FR2906903A1 - ELECTRONIC VOLTAGE REFERENCE CIRCUIT. - Google Patents

ELECTRONIC VOLTAGE REFERENCE CIRCUIT. Download PDF

Info

Publication number
FR2906903A1
FR2906903A1 FR0608789A FR0608789A FR2906903A1 FR 2906903 A1 FR2906903 A1 FR 2906903A1 FR 0608789 A FR0608789 A FR 0608789A FR 0608789 A FR0608789 A FR 0608789A FR 2906903 A1 FR2906903 A1 FR 2906903A1
Authority
FR
France
Prior art keywords
current
voltage
circuit
temperature
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0608789A
Other languages
French (fr)
Other versions
FR2906903B1 (en
Inventor
Thierry Masson
Jean Francois Debroux
Pierre Coquille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne e2v Semiconductors SAS
Original Assignee
e2v Semiconductors SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by e2v Semiconductors SAS filed Critical e2v Semiconductors SAS
Priority to FR0608789A priority Critical patent/FR2906903B1/en
Priority to AT07820997T priority patent/ATE475925T1/en
Priority to EP07820997A priority patent/EP2067090B1/en
Priority to US12/444,252 priority patent/US20100007324A1/en
Priority to PCT/EP2007/060624 priority patent/WO2008040817A1/en
Priority to DE602007008115T priority patent/DE602007008115D1/en
Publication of FR2906903A1 publication Critical patent/FR2906903A1/en
Application granted granted Critical
Publication of FR2906903B1 publication Critical patent/FR2906903B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Abstract

The invention relates to a temperature-independent voltage reference circuit. The circuit comprises a first circuit of bandgap type providing a first-order temperature-stable voltage, on the basis of a bipolar transistor base-emitter voltage having a negative slope of variation as a function of temperature, and of a voltage or a current having a positive slope of variation as a function of temperature provided by a generator of current proportional to absolute temperature. The base currents of the PMOS transistors thereof are compensated in such a manner that the output current is proportional to a collector current and not an emitter current. A summator establishes a linear combination, with respective weighting coefficients, of three voltages which are respectively the output voltage of the first circuit, the output voltage of a second circuit providing a voltage proportional to the difference between the absolute temperature T and a reference temperature Tr, and the output voltage of a third circuit providing a voltage proportional to the square of this difference.

Description

1 CIRCUIT ELECTRONIQUE DE REFERENCE DE TENSION L'invention concerne lesThe invention relates to the electromagnetic

circuits intégrés électroniques et plus précisément elle concerne la réalisation d'un circuit de référence de tension indépendante de la température, fondé sur les propriétés des transistors bipolaires en silicium.  electronic integrated circuits and more specifically it relates to the realization of a temperature-independent voltage reference circuit, based on the properties of silicon bipolar transistors.

L'établissement d'une tension de référence dans un circuit intégré sur silicium comprend le plus souvent la réalisation d'un circuit appelé d'une manière générique "circuit de référence de type bandgap" en raison du fait qu'il utilise des propriétés physiques intrinsèques du silicium pour assurer une constance de la tension malgré les variations de température ; le terme bandgap fait référence à la différence d'énergie intrinsèque qui existe entre les bandes de valence et de conduction du silicium, différence qui ne dépend pratiquement pas de la température dans une large gamme de températures. Un circuit de référence de type bandgap utilise classiquement la combinaison d'une tension base-émetteur d'un transistor, qui varie négativement (et à peu près linéairement) avec la température, et d'un courant ou d'une tension qui varie positivement (et à peu près linéairement) avec la température. Par exemple, la différence des tensions base-émetteur de deux transistors de surfaces d'émetteur différentes, montés en diode et alimentés par des sources de courant identiques, est une tension qui varie positivement avec la température. Le résultat de cette combinaison n'est cependant pas parfait sur une large gamme de température, notamment une gamme qui irait de -50 C à +120 C : on constate que même avec des circuits de compensation et avec les réglages les plus fins des paramètres du circuit (tailles de transistors, valeurs de résistances, de courants, etc.) on aboutit à une courbe de variation de tension à peu près plate vers les températures ambiantes mais qui se courbe tant pour les températures basses que pour les températures élevées. On trouvera dans la littérature des exemples de circuits de référence de type bandgap avec des corrections de courbure en fonction de la température, par exemple : "A curvature corrected low-voltage bandgap reference", de Gunawan, Meijer, Fondrie, Huijsing dans IEEE JSSC Juin 2906903 2 1993 ; ou encore "A new Fahrenheit temperature Sensor", de R. Pease dans IEEE JSSC Décembre 1984. Ces corrections sont complexes. Le problème est rendu plus critique pour des circuits de technologie CMOS, dans lesquels les transistors bipolaires qui sont 5 disponibles pour réaliser le circuit de référence de tension, sont des transistors PNP de propriétés médiocres et de caractéristiques très dispersées d'un circuit à l'autre ; ces transistors sont en effet principalement des transistors qu'on peut qualifier de transistors parasites constitués à partir du substrat de type P, des caissons de type N des transistors PMOS et des 10 diffusions de source de ces transistors PMOS. Or il est important de pouvoir réaliser des tensions stables en température même dans des circuits de technologie CMOS qui n'ont pas d'autres transistors bipolaires disponibles. De manière générale, l'obtention d'une tension de référence précise et reproductible, stable sur une large gamme de températures (-50 C 15 à +120 C), pose des problèmes. L'invention a pour but de proposer une solution qui améliore les performances des circuits antérieurs. Selon l'invention, on propose un circuit de référence de tension, comportant un premier circuit de type bandgap fournissant une tension ou un courant stable en température au premier ordre, à partir 20 - d'une tension base-émetteur de transistor bipolaire ayant une pente de variation négative en fonction de la température - et d'une tension ou un courant ayant une pente de variation positive en fonction de la température, ce circuit de référence de tension étant caractérisé en ce qu'il 25 comprend un sommateur pour établir une combinaison linéaire, avec des coefficients de pondération respectifs, de trois valeurs qui sont respectivement - la tension ou le courant de sortie du premier circuit de type bandgap, 30 - la tension ou le courant de sortie d'un deuxième circuit fournissant une tension ou un courant proportionnel à la différence entre la température absolue T et une température de référence Tr, - la tension ou le courant de sortie d'un troisième circuit fournissant une tension ou un courant proportionnel au carré de cette 35 différence.  The establishment of a reference voltage in a silicon integrated circuit most often comprises the realization of a circuit generically called a "bandgap reference circuit" because of the fact that it uses physical properties intrinsic silicon to ensure constant voltage despite temperature changes; the term bandgap refers to the difference in intrinsic energy that exists between the valence and conduction bands of silicon, a difference that is largely independent of temperature over a wide range of temperatures. A bandgap reference circuit conventionally uses the combination of a base-emitter voltage of a transistor, which varies negatively (and approximately linearly) with the temperature, and a current or voltage that varies positively. (and almost linearly) with the temperature. For example, the difference of the base-emitter voltages of two different emitter surface transistors, diode-mounted and powered by the same current sources, is a voltage that varies positively with temperature. The result of this combination is however not perfect over a wide range of temperatures, including a range that goes from -50 C to +120 C: it is found that even with compensation circuits and with the finest settings parameters of the circuit (transistor sizes, resistance values, currents, etc.) results in a nearly flat voltage variation curve to ambient temperatures but which bends for both low temperatures and high temperatures. Examples of bandgap reference circuits with temperature-dependent curvature corrections can be found in the literature, for example: "A curvature corrected low-voltage bandgap reference", by Gunawan, Meijer, Fondrie, Huijsing in IEEE JSSC June 2906903; 1993; or "A new Fahrenheit temperature sensor" by R. Pease in IEEE JSSC December 1984. These corrections are complex. The problem is made more critical for CMOS technology circuits, in which the bipolar transistors that are available to realize the voltage reference circuit, are PNP transistors of poor properties and widely dispersed characteristics of a circuit at the same time. other; these transistors are in fact principally transistors that can be described as parasitic transistors formed from the P-type substrate, N-type wells of the PMOS transistors and the source diffusions of these PMOS transistors. However, it is important to be able to achieve stable temperature voltages even in CMOS technology circuits that do not have other bipolar transistors available. In general, obtaining a precise and reproducible reference voltage, stable over a wide range of temperatures (-50 C to +120 C), poses problems. The object of the invention is to propose a solution that improves the performance of the previous circuits. According to the invention, there is provided a voltage reference circuit, having a first bandgap circuit providing a first order temperature stable voltage or current, from a bipolar transistor base-emitter voltage having a negative temperature-dependent slope of variation - and of a voltage or current having a slope of positive variation as a function of temperature, this voltage reference circuit being characterized in that it comprises an adder to establish a linear combination, with respective weighting coefficients, of three values which are respectively - the output voltage or current of the first bandgap circuit, - the output voltage or current of a second circuit supplying a voltage or a voltage. current proportional to the difference between the absolute temperature T and a reference temperature Tr, - the voltage or the output current of a third circuit f providing a voltage or current proportional to the square of this difference.

