise en oeuvre du ruban de maintien et de la couche de renfort en matériau polymère, lesquels permettent ensemble d'augmenter globalement la rigidité en flexion du ruban de maintien revêtu et partant, la résistance à la déformation de la couche de maintien. En effet, il a été découvert que cette caractéristique permet d'augmenter significativement la durée de vie de la couche de maintien de la conduite flexible, lorsque cette dernière est immergée à grande profondeur et simultanément soumise à des sollicitations dynamiques en flexion. Des essais longs et minutieux ont été nécessaires pour comprendre les phénomènes de détérioration de la couche de maintien et mettre au point la présente invention. Ces essais ont été techniquement difficiles à mettre en oeuvre, puisqu'il a fallu tester en grandeur réelle des tronçons de conduite flexible en les soumettant simultanément à une pression extérieure très importante et à des variations de courbure.  The present invention relates to an underwater flexible pipe for the transport of hydrocarbons in deep water. The flexible hydrocarbon transport pipes are already well known, and they generally comprise from the inside to the outside of the pipe, a metal carcass, an internal polymer sheath, a pressure vault, webs of o ~ tensile armor and an outer polymer sheath to protect the entire pipe and especially to prevent water from denying to penetrate its thickness. The metal casing and the pressure vault consist of longitudinal elements wound with a short pitch, and they give the pipe its resistance to radial forces while the plies of tensile armor consist of metal wires wound in long steps. to resume the axial efforts. The nature, number, sizing and organization of the layers constituting the flexible pipes are essentially related to their conditions of use and installation. In the present application, the concept of short-pitch winding designates any helical winding at a helix angle close to 90, typically between 75 and 90. The concept of winding with a long pitch covers the propeller angles of less than 55, typically between 25 and 55 for the armor plies. These flexible pipes are intended for the transport of hydrocarbons, especially in the seabed, and at great depths. More precisely, they are called unbonded and are thus described in the normative documents published by the American Petroleum Institute (API), API 17J and API RP 17B. When the flexible pipe, of whatever kind, is subjected to an external pressure which is higher than the internal pressure, axial compression may occur which is known to those skilled in the art as reverse end cap effect in English language. The reverse bottom effect tends to axially compress the flexible pipe, shorten its length and increase its diameter, which tends to cause swelling of the plies of tensile armor. In the case where the outer sheath of the pipe is sealed, the hydrostatic pressure prevailing outside the pipe effectively opposes the swelling of the tensile armor. On the other hand, if the outer sheath is no longer tight, for example following accidental tearing, the hydrostatic pressure no longer opposes the swelling Io of the plies of traction armor. As a result, in the absence of an additional means whose function is to limit this swelling, the son composing the traction armor plies can flare in a radial mode, which can cause irreversible local deformation of said armor layers having the shape of a bird cage, and thus ruining the conduct. A known solution to reduce the risk of radial buckling in "bird cage" is to wind at short pitch, around the layers of tensile armor, ribbons reinforced with aramid fibers, and more specifically fibers marketed under the brand Kevlar by 20 the company DuPont de Nemours. Such ribbons have a high tensile strength along their longitudinal axis, which limits the swelling of the plies of tensile armor. They also have great flexibility in bending, which facilitates the handling and winding operations around the armor layers. Finally, with equal mechanical characteristics, they are much lighter than metal tapes, which reduces the weight of the flexible pipe. In particular, reference may be made to document FR 2 837 899 in which such a conduct is disclosed. These reinforcing tapes are in the form of bundles of 30 strands of Kevlar filament fibers or strands oriented parallel to the longitudinal axis of the ribbon. These longitudinal fiber locks may be assembled together in the form of a relatively flat beam having a substantially rectangular section of the type of that of a ribbon or band. It is also possible to use a reinforcing ribbon consisting of a substantially rectangular central section and two longitudinal edges thinner than the central section as described in document EP1419338. The assembly means and contention of these strands of fibers or filament strands, generally comprise transverse elements which are shaped so as to surround and to tighten together said strands so as to form a relatively flat beam. In ~ o common configurations, these transverse elements are comparable to weft son, filament strands forming the chain, and the ribbon can then be considered a woven material. Various embodiments of these reinforcing tapes are disclosed in WO97 / 12753 and WO9713091. However, it has been found in spite of this that under extreme conditions of use, these reinforcing tapes could deteriorate. These extreme conditions are mainly encountered when the flexible pipe is on the one hand submerged at great depth, typically more than 2000m, and on the other hand simultaneously subjected to dynamic bending stresses, which generates a fatigue phenomenon of the ribbons. reinforcement. These conditions can be met at the lower part of the flexible risers (flexible risers in English language) arranged in catenary, and ensuring the connection between the seabed and a support floating on the surface. Due to the movements of the floating support, the lower part of the catenary can be subject to significant variations in curvature. In addition, this dynamic zone is located near the point of contact with the seabed (touch down point in English), that is to say potentially at great depth. Also, a problem that arises and that the present invention aims to solve is to provide a flexible underwater pipe that can withstand in these extreme conditions of depth and dynamic bending stresses, and for which the swelling of the tensile armor can be permanently contained to avoid radial buckling in a bird cage. In order to solve this problem, the present invention proposes an underwater flexible pipe intended for the transport of hydrocarbons, said flexible pipe comprising, from inside to outside, an internal sealing sheath, at least one sheet of tensile armor wound around said inner sealing sheath, a deformable holding layer comprising at least one flexible holding tape wrapped around said traction armor layer, and at least one tubular structure surrounding said holding layer, said holding tape comprising fiber locks, said locks being oriented substantially in the longitudinal direction of said holding tape, and according to the invention said holding tape is coated with a reinforcing layer of polymer material to increase the resistance to deformation of said holding layer. Thus, a feature of the invention lies in the implementation of the holding tape and the reinforcing layer of polymeric material, which together allow to increase overall the bending stiffness of the coated holding tape and hence the resistance to the deformation of the holding layer. Indeed, it has been discovered that this characteristic makes it possible to significantly increase the service life of the retention layer of the flexible pipe, when the latter is immersed at great depth and simultaneously subjected to dynamic bending stresses. Long and thorough tests were necessary to understand the deterioration phenomena of the holding layer and to develop the present invention. These tests were technically difficult to implement, since it was necessary to test in real size sections of flexible pipe by subjecting them simultaneously to a very large external pressure and to variations in curvature.