2906903 3 De préférence, le premier circuit de type bandgap comprend un générateur de courant PTAT fournissant un courant proportionnel à la température absolue et un courant qui est le rapport entre une tension base-émetteur de transistor bipolaire et une valeur de résistance, ce courant étant 5 appliqué à une entrée d'un amplificateur opérationnel du sommateur. Le générateur de courant PTAT peut comprendre, entre une alimentation et une masse, deux branches parallèles, l'une comprenant un premier transistor MOS en série avec un transistor bipolaire monté en diode, l'autre comprenant un deuxième transistor MOS identique au premier, une 10 résistance et un deuxième transistor bipolaire ayant une surface d'émetteur N fois plus grande que la surface d'émetteur du premier, avec un amplificateur différentiel qui commande les transistors MOS et qui établit dans la résistance une chute de tension égale à la différence des tensions base-émetteur des deux transistors bipolaires.Preferably, the first bandgap circuit comprises a current generator PTAT supplying a current proportional to the absolute temperature and a current which is the ratio between a bipolar transistor base-emitter voltage and a resistance value, this current being 5 applied to an input of an operational amplifier of the summator. The PTAT current generator may comprise, between a power supply and a ground, two parallel branches, one comprising a first MOS transistor in series with a bipolar transistor mounted diode, the other comprising a second MOS transistor identical to the first one, a Resistor and a second bipolar transistor having a transmitter area N times greater than the emitter area of the first, with a differential amplifier which drives the MOS transistors and which establishes in the resistor a voltage drop equal to the difference of the base-emitter voltages of the two bipolar transistors.

15 Le circuit (dit circuit thermomètre ) fournissant une tension proportionnelle à la différence (T-Tr) comprend de préférence un générateur de courant proportionnel à la température absolue, des moyens pour appliquer ce courant à une résistance et à un transistor bipolaire, et un amplificateur différentiel pour établir une tension qui est la différence entre la 20 tension base-émetteur de ce transistor bipolaire et la chute de tension aux bornes de la résistance. La température de référence est de préférence la température ambiante d'environ 25 C.The circuit (said thermometer circuit) providing a voltage proportional to the difference (T-Tr) preferably comprises a current generator proportional to the absolute temperature, means for applying this current to a resistor and a bipolar transistor, and a differential amplifier for establishing a voltage which is the difference between the base-emitter voltage of this bipolar transistor and the voltage drop across the resistor. The reference temperature is preferably the ambient temperature of about 25 C.

25 D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit et qui est faite en référence aux dessins annexés dans lesquels : - la figure 1 représente le principe de base d'un circuit de type PTAT établissant un courant proportionnel à la température absolue, réalisé 30 dans une technologie CMOS et utilisant les transistors PNP parasites de cette technologie ; - la figure 2 représente le principe de base d'un circuit de type bandgap fondé sur l'équilibre au premier ordre entre la variation négative d'une tension base-émetteur de transistor bipolaire et la variation positive d'un courant de circuit de type PTAT ; 2906903 4 - la figure 3 représente un autre exemple de réalisation de circuit de type bandgap - la figure 4 représente l'architecture générale d'un circuit de référence de tension stable en température selon l'invention ; 5 - la figure 5 représente l'utilisation d'un circuit classique de type bandgap, dans l'architecture selon l'invention ; - la figure 6 représente un exemple de réalisation de circuit dit circuit "thermomètre" fournissant une tension proportionnelle à T-Tr ; - la figure 7 représente un exemple de réalisation d'un circuit 10 d'élévation au carré de la tension de sortie du circuit thermomètre ; -la figure 8 représente un schéma de circuit permettant d'améliorer le comportement du circuit en éliminant l'influence néfaste du mauvais gain en courant des transistors bipolaires PNP utilisés dans le circuit lorsque celui-ci est réalisé dans une technologie purement CMOS.Other features and advantages of the invention will appear on reading the detailed description which follows and which is given with reference to the appended drawings in which: FIG. 1 represents the basic principle of a PTAT type circuit establishing a current proportional to the absolute temperature, realized in a CMOS technology and using the PNP transistors parasites of this technology; FIG. 2 represents the basic principle of a bandgap type circuit based on the first-order equilibrium between the negative variation of a bipolar transistor base-emitter voltage and the positive variation of a circuit current of the type. PTAT; FIG. 3 represents another exemplary embodiment of a bandgap type circuit; FIG. 4 represents the general architecture of a temperature-stable voltage reference circuit according to the invention; FIG. 5 represents the use of a conventional bandgap circuit, in the architecture according to the invention; FIG. 6 represents an exemplary embodiment of a "thermometer" circuit providing a voltage proportional to T-Tr; FIG. 7 represents an exemplary embodiment of a circuit 10 for squaring the output voltage of the thermometer circuit; FIG. 8 represents a circuit diagram making it possible to improve the behavior of the circuit by eliminating the harmful influence of the bad gain in current of the PNP bipolar transistors used in the circuit when this one is realized in a purely CMOS technology.

15 Sur la figure 1, les transistors bipolaires PNP Ti et T2 et les transistors PMOS Q1 et Q2 forment avec un amplificateur différentiel Al le coeur d'un générateur de courant PTAT, c'est-à-dire un circuit fournissant un courant proportionnel à la température absolue T. Les transistors Ti et T2 20 sont de surfaces d'émetteur différentes, le transistor T2 ayant une surface N fois supérieure à celle du transistor Ti. Les transistors QI et Q2 sont identiques et constituent des sources de courant variables mais identiques. Leurs grilles sont portées à un même potentiel variable et leur source est à une tension d'alimentation Vdd. Le transistor T1 est monté en diode entre le 25 drain de Q1 et une masse GND : base et collecteur de T1 sont réunis et reliés à la masse, l'émetteur est relié au drain de Q1. Le montage est le même pour T2 et Q2 mais une résistance R2 est interposée entre le drain de T2 et l'émetteur de Q2. L'amplificateur différentiel Al a ses deux entrées reliées respectivement aux drains de QI et Q2 ; il réalise une contre-réaction 30 en agissant sur le potentiel commun des grilles de ces deux transistors, donc sur les courants identiques qui les traversent, jusqu'à trouver un point d'équilibre où les potentiels des deux drains sont identiques (à la tension de décalage d'entrée près de l'amplificateur). La chute de tension R2.I2 dans la résistance R2 compense alors exactement la différence OVbe entre les 35 tensions base-émetteur de Ti et T2 ; or on sait que cette différence est 2906903 5 proportionnelle à la température absolue et au logarithme népérien du rapport N entre leurs surfaces d'émetteur si les deux transistors Ti et T2 sont de même technologie et placés dans les mêmes conditions de température ; l'équation est : 5 AVbe = (kT/q)LogN k est la constante de Boltzmann, q la charge de l'électron, T la température absolue, N le rapport des surfaces d'émetteur. II en résulte que le courant 12 traversant la résistance R2 s'ajuste automatiquement à une valeur de la forme 10 12= (kT/q)(LogN)/R2 (pour des transistors ayant un gain en courant suffisamment élevé pour que le courant de base soit négligeable devant le courant de collecteur). Le circuit de la figure 1 constitue donc un générateur de courant 12 de valeur proportionnelle à la température absolue et variant linéairement et 15 positivement avec la température. A partir de ce courant 12, à variation positive, et d'une résistance R3, on peut facilement réaliser une tension à variation positive R3.12, et on peut ajouter à la tension R3.12 une tension base-émetteur de transistor bipolaire qui varie négativement avec la température.In FIG. 1, the PNP bipolar transistors Ti and T2 and the PMOS transistors Q1 and Q2 form, with a differential amplifier A1, the core of a PTAT current generator, that is to say a circuit providing a current proportional to the absolute temperature T. The transistors T1 and T2 are of different emitter surfaces, the transistor T2 having a surface N times greater than that of the transistor Ti. The transistors QI and Q2 are identical and constitute variable but identical current sources. Their grids are brought to the same variable potential and their source is at a supply voltage Vdd. The transistor T1 is diode-mounted between the drain of Q1 and a mass GND: base and collector of T1 are joined and connected to ground, the emitter is connected to the drain of Q1. The assembly is the same for T2 and Q2 but a resistor R2 is interposed between the drain of T2 and the emitter of Q2. The differential amplifier Al has its two inputs respectively connected to the drains of QI and Q2; it carries out a feedback 30 by acting on the common potential of the gates of these two transistors, and therefore on the identical currents that pass through them, until finding a point of equilibrium where the potentials of the two drains are identical (at the voltage input offset near the amplifier). The voltage drop R2.I2 in the resistor R2 then exactly compensates for the difference OVbe between the base-emitter voltages of Ti and T2; it is known that this difference is proportional to the absolute temperature and the natural logarithm of the ratio N between their emitter surfaces if the two transistors Ti and T2 are of the same technology and placed under the same temperature conditions; the equation is: AVbe = (kT / q) LogN k is the Boltzmann constant, q is the charge of the electron, T is the absolute temperature, N is the ratio of emitter surfaces. As a result, the current 12 passing through the resistor R2 automatically adjusts to a value of the form 12 = (kT / q) (LogN) / R2 (for transistors having a current gain sufficiently high that the current of base negligible in front of the collector current). The circuit of FIG. 1 thus constitutes a current generator 12 of value proportional to the absolute temperature and varying linearly and positively with the temperature. From this current 12, with a positive variation, and a resistor R3, it is easy to realize a voltage with a positive variation R3.12, and it is possible to add to the voltage R3.12 a base-emitter voltage of a bipolar transistor which varies negatively with temperature.

20 Cette addition de deux tensions à sens de variation inverses est réalisée par exemple par le circuit de la figure 2 : la partie gauche de la figure 2 reprend exactement le circuit de la figure 1 et constitue un générateur de courant PTAT. Le courant 12 est recopié par un transistor PMOS Q3 monté en miroir de courant des transistors QI et Q2 (même potentiel de source 25 Vdd, même potentiel de grille fourni par la sortie de l'amplificateur Al). Le transistor Q3 est de préférence identique aux transistors QI et Q2 mais ce n'est pas obligatoire ; s'il ne leur est pas identique il faut en tenir compte dans les calculs. Une résistance R3 est reliée entre le drain de Q3 et l'émetteur 30 d'un transistor PNP T3 monté en diode comme Ti et T2, ayant son collecteur et sa base reliés à la masse. L'ensemble en série Q3, R3, T3 est donc monté comme l'ensemble Q2, R2, T2 et le courant qui parcourt la résistance R3 est identique au courant 12 qui parcourt R2. Le potentiel du point de jonction de Q3 et R3 est donc la somme 35 de la tension base-émetteur Vbe3 de T3 et de la chute de tension R3.12 qui a 2906903 6 pour valeur R3.I2 = (kT/q)(LogN)R3/R2. On notera que seul le rapport des résistances joue un rôle dans la valeur de la chute de tension R3.I2, ce rapport étant pratiquement indépendant de la température. Le coefficient de variation positive avec la température est (k/q)(LogN)R3/R2.This addition of two reverse direction of variation voltages is carried out for example by the circuit of FIG. 2: the left part of FIG. 2 exactly resumes the circuit of FIG. 1 and constitutes a PTAT current generator. Current 12 is copied by a PMOS transistor Q3 mounted in current mirror of transistors Q1 and Q2 (same source voltage Vdd, same gate potential provided by the output of amplifier A1). Transistor Q3 is preferably identical to transistors Q1 and Q2, but this is not mandatory; if it is not identical to them, it must be taken into account in the calculations. A resistor R3 is connected between the drain of Q3 and the emitter 30 of a diode-mounted PNP transistor T3 such as T1 and T2, having its collector and base grounded. The series assembly Q3, R3, T3 is thus mounted as the set Q2, R2, T2 and the current flowing through the resistor R3 is identical to the current 12 which flows through R2. The potential of the junction point of Q3 and R3 is thus the sum of the base-emitter voltage Vbe3 of T3 and the voltage drop R3.12 which is 2906903 6 for value R3.I2 = (kT / q) (LogN ) R3 / R2. Note that only the ratio of the resistors plays a role in the value of the voltage drop R3.I2, this ratio being substantially independent of the temperature. The coefficient of positive variation with temperature is (k / q) (LogN) R3 / R2.