Cette invention présente un caractère surprenant et va à l'encontre de plusieurs préjugés de l'homme du métier. En effet, ce dernier considérait naturellement que, plus la profondeur est importante, plus l'effet de fond inverse est élevé et, par suite, plus les moyens destinés à empêcher le gonflement des nappes d'armures de traction doivent être résistants. Or, lorsque la couche de maintien exerce sa fonction de limitation de gonflement des nappes d'armures de traction, le ruban de maintien est quant à lui principalement sollicité en traction selon une direction sensiblement parallèle à son axe longitudinal, c'est-à-dire à celle Io des mèches de fibres. Par suite, l'homme du métier avait auparavant cherché à maximiser la résistance à la traction des rubans de maintien. De plus, afin de faciliter la fabrication de la couche de maintien, il avait aussi cherché à minimiser la rigidité en flexion du ruban de maintien, ce qui permettait de réaliser l'opération d'enroulement avec une rubaneuse 15 de faible puissance. Or, la présente invention va à l'encontre de ces deux pratiques, puisque le fait de revêtir le ruban de maintien d'une couche de renfort en matériau polymère conduit d'une part à une diminution de sa résistance mécanique en traction à section transverse égale (augmentation de la section à quantité égale de mèches de fibres), et 20 d'autre part à une augmentation de sa rigidité en flexion. Ainsi, la couche de renfort en matériau polymère augmente la rigidité en flexion du ruban de maintien, ce qui de façon surprenante limite le phénomène précité de fatigue. La couche de renfort en matériau polymère est avantageusement 25 réalisée en polyamide, en polyéthylène ou en polypropylène ou encore en polyester ; les polymères fluorés tels les PVDF peuvent également convenir. Les polymères adaptés sont de préférence des polymères thermoplastiques. Au surplus, le ruban de maintien est orienté avantageusement, de 30 façon que la couche de renfort soit directement en contact avec les armures. Ainsi, les fibres des mèches sont-elles préservées de l'usure par leur frottement contre les armures.  This invention has a surprising character and goes against several prejudices of the skilled person. Indeed, the latter naturally considered that the greater the depth, the higher the reverse background effect is high and, therefore, the means for preventing the swelling of the plies of tensile armor must be resistant. However, when the retaining layer exerts its function of limiting swelling of the plies of tensile armor, the holding tape is in turn mainly stressed in traction in a direction substantially parallel to its longitudinal axis, that is to say say to that Io strands of fibers. As a result, those skilled in the art had previously sought to maximize the tensile strength of the holding tapes. In addition, in order to facilitate the manufacture of the retaining layer, it had also sought to minimize the bending stiffness of the holding tape, which made it possible to perform the winding operation with a low power tape. However, the present invention goes against these two practices, since the fact of coating the holding tape with a reinforcing layer of polymer material leads on the one hand to a reduction in its tensile strength in transverse section equal (increase of the equal-sized section of fiber locks), and on the other hand to increase in its bending stiffness. Thus, the reinforcing layer of polymer material increases the flexural stiffness of the holding tape, which surprisingly limits the aforementioned phenomenon of fatigue. The reinforcing layer of polymeric material is advantageously made of polyamide, polyethylene or polypropylene or polyester; fluorinated polymers such as PVDF may also be suitable. Suitable polymers are preferably thermoplastic polymers. In addition, the holding tape is advantageously oriented, so that the reinforcing layer is directly in contact with the armor. Thus, the fibers of the locks are preserved from wear by their friction against the armor.