5 La variation négative de la tension base-émetteur Vbe3 du transistor T3 dépend de paramètres technologiques du transistor. Elle est linéaire au premier ordre, et l'ordre de grandeur du coefficient de variation est par exemple de -2mV/ C. Il peut être déterminé expérimentalement pour une technologie donnée. Par conséquent, en choisissant correctement la 10 résistance R3 et en additionnant la tension R3.l2 et la tension Vbe du transistor T3, on peut aboutir à une tension ayant un coefficient de variation global nul au premier ordre. La valeur choisie pour R3 dans ce but dépend évidemment des valeurs choisies pour N et pour R2 ainsi que de la surface d'émetteur du transistor T3.The negative variation of the base-emitter voltage Vbe3 of the transistor T3 depends on the technological parameters of the transistor. It is linear in the first order, and the order of magnitude of the coefficient of variation is, for example, -2mV / C. It can be determined experimentally for a given technology. Therefore, by correctly selecting the resistor R3 and adding the voltage R3.l2 and the voltage Vbe of the transistor T3, a voltage having a first order zero overall coefficient of variation can be achieved. The value chosen for R3 for this purpose obviously depends on the values chosen for N and for R2 as well as on the emitter surface of transistor T3.

15 Le circuit de la figure 2 est un circuit qu'on peut appeler "coeur de circuit bandgap" et la tension EG(T)=R3(kT/q)(LogN)/R2 + Vbe3 qui apparaît entre la sortie de ce circuit et la masse est une tension qui, au premier ordre, est indépendante de la température. Toutefois, il y a des effets du deuxième ou du troisième ordre qui 20 font que la tension EG(T) présente une certaine dispersion de fabrication et n'est pas complètement constante avec la température ; ceci est d'autant plus vrai que la qualité des transistors PNP est plus mauvaise. Or, dans beaucoup de circuits de technologie MOS, on ne dispose que de transistors PNP de mauvaise qualité (transistors à faible béta, c'est-à-dire à faible gain 25 en courant). La tension de décalage d'entrée de l'amplificateur différentiel Al est aussi un facteur qui détériore la constance de la tension de sortie EG(T). Un autre exemple de réalisation est montré à la figure 3 ; ce circuit fonctionne d'une manière très semblable à celui de la figure 2 et il est présenté ici car il est plus facile à utiliser dans l'architecture de la présente 30 invention. Dans cet exemple, au lieu d'additionner deux tensions Vbe3 et R3.I2 dans une branche Q3, R3, T3 comme c'était le cas à la figure 2, on effectue une addition de deux courants avant de convertir la somme de ces courants en une tension EG(T). On obtient un résultat très similaire en termes d'addition de tensions dont l'une varie positivement et l'autre varie 35 négativement. Les éléments identiques à ceux de la figure 2 portent les 2906903 7 mêmes références et jouent le même rôle ; il s'agit principalement du générateur PTAT qui établit un courant 12 = (kT/q)(LogN)/R2 à partir des transistors T1 et T2 de surfaces d'émetteur différentes. Un amplificateur différentiel A2 contrôle la grille d'un transistor 5 PMOS Q4 qui est en série avec une résistance R4, de manière à faire passer dans la résistance R4 un courant tel que la chute de tension dans cette résistance soit égale à la tension base-émetteur Vbe2 du transistor T2. Pour cela, l'amplificateur différentiel A2, à grand gain, reçoit la différence entre la tension aux bornes de R4 et la tension base-émetteur Vbe2 ; le courant dans 10 le transistor Q4 s'ajuste automatiquement à une valeur 14 telle que R4.I4 = Vbe2. Ce montage convertit donc la tension Vbe2 en un courant Vbe2/R4 dans la résistance R4 et dans le transistor Q4. Un transistor PMOS Q5 recopie le courant Vbe2/R4 qui passe dans Q4 (même tension de grille que Q4, même tension de source Vdd) ; un autre transistor PMOS Q6 recopie le 15 courant 12 qui passe dans le transistor Q2 (même tension de grille que Q2, même tension de source Vdd). Les courants de Q5 et Q6, respectivement égaux à Vbe2/R4 et 12=(kT/q)(LogN)/R2 sont additionnés dans une résistance de charge R6. Sur le schéma de la figure 3, la résistance de charge est reliée entre d'une part les drains réunis de Q5 et Q6 et d'autre 20 part la masse. On verra que la résistance de charge peut aussi être une résistance d'entrée ou une résistance de bouclage d'un amplificateur opérationnel. La tension de sortie EG(T) aux bornes de la résistance R6 est alors : EG(T) = R6.(kT/q)(LogN)/R2 + Vbe2.R6/R4. Le résultat est donc 25 sensiblement identique à celui que procure le schéma de la figure 2. La figure 4 représente le principe de la présente invention. Dans ce schéma on utilise un circuit Cl de coeur de bandgap tel que celui de la figure 2 ou la figure 3, c'est-à-dire utilisant la sommation d'une tension Vbe et d'une tension proportionnelle à la température absolue et donnant une 30 tension (ou un courant) de référence stable en température au premier ordre ; et on ajoute à la somme EG(T) ainsi obtenue deux autres tensions dont l'une, désignée par E2(T), est issue d'un circuit C2 dit "circuit thermomètre" et l'autre, désignée par E3(T) est issue d'un circuit C3 d'élévation au carré qui élève au carré une tension issue du circuit thermomètre. Par circuit 35 thermomètre, on entend un circuit pouvant établir une tension proportionnelle 2906903 8 à la différence T-Tr entre la température absolue T et une température de référence Tr ; la température Tr peut être la température ambiante standard de 25 C. Le circuit d'élévation au carré est, quant à lui, capable d'établir une tension proportionnelle à (T-Tr)2 à partir d'une tension fournie par le circuit 5 thermomètre. Un sommateur ADD effectue une combinaison linéaire des trois tensions EG(T), E2(T) et E3(T), c'est-à-dire qu'il les additionne avec des coefficients de pondération respectifs G1, G2, G3 pour établir une tension de sortie Vref = G1.EG(T) + G2.E2(T) + G3.E3(T).The circuit of FIG. 2 is a circuit which may be called a "bandgap circuit core" and the voltage EG (T) = R3 (kT / q) (LogN) / R2 + Vbe3 which appears between the output of this circuit. and the mass is a voltage which, at first order, is independent of the temperature. However, there are second- or third-order effects that cause the EG (T) voltage to exhibit some manufacturing dispersion and is not completely constant with temperature; this is all the more true as the quality of the PNP transistors is worse. However, in many MOS technology circuits, only PNP transistors of poor quality are available (low beta transistors, that is to say with low current gain). The input offset voltage of the differential amplifier A1 is also a factor which deteriorates the constancy of the output voltage EG (T). Another embodiment is shown in Figure 3; this circuit operates in a manner very similar to that of FIG. 2 and is shown here as it is easier to use in the architecture of the present invention. In this example, instead of adding two voltages Vbe3 and R3.I2 in a branch Q3, R3, T3 as was the case in FIG. 2, an addition of two currents is carried out before converting the sum of these currents. in a voltage EG (T). A very similar result is obtained in terms of the addition of voltages, one of which varies positively and the other of which varies negatively. The elements identical to those of FIG. 2 bear the same references and play the same role; it is mainly the PTAT generator which establishes a current 12 = (kT / q) (LogN) / R2 from the transistors T1 and T2 of different emitter surfaces. A differential amplifier A2 controls the gate of a PMOS transistor Q4 which is in series with a resistor R4, so as to pass through the resistor R4 a current such that the voltage drop in this resistor is equal to the base voltage. transmitter Vbe2 of transistor T2. For this, the differential amplifier A2, at high gain, receives the difference between the voltage across R4 and the base-emitter voltage Vbe2; the current in transistor Q4 automatically adjusts to a value 14 such that R4.I4 = Vbe2. This assembly therefore converts the voltage Vbe2 into a current Vbe2 / R4 in the resistor R4 and in the transistor Q4. A PMOS transistor Q5 copies the current Vbe2 / R4 passing through Q4 (same gate voltage as Q4, same source voltage Vdd); another PMOS transistor Q6 copies the current 12 which passes into the transistor Q2 (same gate voltage as Q2, same source voltage Vdd). The currents of Q5 and Q6, respectively equal to Vbe2 / R4 and 12 = (kT / q) (LogN) / R2 are summed in a load resistor R6. In the diagram of FIG. 3, the load resistor is connected between the combined drains of Q5 and Q6 and, on the other hand, the ground. It will be seen that the load resistor can also be an input resistor or a loopback resistor of an operational amplifier. The output voltage EG (T) across the resistor R6 is then: EG (T) = R6 (kT / q) (LogN) / R2 + Vbe2.R6 / R4. The result is therefore substantially identical to that provided by the scheme of FIG. 2. FIG. 4 represents the principle of the present invention. In this scheme, a bandgap core circuit C1 such as that of FIG. 2 or FIG. 3 is used, that is to say using the summation of a voltage Vbe and a voltage proportional to the absolute temperature and giving a first order temperature stable reference voltage (or current); and we add to the sum EG (T) thus obtained two other voltages, one of which, denoted by E2 (T), comes from a circuit C2 called "thermometer circuit" and the other, denoted by E3 (T) is derived from a circuit C3 of elevation squared which raises squared voltage from the thermometer circuit. By thermometer circuit means a circuit capable of establishing a voltage proportional to the difference T-Tr between the absolute temperature T and a reference temperature Tr; the temperature Tr may be the standard ambient temperature of 25 C. The squaring circuit is, in turn, capable of establishing a voltage proportional to (T-Tr) 2 from a voltage supplied by the circuit 5 thermometer. An adder ADD performs a linear combination of the three voltages EG (T), E2 (T) and E3 (T), i.e., it adds them with respective weighting coefficients G1, G2, G3 to establish an output voltage Vref = G1.EG (T) + G2.E2 (T) + G3.E3 (T).

10 Les coefficients de pondération sont choisis pour rendre aussi constante que possible la tension de sortie du sommateur en présence de variations de température. Le coefficient G1 peut être choisi arbitrairement égal à 1, des paramètres de réglage tels que la valeur de R6 permettant de régler le niveau de EG(T).The weighting coefficients are chosen to make the output voltage of the summator as constant as possible in the presence of temperature variations. The coefficient G1 can be chosen arbitrarily equal to 1, adjustment parameters such as the value of R6 making it possible to adjust the level of EG (T).

15 Pour le circuit Cl, qui est un circuit de base de type bandgap, on a remarqué que la tension de sortie peut être considérée comme étant globalement de la forme : EG(T) = EG(Tr) + a.(T-Tr) + b.(T-Tr)2 Ceci veut dire que la tension de sortie du circuit Cl n'est pas 20 constante avec la température mais tend à varier selon une courbe qu'on peut approximer par une parabole. Les coefficients a et b peuvent être déterminés expérimentalement et dépendent du schéma utilisé et de la technologie. EG(Tr) est une valeur fixe, qui est la valeur théorique qu'on voudrait avoir à toutes les températures 25 mais qu'on n'a en réalité qu'à la température de référence Tr. Le circuit thermomètre C2 et le circuit d'élévation au carré C3 sont destinés à compenser ces variations de tension de sortie du circuit Cl. Le circuit thermomètre devra produire une tension E2(T) = k2.(T-Tr) destinée à compenser le terme a.(T-Tr) et le circuit d'élévation au carré devra produire 30 une tension E3(T)=k3.(T-Tr)2 destinée à compenser le terme b.(T-Tr)2. Les coefficients G2 et G3 de la combinaison linéaire EG(T) + G1.E2(T) + G3.E3(T) effectuée par le sommateur ADD devront être ajustés pour que k2.G2=-a et k3.G3=-b de manière que la sommation pondérée des tensions de sortie des trois circuits Cl, C2, C3 aboutisse à une tension Vref=EG(Tr) 35 aussi indépendante que possible de la température T.For the circuit C1, which is a bandgap-type basic circuit, it has been noted that the output voltage can be considered to be generally of the form: EG (T) = EG (Tr) + a. (T-Tr) This means that the output voltage of the circuit C1 is not constant with the temperature but tends to vary according to a curve which can be approximated by a parabola. The coefficients a and b can be determined experimentally and depend on the scheme used and the technology. EG (Tr) is a fixed value, which is the theoretical value that one would like to have at all temperatures, but in reality only has the reference temperature Tr. The thermometer circuit C2 and the circuit d the squared circuit C3 are intended to compensate for these variations in the output voltage of the circuit C1. The thermometer circuit will have to produce a voltage E2 (T) = k2. (T-Tr) intended to compensate for the term a. (T-Tr) and the squaring circuit will produce a voltage E3 (T) = k3 (T-Tr) 2 to compensate for the term b (T-Tr) 2. The coefficients G2 and G3 of the linear combination EG (T) + G1.E2 (T) + G3.E3 (T) performed by the adder ADD will have to be adjusted so that k2.G2 = -a and k3.G3 = -b so that the weighted summation of the output voltages of the three circuits C1, C2, C3 results in a voltage Vref = EG (Tr) as independent as possible from the temperature T.