Selon un mode particulier de mise en oeuvre de l'invention, ladite couche de renfort et ledit ruban de maintien sont au moins partiellement interpénétrés l'un dans l'autre, de façon à obtenir une parfaite cohésion de la couche de renfort et du ruban de maintien. De la sorte, les propriétés mécaniques du ruban de maintien, en termes de résistance à la traction, sont conservées de sorte que la couche de renfort est préservée des efforts de traction qui s'exercent sur elle, et cette même couche de renfort peut alors jouer son rôle en rigidifiant le ruban de maintien. De surcroît, lesdites fibres présentent à température ambiante un ~o module d'élasticité, de préférence, supérieur à 50 GPa. Le module d'élasticité est mesuré par un essai de traction conforme à la norme ASTM D885-04. Cet essai est pratiqué non pas sur une fibre individuelle, mais sur un fil constitué de 500 à 2500 fibres ou filaments identiques et de même longueur. La torsion du fil utilisé pour l'essai est inférieure à 15 100 tours par mètre et par exemple, de l'ordre de 60 tours par mètres, ce qui permet d'améliorer la reproductibilité et la précision des mesures, en accord avec les recommandations de la norme précitée. La distance entre mors en début d'essai de traction est de l'ordre de 400 mm. La vitesse de traction est de l'ordre de 50 mm /min. La température ambiante à laquelle 20 sont faits ces essais est de l'ordre de 18 C à 23 C. Par conséquent, grâce à ce module d'élasticité, les mèches de fibres et partant, le ruban de maintien revêtu, reprennent sans trop s'allonger, les efforts de traction qui s'exercent sensiblement tangentiellement au ruban de maintien et empêchent le gonflement des nappes d'armures. Les fibres 25 adaptées à la réalisation de telles mèches sont des fibres organiques, par exemple des fibres d'aramide, ou de polyéthylène à haute performance ou encore de polyester. De telles fibres présentent par ailleurs, et de façon avantageuse, un allongement à la rupture supérieur à 2 %, par exemple 2,5 %. La mesure de cet allongement à la rupture est réalisée par essai de 30 traction selon la norme ASTM D885-04 précitée. En outre, lesdites mèches de fibres comportant des fibres de coeur entourées par des fibres de surfaces, une portion desdites fibres de surface est avantageusement noyée à l'intérieur dudit matériau polymère de ladite couche de renfort pour relier ensemble ladite couche de renfort et ledit ruban de maintien. De cette façon, la couche de renfort en matériau polymère adhère fortement au ruban de maintien bien plutôt grâce à une liaison mécanique par l'emprisonnement des fibres qu'à une liaison chimique. Le matériau polymère s'étend plus ou moins profondément dans la fibre et emprisonne au moins les fibres de surface. Par ailleurs, le ruban de maintien comporte en outre, et de façon particulièrement avantageuse, des moyens de contention pour maintenir io ensemble lesdites mèches de fibres. Par exemple, ledit ruban de maintien est un matériau tissé et les moyens de contention destinés à maintenir ensemble les différentes mèches de fibres comportent alors au moins un fil de trame tissé avec lesdites mèches qui constituent, elles, les éléments de chaîne. De tels fils de trame n'étant pas soumis aux efforts de tension 15 appliqués à la bande, peuvent avantageusement être réalisés avec une matière peu résistante différente de celle des mèches de fibres. En outre, lesdites fibres sont maintenues ensemble, de préférence serrées les unes contre les autres, de manière à augmenter leur coefficient de friction les unes par rapport aux autres et à accroître la 20 résistance de la mèche de fibres en traction. Avantageusement, ledit ruban de maintien comprenant deux faces opposées l'une de l'autre, chacune desdites faces est recouverte de ladite couche de renfort, de manière à augmenter et plus encore la rigidité de la couche de maintien en flexion et aussi préserver le ruban de maintien de 25 l'abrasion sur ses deux faces. De surcroît, et selon un autre mode de mise en oeuvre, ladite couche de renfort forme une gaine autour dudit ruban de maintien en l'enrobant et en le préservant non seulement sur les deux faces opposées mais également sur la tranche. En outre, la couche de renfort est obtenue par extrusion dudit 30 matériau polymère. Cette couche de renfort est alors, soit directement extrudée sur le ruban de maintien, soit extrudée indépendamment et ensuite rapportée et calandrée avec le ruban de maintien. On expliquera plus en détail dans la suite de la description le mode de réalisation de la couche de renfort sur le ruban de maintien. De plus, avantageusement, une couche textile, par exemple une couche textile formant un mat, est intercalée entre les mèches de fibres et la couche de renfort. Le terme mat désigne un voile de fibres courtes non tissées, généralement assemblées par compactage mécanique et/ou collage. De la sorte, l'adhérence entre les mèches de fibres et la couche de renfort est améliorée. D'autres particularités et avantages de l'invention ressortiront à la to lecture de la description faite ci-après de modes de réalisation particuliers de l'invention, donnés à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels : - la Figure 1 est une vue schématique partielle en perspective d'une conduite flexible selon l'invention ; 15 - la Figure 2 est une vue schématique partielle en perspective d'un élément de la conduite flexible illustré sur la Figure 1 ; - la Figure 3 est une vue schématique d'une installation permettant de revêtir d'une couche de renfort, l'élément représenté sur la Figure 2 ; - la Figure 4, est une vue schématique en coupe droite de l'élément 20 partiellement représenté sur la Figure 2 et revêtu, selon une première variante de réalisation - la Figure 5, est une vue schématique en coupe droite de l'élément partiellement représenté sur la Figure 2 et revêtu, selon une deuxième variante de réalisation 25 - la Figure 6, est une vue schématique en coupe droite de l'élément partiellement représenté sur la Figure 2 et revêtu, selon une troisième variante de réalisation et, - la Figure 7, est une vue schématique en coupe droite de l'élément partiellement représenté sur la Figure 2 et revêtu, selon une quatrième 30 variante de réalisation. La Figure 1 illustre une conduite conforme à l'invention comprenant, de l'extérieur vers l'intérieur , une gaine polymérique externe d'étanchéité 10 (appelée gaine externe), une couche de maintien 12 que l'on détaillera ci-après enroulée autour d'une nappe externe d'armures de traction 14, une nappe interne d'armures de traction 16 enroulée en sens opposé de la nappe externe 14, une voûte de pression 20 de reprise des efforts radiaux généré par la pression du fluide transporté, une gaine polymérique interne d'étanchéité 18 et une carcasse interne 17 de reprise des efforts radiaux d'écrasement. Du fait de la présence de la carcasse interne 17, cette conduite est dite à passage non lisse ( rough bore en langue anglaise). L'invention pourrait aussi s'appliquer à une conduite dite à to passage lisse ( smooth-bore en langue anglaise), ne comportant pas de carcasse interne. De même, on ne sortirait pas du champ de la présente invention en supprimant la voûte de pression 20, sous réserve que les angles d'hélice des fils constituant les nappes d'armures 14, 16 soient proches de 55 et en sens opposé. Les nappes d'armures 14, 16 1s sont obtenues par enroulement à pas long d'un ensemble de fils en matériau métallique ou composite, de section généralement sensiblement rectangulaire. L'invention s'appliquerait aussi si ces fils avaient une section de géométrie circulaire ou complexe, du type par exemple T autoagrafé. Sur la Figure 1, seules deux nappes d'armures 14 et 16 sont 20 représentées, mais la conduite pourrait aussi comporter une ou plusieurs paires supplémentaires d'armures. La nappe d'armures 14 est dite externe car elle est ici la dernière, en partant de l'intérieur de la conduite, avant la gaine d'étanchéité externe 10. La couche de maintien 12 est généralement enroulée autour de la nappe externe 14, mais l'invention 25 s'appliquerait aussi au cas d'une couche de maintien intercalée entre deux nappes d'armures de traction. Une telle configuration est divulguée dans le document FR 2 837 899. La couche de maintien 12, peut être constituée de plusieurs bandes, bandelettes, rubans de maintien ou éléments unitaires enroulés à pas 30 court autour de la nappe externe d'armures 14. Cet enroulement est généralement jointif ou avec recouvrement de façon à augmenter la capacité de reprise des efforts radiaux de gonflement. Les éléments unitaires de la couche de maintien présentent non seulement une forte résistance en traction longitudinale, suivant leur axe longitudinal, mais aussi une grande rigidité en flexion qui accroît la résistance à la déformation de la couche de maintien.  According to a particular embodiment of the invention, said reinforcing layer and said holding tape are at least partially interpenetrated one into the other, so as to obtain a perfect cohesion of the reinforcing layer and the tape. keeping. In this way, the mechanical properties of the holding tape, in terms of tensile strength, are maintained so that the reinforcing layer is preserved from the tensile forces exerted on it, and this same reinforcing layer can then play its role by stiffening the holding tape. In addition, said fibers have a modulus of elasticity at room temperature, preferably greater than 50 GPa. The modulus of elasticity is measured by a tensile test in accordance with ASTM D885-04. This test is practiced not on an individual fiber, but on a thread consisting of 500 to 2500 identical fibers or filaments of the same length. The twist of the thread used for the test is less than 100 revolutions per meter and for example, of the order of 60 revolutions per meter, which makes it possible to improve the reproducibility and the precision of the measurements, in accordance with the recommendations. of the aforementioned standard. The distance between the jaws at the beginning of the tensile test is of the order of 400 mm. The traction speed is of the order of 50 mm / min. The ambient temperature at which these tests are made is of the order of 18 ° C. to 23 ° C. Therefore, thanks to this modulus of elasticity, the fiber locks and, consequently, the coated holding tape, resume without too much lengthening, the tensile forces exerted substantially tangentially to the holding tape and prevent the swelling of the armor plies. The fibers 25 suitable for producing such locks are organic fibers, for example aramid fibers, or high-performance polyethylene or polyester. Such fibers have, moreover, and advantageously, an elongation at break greater than 2%, for example 2.5%. The measurement of this elongation at break is carried out by tensile test according to the abovementioned ASTM D885-04 standard. In addition, said fiber strands comprising core fibers surrounded by surface fibers, a portion of said surface fibers is advantageously embedded inside said polymer material of said reinforcing layer to connect together said reinforcing layer and said ribbon keeping. In this way, the reinforcing layer made of polymeric material strongly adheres to the holding tape, rather thanks to a mechanical bond by the entrapment of the fibers than to a chemical bond. The polymeric material extends more or less deeply into the fiber and traps at least the surface fibers. Furthermore, the holding tape further comprises, and particularly advantageously, restraining means for holding together said fiber locks. For example, said holding tape is a woven material and the holding means for holding together the different strands of fibers then comprise at least one weft yarn woven with said wicks which constitute, they, the warp elements. Such weft yarns not being subjected to the tension forces applied to the web, can advantageously be made with a material of low strength different from that of the fiber locks. In addition, said fibers are held together, preferably clamped against each other, so as to increase their coefficient of friction relative to one another and to increase the tensile strength of the fiber tow. Advantageously, said holding tape comprising two opposite faces of each other, each of said faces is covered with said reinforcing layer, so as to increase and more the rigidity of the bending retention layer and also preserve the ribbon maintaining the abrasion on both sides. In addition, and according to another embodiment, said reinforcing layer forms a sheath around said holding tape by coating and preserving not only on the two opposite faces but also on the wafer. In addition, the reinforcing layer is obtained by extruding said polymeric material. This reinforcing layer is then either directly extruded on the holding tape, or extruded independently and then reported and calendered with the holding tape. The embodiment of the reinforcing layer on the holding tape will be explained in greater detail in the following description. In addition, advantageously, a textile layer, for example a textile layer forming a mat, is interposed between the fiber locks and the reinforcing layer. The term "mat" refers to a web of non-woven short fibers generally assembled by mechanical compaction and / or gluing. In this way, the adhesion between the fiber locks and the reinforcing layer is improved. Other features and advantages of the invention will become apparent upon reading the following description of particular embodiments of the invention, given by way of indication but without limitation, with reference to the appended drawings in which: Figure 1 is a partial schematic perspective view of a flexible pipe according to the invention; Figure 2 is a partial schematic perspective view of an element of the flexible pipe shown in Figure 1; - Figure 3 is a schematic view of an installation for coating a reinforcing layer, the element shown in Figure 2; - Figure 4 is a schematic cross-sectional view of the element 20 partially shown in Figure 2 and coated, according to a first embodiment - Figure 5 is a schematic cross-sectional view of the element partially shown 2 is a schematic cross-sectional view of the element partly shown in FIG. 2 and coated, according to a third variant embodiment and FIG. 7 is a diagrammatic cross-sectional view of the element partially shown in FIG. 2 and coated, according to a fourth variant embodiment. FIG. 1 illustrates a pipe according to the invention comprising, from the outside towards the inside, an outer polymeric sheath 10 (called outer sheath), a retaining layer 12 which will be detailed hereinafter around an outer traction armor ply 14, an inner ply of traction armors 16 wound in opposite directions of the outer ply 14, a pressure vault 20 for taking up radial forces generated by the pressure of the fluid transported, an internal polymeric sheath sealing 18 and an internal carcass 17 for resumption of crushing radial forces. Due to the presence of the inner carcass 17, this pipe is said to non-smooth passage (rough bore in English). The invention could also be applied to a so-called smooth-bore (English-language) pipe, having no internal carcass. Similarly, it is not beyond the scope of the present invention by removing the pressure vault 20, provided that the helix angles of the son constituting the armor plies 14, 16 are close to 55 and in opposite directions. The armor plies 14, 16 1s are obtained by long-pitch winding of a set of son of metal or composite material, generally of substantially rectangular section. The invention would also apply if these wires had a section of circular or complex geometry, of the type for example T auto-stapled. In Figure 1, only two armor plies 14 and 16 are shown, but the pipe could also include one or more additional pairs of armor. The armor ply 14 is said to be external because it is here the last, starting from the inside of the pipe, before the outer sealing sheath 10. The retaining layer 12 is generally wound around the outer ply 14, but the invention 25 would also apply to the case of a holding layer interposed between two layers of tensile armor. Such a configuration is disclosed in document FR 2 837 899. The retaining layer 12 may consist of several strips, strips, holding tapes or unitary elements wound with a short pitch around the outer layer of armor 14. This winding is generally joined or overlapped so as to increase the ability to take up the radial swelling forces. The unitary elements of the holding layer have not only a high longitudinal tensile strength, along their longitudinal axis, but also a high flexural stiffness which increases the resistance to deformation of the holding layer.

Ainsi, les éléments unitaires de maintien sont réalisés dans des matériaux appropriés, et en l'espèce dans un ruban de maintien en fibres, revêtu d'une couche de renfort en matériau polymère. Le ruban de maintien est réalisé par assemblage tissé ou non tissé desdites fibres. Cette couche de maintien 12 est destinée à bloquer l'expansion io radiale de ladite nappe d'armures, lorsqu'elle subit des efforts radiaux. Et c'est le cas lorsque la conduite flexible, étendue dans un fond marin de grande profondeur, subit un effet de fond inverse important, et que les nappes d'armures de traction 14,16 tendent à gonfler radialement sous l'effet de la compression axiale. 15 Afin de réaliser cette couche de maintien on fournit un ruban de maintien 22 représenté partiellement en perspective sur la Figure 2. Ce ruban de maintien 22 est apte à s'étendre longitudinalement selon un axe A. Le ruban de maintien 22 comporte plusieurs mèches et en l'espèce six mèches 24 de fibres 26, les mèches 24 étant orientées longitudinalement 20 selon l'axe A du ruban. Les mèches 24 sont ainsi constituées de l'assemblage de fibres 26, de fils ou de filaments réalisés dans un matériau organique à haute ténacité, du type aramide, polyéthylène à haute performance ou encore polyester aromatique. Parmi les aramides, on peut citer ceux commercialisés sous la marque Kevlar par la société 25 du Pont de Nemours, et ceux commercialisés sous les marques Twaron et Technora par la société Teijin. Avantageusement on choisit le Kevlar 49 dont les fibres présentent un module d'élasticité de l'ordre de 110 GPa mesuré selon la norme ASTM D885-04 précitée. Elles sont juxtaposées et maintenues ensemble par des moyens de contention 28 orientés 30 transversalement par rapport à l'axe A du ruban de maintien 22. Ces moyens de contention peuvent comporter des liens entourant l'ensemble, ou des fils de trame tissés avec les mèches 24, ces dernières constituant alors les éléments de chaîne. Les moyens de contention n'ayant pas la fonction de reprise des efforts longitudinaux de traction, ils peuvent être réalisés avec des polymères moins résistants que ceux utilisés pour les mèches 24.  Thus, the unitary holding elements are made of suitable materials, and in this case in a fiber retaining tape, coated with a reinforcing layer of polymer material. The holding tape is made by woven or non-woven assembly of said fibers. This holding layer 12 is intended to block the radial expansion of said armor ply, when it undergoes radial forces. And this is the case when the flexible pipe, extended in a deep seabed, undergoes a significant inverse bottom effect, and the traction armor plies 14, 16 tend to swell radially under the effect of the axial compression. In order to produce this holding layer, a holding tape 22 is shown partially in perspective in FIG. 2. This holding tape 22 is able to extend longitudinally along an axis A. The holding tape 22 has several strands and in this case six strands 24 of fibers 26, the strands 24 being oriented longitudinally 20 along the axis A of the ribbon. The locks 24 thus consist of the assembly of fibers 26, son or filaments made of a high-tenacity organic material, aramid type, high performance polyethylene or aromatic polyester. Among the aramids include those marketed under the Kevlar brand by the company 25 Pont de Nemours, and those marketed under the trademarks Twaron and Technora by the company Teijin. Advantageously one chooses the Kevlar 49 whose fibers have a modulus of elasticity of the order of 110 GPa measured according to ASTM D885-04 supra. They are juxtaposed and held together by means of contention 28 oriented transversely with respect to the axis A of the holding tape 22. These contention means may comprise links surrounding the assembly, or weft threads woven with the wicks. 24, the latter then constituting the chain elements. Since the restraining means do not have the function of taking up the longitudinal traction forces, they can be made with polymers that are less resistant than those used for the locks 24.