2906903 9 Si le circuit Cl fournit un courant de sortie plutôt qu'une tension EG(T), on convertit ce courant en tension dans une résistance du sommateur ADD. Même remarque pour les sorties des circuits C2 et C3. Les coefficients G2 et G3 sont négatifs si a, b, k1 et k2 sont 5 positifs. Mais il faut prévoir notamment que les signes de a et b peuvent être quelconques, et on fera en sorte de prévoir que les coefficients G2 et G3 peuvent être de signe négatif (ou alternativement que les sorties E2(T) et E3(T) peuvent avoir un signe inversé si nécessaire). La figure 5 est un schéma pratique reprenant le coeur du circuit de 10 bandgap de la figure 3 et montrant comment on peut effectuer la combinaison linéaire désirée à l'aide d'un amplificateur opérationnel et de plusieurs résistances de sommation. Dans le cas qui est représenté, le circuit Cl fournit un courant de sortie qui est la somme des courants circulant dans les transistors Q5 et Q6 : (kT/q)(LogN)/R2 + Vbe2/R4 15 Les sorties réunies des transistors Q5 et Q6, constituant la sortie du circuit Cl, ne sont pas appliquées à une résistance R6 comme à la figure 3 mais elles sont appliquées, ce qui revient au même, à une entrée El d'un amplificateur opérationnel AO rebouclé par une résistance de bouclage Rsl. L'autre entrée E2 de l'amplificateur est portée à un potentiel de 20 référence VG (qui peut être la masse GND ou de préférence le point milieu entre l'alimentation basse GND et l'alimentation haute Vdd). Le potentiel VG est, comme on le verra, la référence par rapport à laquelle le circuit thermomètre C2 fournit une tension proportionnelle à T-Tr, et le circuit C3 fournit une tension proportionnelle au carré de T-Tr. C'est pourquoi ce 25 potentiel doit aussi servir de référence dans le sommateur ADD placé en sortie du circuit Cl. La résistance de bouclage Rsl convertit le courant qui la traverse en tension (comme la résistance R6 de la figure 3). Le courant qui la traverse est tel que la somme des courants qui entre sur le noeud El soit nulle. Cette 30 somme comprend les courants issus des transistors Q5 et Q6 (courants Vbe2/R4 et 12), le courant dans la résistance Rsl et deux courants injectés, à travers une résistance Rs2 et une résistance Rs3 respectivement, par les sorties en tension du circuit thermomètre C2 et du circuit d'élévation au carré C3.If the circuit C1 supplies an output current rather than a voltage EG (T), this current is converted into voltage in a resistor of the adder ADD. Same note for the outputs of circuits C2 and C3. The coefficients G2 and G3 are negative if a, b, k1 and k2 are positive. But it must be provided in particular that the signs of a and b may be arbitrary, and it will be provided that the coefficients G2 and G3 may be of negative sign (or alternatively that the outputs E2 (T) and E3 (T) may be have an inverted sign if necessary). Fig. 5 is a block diagram showing the core of the bandgap circuit of Fig. 3 and showing how one can perform the desired linear combination using an operational amplifier and several summing resistors. In the case shown, the circuit C1 supplies an output current which is the sum of the currents flowing in the transistors Q5 and Q6: (kT / q) (LogN) / R2 + Vbe2 / R4 The combined outputs of the transistors Q5 and Q6, constituting the output of the circuit C1, are not applied to a resistor R6 as in FIG. 3 but they are applied, which amounts to the same, to an input E1 of an operational amplifier AO looped back by a loopback resistor rSL. The other input E2 of the amplifier is brought to a reference potential VG (which may be the ground GND or preferably the midpoint between the low supply GND and the high supply Vdd). The potential VG is, as will be seen, the reference to which the thermometer circuit C2 provides a voltage proportional to T-Tr, and the circuit C3 provides a voltage proportional to the square of T-Tr. This is why this potential must also serve as a reference in the adder ADD placed at the output of the circuit C1. The loopback resistor Rs1 converts the current passing through it into voltage (like the resistor R6 of FIG. 3). The current flowing through it is such that the sum of the currents that enter the node El is zero. This sum comprises the currents coming from transistors Q5 and Q6 (currents Vbe2 / R4 and 12), the current in resistor Rs1 and two currents injected, through a resistor Rs2 and a resistor Rs3 respectively, by the voltage outputs of the circuit. C2 thermometer and squaring circuit C3.