On décrira ci-après en référence à la Figure 3, une méthode de réalisation, selon une première variante et grâce à une installation adaptée, d'un ruban de maintien revêtu d'une couche de renfort en matériau polymère. Pour ce faire, on fournit un ruban de maintien 30 du type précité, d'une largeur comprise entre 50 mm et 250 mm et par to exemple ici de 75 mm, et d'une épaisseur comprise entre 0,5 mm et 5 mm et par exemple de 1 mm, et enroulé sur une bobine de stockage 32. Le ruban de maintien 30 traverse une tête d'extrusion 34 en équerre où il est enduit d'une couche de renfort 35, puis traverse ensuite une calandre 36 pour que le ruban de maintien 30 et la couche de renfort 35 15 s'interpénètrent l'un dans l'autre ; le ruban de maintien 30 ainsi revêtu est ensuite refroidi dans un échangeur thermique 38 et enfin enroulé sur une bobine de réception 40. La tête d'extrusion 34 prolonge une filière 42 qui permet de porter un matériau polymère au voisinage d'une température de fusion. Par ailleurs, simultanément, deux couches intermédiaires formées 20 de deux voiles de fibres 44, 46, ou mats, délivrés par des rouleaux 48, 50, sont appliquées sur les deux faces opposées du ruban de maintien 30 avant l'entrée dans la tête d'extrusion 34. Les matériaux polymères envisagés sont préférentiellement des polymères thermoplastiques dont le module d'élasticité en traction est au 25 moins de 300 MPa. Avantageusement, le module d'élasticité en traction du polymère est en outre inférieur à 1200 MPa. Cette gamme de modules compris entre 300 MPa et 1200 MPa permet en pratique d'obtenir un ruban de maintien présentant une rigidité en flexion suffisante pour résoudre le problème précité de fatigue, tout en évitant une rigidité 30 excessive qui aurait pour effet défavorable de rendre difficile l'opération d'enroulement dudit ruban. Ainsi, peuvent convenir, les polyamides, les polypropylènes, les polyéthylènes, les polyesters ou encore les polymères fluorés du type PVDF. Parmi les polyamides, peuvent convenir : le polyamide 11, le polyamide 12, le polyamide 6, le polyamide 6-6, le polyamide 6-12 ; on retiendra ici le polyamide 11. Ainsi, le polyamide en fusion est extrudé autour du ruban de maintien 30 et en particulier sur les deux voiles de fibres 44, 46 au fur et à mesure du déroulement. De la sorte, les deux voiles de fibres 44, 46 constitués de fibres courtes non tissées et assemblées par compactage mécanique et d'une épaisseur comprise entre 0,1 et 0,5 mm, permettent d'augmenter à la fois l'imprégnation du polymère en fusion et l'adhérence. Car en effet, to les voiles de fibres 44, 46 absorbent le polyamide en fusion en jouant le rôle de buvard et augmentent par conséquent l'imprégnation des fibres des mèches. Par ailleurs, ils permettent également d'éviter que le polymère ne flue au coeur du ruban de maintien 30. De la sorte, malgré la pression induite par l'extrusion du polymère autour du ruban de maintien 15 30 et grâce à l'effet d'absorption des voiles de fibres, le polymère en fusion précisément, tend à recouvrir uniformément les deux faces opposées du ruban de maintien 30. Puis, le calandrage à travers la calandre 36 qui exerce une pression normale au ruban de maintien revêtu, permet de faire pénétrer légèrement le polymère visqueux en phase de refroidissement 20 vers l'intérieur du ruban de maintien 30 pour pouvoir ensuite, après refroidissement dans l'échangeur thermique 38, emprisonner les fibres. On se référera à la Figure 4 illustrant en section droite, le ruban de maintien 430 revêtu de la couche de renfort 435. On retrouve sur cette Figure, les mèches 424 de section droite circulaire et constituées de fibres 25 426. Le ruban de maintien 430 présente une épaisseur originelle 4E1 correspondant sensiblement au diamètre des mèches 424 et de l'ordre du millimètre et une largeur 4L1 d'environ 75 mm. Par ailleurs, on retrouve les deux voiles de fibres 444, 446, d'une épaisseur 4Emat d'environ 0,2 mm, appliqués sur les deux faces opposées du ruban de maintien 430 et 30 recouvert de la couche de renfort 435 en polyamide. Aussi, cette couche de renfort 435, d'épaisseur 4E21= 4E22, forme-t-elle une gaine qui recouvre également la tranche du ruban de maintien 430. De préférence, l'épaisseur cumulée de la couche de renfort 435 sur les deux faces opposées du ruban de maintien 430 est supérieure au tiers de son épaisseur 4E1. Avantageusement, cette épaisseur cumulée 4E21+ 4E22 est supérieurs à la moitié de l'épaisseur 4E1. Cette caractéristique confère au ruban de maintien une rigidité en flexion suffisante pour résoudre le problème précité de fatigue. Les voiles de fibres sont constitués de fibres courtes de quelques millimètres en matériau polymère du type de celui des fibres 426 des mèches 424. Ainsi, lorsque les fibres 426 des mèches 424 sont par io exemple en Kevlar 49, les voiles de fibres 444, 446 sont constitués de fibres aramides. Par ailleurs, toujours selon cette première variante, mais dans un autre mode de réalisation, les voiles de fibres 444, 446 sont préalablement fixés par couture sur le ruban de maintien 430. De la sorte, il n'est 15 nullement nécessaire de mettre en oeuvre les deux rouleaux 48, 50 représentés sur la Figure 3 et délivrant les voiles de fibres. On s'affranchit ainsi du guidage latéral de l'alimentation en voiles de fibres qui est malaisé à mettre en oeuvre simultanément avec le guidage du ruban de maintien 430. 20 Le tableau I ci-dessous illustre les dimensions d'exemples de ruban de maintien 430 revêtus. Tableau 1 4L1 50 mm 100 mm 200 mm 4L2 51 mm 102 mm 204 mm 4E1 0,5 mm 1 mm 2 mm 4E21 0,2 mm 0,2 mm 0, 5 mm 4E22 0,2 mm 0,2 mm 0,5 mm 4E21+4E22 0,4 mm 0,4 mm 1 mm 4Emat 0,1 mm 0, 1 mm 0,5 mm Selon encore un autre mode de réalisation, non représenté, et 25 conformément à cette première variante, les deux tranches opposées du ruban de maintien 430 sont libres, et les deux faces opposées sont respectivement recouvertes d'un voile de fibres et d'une couche de renfort. On se référera maintenant à la Figure 5 illustrant en sectiondroite, un ruban de maintien 530 revêtu d'une couche de renfort 535 en matériau polymère et réalisé par la mise en oeuvre de la méthode décrite en référence à la Figure 3, selon une deuxième variante. Selon cette deuxième variante, il n'est pas appliqué de voiles de fibres entre la couche de renfort 535 et les mèches 524 du ruban de maintien 530. Ainsi, la couche de renfort 535 forme également une gaine autour du ruban de to maintien 530 et elle est obtenue en appliquant directement le polymère extrudé sur le ruban de maintien. Pour ce faire, la température du polymère extrudé par la tête d'extrusion 34 est ajustée afin que sa viscosité soit à une valeur sensiblement supérieure, par rapport à celle qui est envisagée pour revêtir 15 un ruban de maintien 530 recouvert de voiles de fibres, tel qu'illustré sur la Figure 4, de manière à éviter que ce polymère ne flue complètement à travers le ruban de maintien 530, et afin qu'il puisse former une couche cohérente en surface. Bien évidemment, la nature du matériau polymère peut également être adaptée en conséquence. 20 On se référera à présent à la Figure 6 représentant en section droite et selon une troisième variante de réalisation, un ruban de maintien 630 revêtu d'une couche de renfort 635 sur une seule face. Un tel ruban de maintien 630 revêtu est susceptible d'être réalisé selon la méthode décrite ci-dessus en référence à l'installation illustrée sur la Figure 3. Toutefois, 25 ladite installation est modifiée sensiblement de manière à extruder directement et sur une seule face seulement du ruban de maintien 630, le matériau polymère destiné à former la couche de renfort 635. Par ailleurs, il est nécessaire, ainsi que l'illustre la Figure 6, que le matériau polymère flue légèrement entre les mèches 624 de manière à imprégner un plus 30 grand nombre de fibres 626 et aussi de prévoir des moyens de contention des mèches 624, afin d'obtenir une meilleure solidarisation de la couche de renfort 635 et du ruban de maintien 630. Au surplus, la température du polymère extrudé est augmentée afin de diminuer la viscosité de ce polymère, de façon à ce qu'il pénètre aussi à l'intérieur des mèches 624 de fibres 636. Les liaisons mécaniques entre la couche de renfort 635 et le ruban de maintien 630 n'en seront que renforcées, après refroidissement du polymère. La couche de renfort 635 est centrée sur le ruban de maintien 630 et elle s'étend sur une largeur 6L2 sensiblement inférieure à la largeur 6L1 du ruban de maintien 630. Avantageusement, l'épaisseur 6E2 de la couche de renfort 635 est supérieure au tiers de l'épaisseur 6E1 du ruban de maintien 630 et de préférence supérieure à la moitié. Ainsi, to ce critère d'épaisseur qui conditionne indirectement l'inertie globale de la couche de maintien 630 revêtu, conditionne par là même, la résistance à la flexion. Par ailleurs, le module d'élasticité (module d'Young) du matériau polymère, ici du polyamide 11, est supérieur à 300 MPa à température ambiante. 15 Toutefois, selon un mode particulier de mise en oeuvre, conformément à cette troisième variante de réalisation, il est prévu de revêtir les deux faces opposées du ruban de maintien 630 d'une couche de renfort 635. De la sorte, les deux faces opposées du ruban de maintien 630 sont susceptibles d'être préservées de l'usure par frottement. Au 20 surplus, le ruban de maintien 630 présente une rigidité en flexion plus importante et par conséquent une plus grande résistance à la fatigue. Selon une quatrième variante de réalisation illustrée sur la Figure 7, un ruban de maintien 730 est constitué de plusieurs couches superposées et en l'espèce de deux couches superposées de mèches 724 de fibres 25 726 reliées ensemble par des moyens de contention appropriés 728. De la sorte, la résistance mécanique en traction du ruban de maintien 730 est augmentée par rapport aux rubans de maintien monocouche des variantes de réalisation précitées. Le ruban de maintien 730 est revêtu d'une couche de renfort 735 3o sensiblement similaire à la couche de renfort 635 recouvrant le ruban de maintien 630 monocouche illustré sur la Figure 6.  A method of making, according to a first variant and thanks to a suitable installation, a holding tape coated with a reinforcing layer of polymer material will be described hereinafter with reference to FIG. To do this, a holding tape 30 of the aforementioned type, with a width of between 50 mm and 250 mm and for example of 75 mm, and a thickness of between 0.5 mm and 5 mm, is provided. for example 1 mm, and wound on a storage spool 32. The holding tape 30 passes through an extrusion head 34 at right angles where it is coated with a reinforcing layer 35, then through a calender 36 so that the holding tape 30 and reinforcing layer 35 interpenetrate one into the other; the holding tape 30 thus coated is then cooled in a heat exchanger 38 and finally wound on a receiving coil 40. The extrusion head 34 extends a die 42 which carries a polymer material in the vicinity of a melting temperature . Furthermore, at the same time, two intermediate layers formed of two webs of fibers 44, 46, or mats, delivered by rollers 48, 50, are applied to the two opposite faces of the holding tape 30 before entering the head. The polymeric materials contemplated are preferably thermoplastic polymers having a modulus of elasticity in tension of at least 300 MPa. Advantageously, the modulus of elasticity in tension of the polymer is also less than 1200 MPa. This range of modules ranging between 300 MPa and 1200 MPa makes it possible in practice to obtain a holding tape having a flexural rigidity sufficient to solve the aforementioned problem of fatigue, while avoiding excessive rigidity which would have the adverse effect of making difficult the winding operation of said ribbon. Thus, polyamides, polypropylenes, polyethylenes, polyesters or fluoropolymers of the PVDF type may be suitable. Among the polyamides, may be suitable: polyamide 11, polyamide 12, polyamide 6, polyamide 6-6, polyamide 6-12; Polyamide 11 will be used here. Thus, the molten polyamide is extruded around the holding tape 30 and in particular on the two fiber webs 44, 46 as it unfolds. In this way, the two fiber webs 44, 46 consisting of nonwoven short fibers and assembled by mechanical compaction and having a thickness of between 0.1 and 0.5 mm, make it possible to increase both the impregnation of the Molten polymer and adhesion. Indeed, to the fiber webs 44, 46 absorb the molten polyamide playing the role of blotter and therefore increase the impregnation of the fibers of the locks. Moreover, they also make it possible to prevent the polymer from flowing into the heart of the holding tape 30. In this way, despite the pressure induced by the extrusion of the polymer around the holding tape 15 and thanks to the effect of absorption of the fiber webs, the melt polymer in particular, tends to uniformly cover the two opposite faces of the holding tape 30. Then, the calendering through the calender 36 which exerts a normal pressure to the coated holding tape, makes it possible to slightly penetrate the viscous polymer in the cooling phase towards the inside of the holding tape 30 so that after cooling in the heat exchanger 38, it can trap the fibers. Referring to Figure 4 illustrating in cross section, the holding tape 430 coated with the reinforcing layer 435. In this Figure, the wicks 424 of circular cross section and made of fibers 426 are found. The holding tape 430 has an original thickness 4E1 corresponding substantially to the diameter of the locks 424 and of the order of one millimeter and a width 4L1 of about 75 mm. Furthermore, there are two fiber webs 444, 446, of a thickness of about 0.2 mm 4Emat, applied to the two opposite faces of the holding tape 430 and 30 covered with the reinforcing layer 435 polyamide. Also, this reinforcing layer 435, of thickness 4E21 = 4E22, forms a sheath which also covers the edge of the holding tape 430. Preferably, the cumulative thickness of the reinforcing layer 435 on both sides opposite of the holding tape 430 is greater than one third of its thickness 4E1. Advantageously, this cumulative thickness 4E21 + 4E22 is greater than half the thickness 4E1. This feature gives the holding tape flexural rigidity sufficient to solve the aforementioned problem of fatigue. The fiber webs consist of short fibers of a few millimeters made of polymer material of the type of the fibers 426 of the locks 424. Thus, when the fibers 426 of the locks 424 are, for example, made of Kevlar 49, the fiber webs 444, 446 consist of aramid fibers. Furthermore, still according to this first variant, but in another embodiment, the fiber webs 444, 446 are previously fixed by stitching on the holding tape 430. In this way, there is no need to put in place the two rollers 48, 50 shown in FIG. 3 and delivering the fiber webs. This eliminates the lateral guiding of the supply of fiber webs which is difficult to implement simultaneously with the guide of the holding tape 430. Table I below illustrates the dimensions of examples of holding tape. 430 coated. Table 1 4L1 50mm 100mm 200mm 4L2 51mm 102mm 204mm 4E1 0.5mm 1mm 2mm 4E21 0.2mm 0.2mm 0.5mm 4E22 0.2mm 0.2mm 0.5 mm 4E21 + 4E22 0.4mm 0.4mm 1mm 4Emat 0.1mm 0.1mm 0.5mm According to yet another embodiment, not shown, and in accordance with this first variant, the two opposed slices of the holding tape 430 are free, and the two opposite faces are respectively covered with a fiber web and a reinforcing layer. Referring now to Figure 5 illustrating in right section, a holding tape 530 coated with a reinforcing layer 535 of polymeric material and produced by the implementation of the method described with reference to Figure 3, according to a second variant . According to this second variant, fiber webs are not applied between the reinforcing layer 535 and the locks 524 of the holding tape 530. Thus, the reinforcing layer 535 also forms a sheath around the holding tape 530 and it is obtained by directly applying the extruded polymer to the holding tape. To do this, the temperature of the polymer extruded by the extrusion head 34 is adjusted so that its viscosity is at a value substantially greater than that envisaged for coating a holding tape 530 covered with fiber webs, as shown in Figure 4, so as to prevent this polymer from flowing completely through the holding tape 530, and so that it can form a coherent surface layer. Of course, the nature of the polymeric material can also be adapted accordingly. Referring now to Figure 6 showing in cross-section and in a third embodiment, a holding tape 630 coated with a reinforcement layer 635 on one side. Such a coated retaining strip 630 can be produced according to the method described above with reference to the installation illustrated in FIG. 3. However, said installation is modified substantially so as to extrude directly and on one side only. only retaining tape 630, the polymeric material for forming the reinforcement layer 635. Moreover, it is necessary, as shown in Figure 6, that the polymeric material flows slightly between the strands 624 so as to impregnate a plus a large number of fibers 626 and also to provide means for restraining the locks 624, to obtain a better bonding of the reinforcing layer 635 and the holding tape 630. In addition, the temperature of the extruded polymer is increased so to reduce the viscosity of this polymer, so that it also penetrates the interior of the strands 624 of fibers 636. The mechanical connections between the reinforcement layer Strong 635 and the holding tape 630 will only be reinforced after cooling of the polymer. The reinforcing layer 635 is centered on the holding tape 630 and extends over a width 6L2 that is substantially smaller than the width 6L1 of the holding tape 630. Advantageously, the thickness 6E2 of the reinforcing layer 635 is greater than 1/3 the thickness 6E1 of the holding tape 630 and preferably greater than half. Thus, to this thickness criterion which indirectly conditions the overall inertia of the coated holding layer 630, thereby conditioning the flexural strength. Furthermore, the modulus of elasticity (Young's modulus) of the polymeric material, in this case polyamide 11, is greater than 300 MPa at room temperature. However, according to a particular embodiment, according to this third embodiment, it is intended to coat the two opposite faces of the holding tape 630 with a reinforcement layer 635. In this way, the two opposite faces of the holding tape 630 are capable of being preserved from frictional wear. In addition, the holding tape 630 has a higher flexural rigidity and therefore greater fatigue resistance. According to a fourth variant embodiment illustrated in FIG. 7, a holding tape 730 consists of several superimposed layers and in this case two superimposed layers of locks 724 of fibers 726 connected together by appropriate restraining means 728. in this way, the tensile strength of the holding tape 730 is increased relative to the monolayer holding tapes of the aforementioned embodiments. The holding tape 730 is coated with a reinforcing layer 735 30 substantially similar to the reinforcing layer 635 covering the monolayer holding tape 630 shown in FIG. 6.