2906903 10 La résistance Rs2 définit le coefficient de pondération G2 correspondant au circuit C2. Cette résistance Rs2 est placée entre la sortie du circuit C2 et l'entrée El de l'amplificateur opérationnel AO. De même, une troisième résistance Rs3, placée entre la sortie du circuit C3 et l'entrée El, 5 définit le coefficient de pondération G3. Les circuits C2 et C3 fournissent des tensions sous faible impédance de sortie et imposent leur potentiel de sortie sur les résistances Rs2 et Rs3. Les circuits C2 et C3 fournissent des tensions référencées par rapport à la tension VG. Le circuit C2 fournit une tension E2(T) qui est égale 10 à k2.(T-Tr). Le circuit C3 fournit une tension E3(T) qui est égale à k3.(T-Tr)2. Le fonctionnement de l'amplificateur opérationnel est classique : la somme des courants qui arrivent sur son entrée El est nulle, et la tension sur cette entrée est égale à la tension sur l'entrée E2, c'est-à-dire à VG. Si on appelle Vref la tension de sortie (référencée par rapport au 15 potentiel de référence VG) de l'amplificateur AO, alors on peut écrire : Vref/Rs1 + E2(T)/Rs2 + E3(T)/Rs3 + Vbe2/R4 + 12 = 0 Vref = -Rs1 [I2+Vbe2/R4] ù E2(T)Rs1/Rs2 - E3(T)Rsl/Rs3 Donc Vref = -Rsl [I2+Vbe/4] ù E2(T)Rs1/Rs2 - E3(T)Rs1/Rs3 20 Ou, si on appelle EG(T) la valeur ùRsl [I2+Vbe2/R4], tension imparfaite du circuit de bandgap Cl, égale à EG(Tr) à la température de référence Tr. Vref = EG(T) ùk2(T-Tr) Rsl /Rs2 ù k3(T-Tr)2Rsl /Rs3 Comme on a fait l'approximation du second ordre que EG(T) est 25 assimilable à la somme EG(Tr)+ a.(T-Tr)+b(T-Tr)2, on trouve que Vref = EG(Tr)+ a.(T-Tr)+b(T-Tr)2 ùk2(T-Tr)Rs1/Rs2 ù k3(T-Tr)2Rsl/Rs3 Ou Vref = EG(Tr) + [a-k2.Rs1/Rs2].(T-Tr) +[b-k3Rsl/Rs3].(T-Tr)2 La valeur de Rsl est réglée en principe en fonction de la valeur 30 qu'on souhaite donner à la tension de référence Vref à la température de référence Tr. Cette valeur est ùRsl [12+Vbe2/R4] mesurée à la température de référence et qui est EG(Tr) selon la notation précédemment utilisée. Si les coefficients k2 et k3 des circuits C2 et C3 ne sont pas réglables, alors on règle le rapport Rs1/Rs2 tel que Rs2/Rsl = k2/a et le 35 rapport Rs3/Rsl tel que Rs3/Rsl = k3/b, ce qui permet d'éliminer les 2906903 11 coefficients pondérateurs des termes T-Tr et (T-Tr)2 et d'aboutir à une tension de référence qui a la valeur EG(Tr) sur toute la plage de températures pour laquelle l'approximation EG(T) = EG(Tr)+a(T-Tr)+b(T-Tr)2 reste valable pour le circuit bandgap Cl utilisé.The resistor Rs2 defines the weighting coefficient G2 corresponding to the circuit C2. This resistor Rs2 is placed between the output of the circuit C2 and the input El of the operational amplifier AO. Similarly, a third resistor Rs3, placed between the output of the circuit C3 and the input El, defines the weighting coefficient G3. The circuits C2 and C3 provide low output impedance voltages and impose their output potential on the resistors Rs2 and Rs3. The circuits C2 and C3 provide referenced voltages with respect to the voltage VG. Circuit C2 provides a voltage E2 (T) which is equal to k2 (T-Tr). The circuit C3 provides a voltage E3 (T) which is equal to k3 (T-Tr) 2. The operation of the operational amplifier is conventional: the sum of the currents arriving at its input El is zero, and the voltage at this input is equal to the voltage at the input E2, that is to say at VG. If we call Vref the output voltage (referenced with respect to the reference potential VG) of the amplifier AO, then we can write: Vref / Rs1 + E2 (T) / Rs2 + E3 (T) / Rs3 + Vbe2 / R4 + 12 = 0 Vref = -Rs1 [I2 + Vbe2 / R4] ù E2 (T) Rs1 / Rs2 - E3 (T) Rs1 / Rs3 So Vref = -Rs1 [I2 + Vbe / 4] ù E2 (T) Rs1 / Rs2 - E3 (T) Rs1 / Rs3 Or, if EG (T) is the value ùRs1 [I2 + Vbe2 / R4], imperfect voltage of the bandgap circuit Cl, equal to EG (Tr) at the reference temperature Tr. Vref = EG (T) ùk2 (T-Tr) Rs1 / Rs2 ù k3 (T-Tr) 2Rs1 / Rs3 As the second order approximation has been made that EG (T) is comparable to the sum EG ( Tr) + a (T-Tr) + b (T-Tr) 2, we find that Vref = EG (Tr) + a (T-Tr) + b (T-Tr) 2 ùk2 (T-Tr) Rs1 / Rs2 ù k3 (T-Tr) 2Rs1 / Rs3 Or Vref = EG (Tr) + [α-k2.Rs1 / Rs2]. (T-Tr) + [b-k3Rs1 / Rs3]. (T-Tr) 2 The value of Rs1 is set in principle as a function of the value 30 which it is desired to give to the reference voltage Vref at the reference temperature Tr. This value is ùRs1 [12 + Vbe2 / R4] measured at the reference temperature and which is EG (Tr) according to the notation previously used. If the coefficients k2 and k3 of the circuits C2 and C3 are not adjustable, then the ratio Rs1 / Rs2 is adjusted such that Rs2 / Rs1 = k2 / a and the ratio Rs3 / Rs1 such that Rs3 / Rs1 = k3 / b, This makes it possible to eliminate the weighting coefficients of the terms T-Tr and (T-Tr) 2 and to arrive at a reference voltage which has the value EG (Tr) over the entire temperature range for which the Approximation EG (T) = EG (Tr) + a (T-Tr) + b (T-Tr) 2 remains valid for the bandgap C1 used.

5 Circuit thermomètre Le circuit thermomètre C2 peut être constitué par exemple de la manière suivante, comme représenté à la figure 6 : il comprend un générateur de courant proportionnel à la température absolue (PTAT) ; ce 10 générateur peut être celui qui sert dans le circuit Cl pour établir le courant ou la tension constante au premier ordre. II est donc composé des transistors PNP T1, T2, de l'amplificateur différentiel Al, de la résistance R2, et des sources de courant constituées par les transistors PMOS Q1, Q2 dont les grilles sont reliées à la sortie de l'amplificateur différentiel Al.Thermometer circuit The thermometer circuit C2 can be constituted for example in the following manner, as represented in FIG. 6: it comprises a current generator proportional to the absolute temperature (PTAT); this generator may be the one used in the circuit C1 to establish the first order constant current or voltage. It is therefore composed of the PNP transistors T1, T2, of the differential amplifier A1, of the resistor R2, and of the current sources constituted by the PMOS transistors Q1, Q2 whose gates are connected to the output of the differential amplifier Al .

15 Le courant 12 proportionnel à la température absolue est recopié par un transistor PMOS Q7 et par un transistor PMOS Q8 qui ont tous deux le même potentiel de source et de grille que Q1 et Q2. Le transistor Q7 alimente une résistance R7. La résistance R7 est reliée entre le drain du transistor Q7 et la sortie d'un amplificateur différentiel A3. Le transistor Q8 20 alimente un transistor bipolaire T8 monté en diode, ayant son émetteur relié au drain de Q8 et son collecteur et sa base reliés au potentiel de référence VG. L'amplificateur différentiel A3 a une première entrée reliée au point de jonction de R7 et Q7 et une deuxième entrée reliée au point de jonction de Q8 et T8.The current 12 proportional to the absolute temperature is copied by a PMOS transistor Q7 and a PMOS transistor Q8 which both have the same source and gate potential as Q1 and Q2. Transistor Q7 supplies a resistor R7. The resistor R7 is connected between the drain of the transistor Q7 and the output of a differential amplifier A3. Transistor Q8 feeds a diode-mounted bipolar transistor T8 having its emitter connected to the drain of Q8 and its collector and base connected to the reference potential VG. The differential amplifier A3 has a first input connected to the junction point of R7 and Q7 and a second input connected to the junction point of Q8 and T8.