S'agissant maintenant des méthodes de production des rubans de maintien revêtus, deux autres méthodes de réalisation non représentées peuvent être mises en oeuvre. Selon une première des autres méthodes de réalisation, et en reprenant l'installation illustrée sur la Figure 3, le matériau polymère est extrudé directement sur le ruban de maintien, sur les deux surfaces opposées, et ensuite sont appliquées successivement et sur chacune de ses deux faces opposées, un voile de fibres et un film en polyamide thermoplastique. L'ensemble à cinq couches est alors ensuite calandré puis refroidi. De la sorte, les voiles de fibres sont pris en sandwich entre le matériau polymère extrudé, en cours de durcissement et le film de polyamide thermoplastique ; et lorsque l'ensemble est calandré à chaud, le film de polyamide se ramollit et sous l'effet de la pression exercée par la calandre, traverse au moins partiellement le voile de fibres pour rejoindre le matériau polymère. Ainsi, le matériau polymère et le polyamide du film tendent à former une seule phase et emprisonne par la même le voile de fibres. Cette structure complexée, permet d'obtenir une grande rigidité en flexion du ruban de maintien revêtu. Selon la seconde autre méthode de réalisation, les moyens d'extrusion sont supprimés. Ainsi, sur chacune des deux faces opposées du ruban de maintien, sont appliquées successivement un voile de fibres et un film en polyamide, l'ensemble étant ensuite calandré à chaud. De la sorte, en traversant la calandre et moyennant un réglage adapté de la température de calandrage, les films de polyamide se ramollissent pour ne former qu'une seule phase qui traverse les voiles de fibres mais aussi qui flue à travers les fibres des mèches du ruban de maintien. Une telle méthode présente l'avantage de s'affranchir de moyens d'extrusion relativement coûteux et encombrants.30  Turning now to the methods of producing the coated holding tapes, two other methods of embodiment not shown can be implemented. According to a first of the other embodiments, and taking up the installation illustrated in FIG. 3, the polymer material is extruded directly onto the holding tape on the two opposite surfaces, and then applied successively and on each of its two opposite faces, a fiber web and a thermoplastic polyamide film. The five-layer assembly is then calendered and then cooled. In this way, the fiber webs are sandwiched between the extruded polymeric material, being cured, and the thermoplastic polyamide film; and when the assembly is calendered hot, the polyamide film softens and under the effect of the pressure exerted by the calender, at least partially passes through the fiber web to join the polymeric material. Thus, the polymeric material and the polyamide of the film tend to form a single phase and thereby trap the fiber web. This complexed structure makes it possible to obtain a high flexural rigidity of the coated holding tape. According to the second alternative method, the extrusion means are deleted. Thus, on each of the two opposite faces of the holding tape, are successively applied a fiber web and a polyamide film, the assembly then being calendered hot. In this way, by passing through the calender and with a suitable adjustment of the calender temperature, the polyamide films soften to form a single phase which passes through the fiber webs but also flows through the fibers of the locks of the yarn. holding tape. Such a method has the advantage of being free of relatively expensive and bulky extrusion means.

Claims (11)

REVENDICATIONS 1. Conduite flexible sous-marine destinée au transport des hydrocarbures, ladite conduite flexible comprenant, de l'intérieur vers l'extérieur, une gaine d'étanchéité interne (18), au moins une nappe d'armures de traction (14,16) enroulée autour de ladite gaine d'étanchéité interne, une couche de maintien déformable (12) comprenant au moins un ruban de maintien (34) flexible enroulé autour de ladite nappe d'armures de traction, et au moins une structure tubulaire (10) qui entoure ladite ro couche de maintien, ledit ruban de maintien comportant des mèches de fibres, lesdites mèches étant orientées sensiblement selon la direction longitudinale dudit ruban de maintien ; caractérisée en ce que ledit ruban de maintien est revêtu d'une couche de renfort en matériau polymère pour augmenter la résistance à la rs déformation de ladite couche de maintien.  1. Flexible underwater pipe for the transport of hydrocarbons, said flexible pipe comprising, from inside to outside, an internal sealing sheath (18), at least one layer of tensile armor (14, 16 ) wrapped around said inner sealing sheath, a deformable holding layer (12) comprising at least one flexible holding tape (34) wound around said tensile armor ply, and at least one tubular structure (10) which surrounds said ro-retaining layer, said retaining tape comprising fiber strands, said strands being oriented substantially in the longitudinal direction of said holding tape; characterized in that said holding tape is coated with a reinforcing layer of polymeric material to increase the resistance to deformation of said holding layer. 2. Conduite flexible sous-marine selon la revendication 1, caractérisée en ce que ladite couche de renfort et ledit ruban de maintien sont au moins partiellement interpénétrés l'un dans l'autre.  2. flexible underwater pipe according to claim 1, characterized in that said reinforcing layer and said holding tape are at least partially interpenetrated one into the other. 3. Conduite flexible sous-marine selon la revendication 1 ou 2, 20 caractérisée en ce que lesdites fibres présentent à température ambiante un module d'élasticité supérieur à 50 GPa.  3. Underwater flexible pipe according to claim 1 or 2, characterized in that said fibers have at room temperature a modulus of elasticity greater than 50 GPa. 4. Conduite flexible sous-marine selon l'une quelconque des revendications 1 à 3, caractérisée en ce que lesdites mèches de fibres comportant des fibres de coeur entourées par des fibres de surfaces, une 25 portion desdites fibres de surface est noyée à l'intérieur dudit matériau polymère de ladite couche de renfort pour relier ensemble ladite couche de renfort et ledit ruban de maintien.  4. Flexible underwater pipe according to any one of claims 1 to 3, characterized in that said fiber tows comprising core fibers surrounded by surface fibers, a portion of said surface fibers is embedded in interior of said polymeric material of said reinforcing layer for interconnecting said reinforcing layer and said holding tape. 5. Conduite flexible sous-marine selon l'une quelconque des revendications 1 à 4, caractérisée en ce que ledit ruban de maintien 30 comporte en outre des moyens de contention pour maintenir ensemble lesdites mèches de fibres.  5. Underwater flexible pipe according to any one of claims 1 to 4, characterized in that said holding tape 30 further comprises restraining means for holding together said fiber locks. 6. Conduite flexible sous-marine selon l'une quelconque des revendications 1 à 5, caractérisée en ce que les fibres desdites mèches sont maintenues ensemble les unes contre les autres.  6. flexible underwater pipe according to any one of claims 1 to 5, characterized in that the fibers of said wicks are held together against each other. 7. Conduite flexible sous-marine selon l'une quelconque des revendications 1 à 6, caractérisée en ce que ledit ruban de maintien comprenant deux faces opposées l'une de l'autre, chacune desdites faces est recouverte de ladite couche de renfort.  7. Flexible underwater pipe according to any one of claims 1 to 6, characterized in that said holding tape comprising two faces opposite to each other, each of said faces is covered with said reinforcing layer. 8. Conduite flexible sous-marine selon l'une quelconque des revendications 1 à 7, caractérisée en ce que ladite couche de renfort ~o forme une gaine autour dudit ruban de maintien.  8. Flexible underwater pipe according to any one of claims 1 to 7, characterized in that said reinforcing layer ~ o forms a sheath around said holding tape. 9. Conduite flexible sous-marine selon l'une quelconque des revendications 1 à 8, caractérisée en ce qu'une couche textile est intercalée entre lesdites mèches de fibres et ladite couche de renfort.  9. flexible underwater pipe according to any one of claims 1 to 8, characterized in that a textile layer is interposed between said fiber locks and said reinforcing layer. 10. Conduite flexible sous-marine selon l'une quelconque des 15 revendications 1 à 8, caractérisée en ce que ledit matériau polymère est un matériau thermoplastique.  10. Flexible underwater pipe according to any one of claims 1 to 8, characterized in that said polymeric material is a thermoplastic material. 11. Conduite flexible sous-marine selon l'une quelconque des revendications 1 à 10, caractérisée en ce que ladite couche de renfort est obtenue par extrusion dudit matériau polymère. 20  11. Underwater flexible pipe according to any one of claims 1 to 10, characterized in that said reinforcing layer is obtained by extrusion of said polymeric material. 20
FR0702065A 2007-03-21 2007-03-21 FLEXIBLE CONDUIT FOR THE TRANSPORT OF HYDROCARBONS WITH REINFORCED MAINTENANCE LAYER Active FR2914040B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
FR0702065A FR2914040B1 (en) 2007-03-21 2007-03-21 FLEXIBLE CONDUIT FOR THE TRANSPORT OF HYDROCARBONS WITH REINFORCED MAINTENANCE LAYER
AU2008248467A AU2008248467B2 (en) 2007-03-21 2008-03-21 Subsea flexible pipe for transporting oil and gas and including a reinforcing layer
BRPI0808908A BRPI0808908B1 (en) 2007-03-21 2008-03-21 subsea flexible conduit for the transport of hydrocarbons.
CA2680411A CA2680411C (en) 2007-03-21 2008-03-21 Flexible duct for conveying hydrocarbons and having a reinforced maintain layer
MYPI20093820 MY150895A (en) 2007-03-21 2008-03-21 Flexible pipe for transporting oil and gas and including a reinforcing layer
EP08787830.2A EP2137445B2 (en) 2007-03-21 2008-03-21 Flexible duct for conveying hydrocarbons and having a reinforced maintain layer
PCT/FR2008/000383 WO2008135663A2 (en) 2007-03-21 2008-03-21 Flexible duct for conveying hydrocarbons and having a reinforced maintain layer
MX2009009837A MX2009009837A (en) 2007-03-21 2008-03-21 Flexible duct for conveying hydrocarbons and having a reinforced maintain layer.
DK08787830.2T DK2137445T4 (en) 2007-03-21 2008-03-21 Flexible pipeline for transporting hydrocarbons with reinforced retaining layer
US12/531,984 US8640739B2 (en) 2007-03-21 2008-03-21 Flexible pipe for conveying hydrocarbons and having a reinforced maintain layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0702065A FR2914040B1 (en) 2007-03-21 2007-03-21 FLEXIBLE CONDUIT FOR THE TRANSPORT OF HYDROCARBONS WITH REINFORCED MAINTENANCE LAYER

Publications (2)

Publication Number Publication Date
FR2914040A1 true FR2914040A1 (en) 2008-09-26
FR2914040B1 FR2914040B1 (en) 2009-05-01

Family

ID=38352996

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0702065A Active FR2914040B1 (en) 2007-03-21 2007-03-21 FLEXIBLE CONDUIT FOR THE TRANSPORT OF HYDROCARBONS WITH REINFORCED MAINTENANCE LAYER

Country Status (1)

Country Link
FR (1) FR2914040B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120891A1 (en) 2010-03-30 2011-10-06 Nv Bekaert Sa A splice for jointing steel cord strips encased in thermoplastic material
WO2011120892A1 (en) 2010-03-30 2011-10-06 Nv Bekaert Sa Lay-out for splicing strips comprising cords

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116760A (en) * 1962-08-30 1964-01-07 Moore & Co Samuel Composite tubing
WO1997012753A1 (en) * 1995-10-04 1997-04-10 Coflexip Flat strip, in particular for reinforcing ducts, method for making same, and ducts reinforced therewith
FR2837899A1 (en) * 2002-03-28 2003-10-03 Coflexip DEVICE FOR LIMITING THE LATERAL FLAMMATION OF THE WEAPONS OF A FLEXIBLE PIPE
WO2005043020A1 (en) * 2003-10-31 2005-05-12 Nkt Flexibles I/S A flexible pipe with a permeable outer sheath and a method of its manufacturing
WO2006005689A1 (en) * 2004-07-08 2006-01-19 Nkt Flexibles I/S A flexible pipe, its manufacture and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116760A (en) * 1962-08-30 1964-01-07 Moore & Co Samuel Composite tubing
WO1997012753A1 (en) * 1995-10-04 1997-04-10 Coflexip Flat strip, in particular for reinforcing ducts, method for making same, and ducts reinforced therewith
FR2837899A1 (en) * 2002-03-28 2003-10-03 Coflexip DEVICE FOR LIMITING THE LATERAL FLAMMATION OF THE WEAPONS OF A FLEXIBLE PIPE
WO2005043020A1 (en) * 2003-10-31 2005-05-12 Nkt Flexibles I/S A flexible pipe with a permeable outer sheath and a method of its manufacturing
WO2006005689A1 (en) * 2004-07-08 2006-01-19 Nkt Flexibles I/S A flexible pipe, its manufacture and use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120891A1 (en) 2010-03-30 2011-10-06 Nv Bekaert Sa A splice for jointing steel cord strips encased in thermoplastic material
WO2011120892A1 (en) 2010-03-30 2011-10-06 Nv Bekaert Sa Lay-out for splicing strips comprising cords
US8910462B2 (en) 2010-03-30 2014-12-16 Nv Bekaert Sa Lay-out for splicing strips comprising cords
US9151356B2 (en) 2010-03-30 2015-10-06 Nv Bekaert Sa Splice for jointing steel cord strips encased in thermoplastic material

Also Published As

Publication number Publication date
FR2914040B1 (en) 2009-05-01

Similar Documents

Publication Publication Date Title
EP2137445B1 (en) Flexible duct for conveying hydrocarbons and having a reinforced maintain layer
EP2959199B1 (en) Flexible pipe for transporting hydrocarbons having an outer reinforced sealed sheath
EP3224393B1 (en) Thermal insulation layer for a flexible submarine tubular pipe
FR3055685B1 (en) ELEMENT FOR ARMORING A FLEXIBLE LINE INTENDED TO BE PLACED IN AN EXTENT OF WATER, AND ASSOCIATED FLEXIBLE LINE
EP1066485B1 (en) Composite carbon fibre based armour for flexible pipe
FR2926347A1 (en) FLEXIBLE DRIVING FOR THE TRANSPORT OF DEEP WATER HYDROCARBONS
EP3024641B1 (en) Method and facility for producing an instrumented pipe
EP3169907B1 (en) Self-lubricating composite friction part
EP1419338B1 (en) Flat textile strip forming one layer of a flexible duct that is used for hydrocarbon transport and the duct thus formed
EP3155304B1 (en) Tubular conduit with a composite holding strip
WO2003083343A1 (en) Device for limiting the lateral buckling of armouring plies of a flexible pipe
FR2739673A1 (en) FLEXIBLE PIPE WITH TEXTILE ARMOR
FR2914040A1 (en) Flexible sub-marine conduit for transporting hydrocarbon, has maintaining layer including ribbon rolled around armoring plies, where ribbon is covered with reinforcing layer for increasing resistance to deformation of maintaining layer
BE1004649A3 (en) Adapted to shaft tube lines interior trim tube.
EP3899339B1 (en) Flexible pipe for conveying a fluid in a submarine environment, and associated method
WO2015082865A1 (en) Flexible tubular pipe with resistant retaining layer
CA2576710A1 (en) Underground pipeline for transporting fuel

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 10

PLFP Fee payment

Year of fee payment: 11