25 Il en résulte que l'amplificateur différentiel A3 établit une tension qui est la différence entre la tension base-émetteur de ce transistor bipolaire (parcouru par un courant proportionnel à la température) et de la chute de tension aux bornes de la résistance (parcourue par un courant proportionnel à la température).As a result, the differential amplifier A3 establishes a voltage which is the difference between the base-emitter voltage of this bipolar transistor (traversed by a current proportional to the temperature) and the voltage drop across the resistor (traversed by a current proportional to the temperature).

30 On peut montrer et vérifier expérimentalement que si la résistance R7 est ajustée pour que la tension de sortie de l'amplificateur différentiel A3 soit égale à VG pour la température de référence Tr, alors la tension de sortie de l'amplificateur pour une température absolue quelconque T est une tension E2(T) pratiquement proportionnelle à T-Tr et qu'on peut donc écrire 35 E2(T)=k2.(T-Tr) 2906903 12 Cette proportionnalité approchée résulte notamment de la courbe de variation pratiquement en (T-Tr) de la tension base-émetteur Vbe8 du transistor T8 lorsqu'il est parcouru par un courant 12 proportionnel à la température absolue.It can be shown and verified experimentally that if the resistor R7 is adjusted so that the output voltage of the differential amplifier A3 is equal to VG for the reference temperature Tr, then the output voltage of the amplifier for an absolute temperature any T is a voltage E2 (T) that is substantially proportional to T-Tr and that can therefore be written E2 (T) = k2 (T-Tr) 2906903 12 This approximate proportionality results notably from the variation curve practically in ( T-Tr) of the base-emitter voltage Vbe8 of the transistor T8 when it is traversed by a current 12 proportional to the absolute temperature.

5 La résistance R7 est ajustable pour régler le circuit thermomètre de telle manière que la tension de sortie E2(T) soit nulle pour la température de référence Tr, c'est-à-dire de manière que la sortie de l'amplificateur A3 soit égale à VG pour cette température. Si on estime que le coefficient a de la courbe de variation de 10 EG(T) avec la température peut être soit positif soit négatif, on peut prévoir un amplificateur opérationnel supplémentaire, monté en inverseur analogique, à la sortie de l'amplificateur A3. La sortie de l'amplificateur supplémentaire ou la sortie de l'amplificateur A3 sera utilisée selon le signe de a, le choix étant fait lors du test du circuit ; l'ajustement de la résistance 15 R7 est fait également lors du test. Circuit d'élévation au carré Pour produire un signal proportionnel à (T-Tr)2 on utilise le circuit thermomètre, et on applique sa tension de sortie E2(T) a un circuit 20 d'élévation au carré qui utilise la même référence de potentiel VG. Le circuit d'élévation au carré peut être celui de la figure 7. Il comporte deux sources de courant entrant et sortant SC1 et SC2 de valeur arbitraire 2.10 chacune ; la première source, SC1, alimente en courant entrant un groupe de deux branches différentielles identiques à une 25 résistance et trois transistors chacune (une résistance R21, un PMOS Q21 et deux NMOS Q22 et Q23, tous en série dans la première branche, une résistance R24=R21, un PMOS Q24 et deux NMOS Q25 et Q26 en série dans la deuxième branche) ; la deuxième source SC2 alimente en courant sortant une paire de deux transistors NMOS identiques Q27 et Q28 ayant 30 leurs sources réunies. Ces sources réunies sont reliées à la grille d'un transistor NMOS Q30 alimenté par une source de courant entrant SC3 de valeur Io (donc la moitié de la valeur de chacune des autres sources). Les transistors PMOS des deux branches différentielles identiques reçoivent respectivement sur leur grille un potentiel E2(T) issu du circuit thermomètre 2906903 13 et le potentiel de référence VG. On peut montrer que le courant qui parcourt le transistor Q30 est égal àlo+ [E2(T)]2/4(R21)2.Io On extrait du point de jonction entre la source SC3 de valeur Io et le drain du transistor Q30 un courant égal à la différence entre le courant de 5 la source SC3 et le courant du transistor Q30. Cette différence est égale à [E2(T)]2/4.(R21)2.10 Elle est convertie en tension dans un amplificateur différentiel A4 dont une entrée est portée à la tension de référence VG et dont l'autre entrée, qui reçoit le courant [E2(T)]2/4.(R21)2.10, est reliée par une 10 résistance R30 de rebouclage à la sortie de l'amplificateur. La tension qui apparaît à la sortie de l'amplificateur est alors une tension E3(T) égale à R30.[E2(T)]2/4.(R21)2.10 +VG La tension E3(T) est pratiquement proportionnelle au carré de E2(T) donc au carré de T-Tr, à la condition toutefois que Io soit à peu près 15 indépendant de la température. Pour obtenir ce résultat, on s'arrange pour réaliser les sources de courant de valeur Io et 210 à partir du rapport entre une tension à peu près indépendante de la température et une résistance de polarisation Rpol. La tension à peu près indépendante de la température est de préférence la tension de sortie EG issue du coeur de circuit bandgap.The resistor R7 is adjustable to adjust the thermometer circuit such that the output voltage E2 (T) is zero for the reference temperature Tr, i.e. so that the output of the amplifier A3 is equal to VG for this temperature. If it is estimated that the coefficient a of the variation curve of 10 EG (T) with the temperature can be either positive or negative, an additional operational amplifier mounted in an analog inverter can be provided at the output of the amplifier A3. The output of the additional amplifier or the output of the amplifier A3 will be used according to the sign of a, the choice being made during the circuit test; the adjustment of the resistance R7 is also done during the test. Squaring circuit To produce a signal proportional to (T-Tr) 2 the thermometer circuit is used, and its output voltage E2 (T) is applied to a squaring circuit which uses the same reference of VG potential. The squaring circuit may be that of FIG. 7. It comprises two incoming and outgoing current sources SC1 and SC2 of arbitrary value 2.10 each; the first source, SC1, supplies as input current a group of two differential branches identical to a resistor and three transistors each (a resistor R21, a PMOS Q21 and two NMOS Q22 and Q23, all in series in the first branch, a resistor R24 = R21, a PMOS Q24 and two NMOS Q25 and Q26 in series in the second branch); the second source SC2 feeds outgoing current a pair of two identical NMOS transistors Q27 and Q28 having their sources together. These combined sources are connected to the gate of a NMOS transistor Q30 fed by an incoming power source SC3 of value Io (thus half the value of each of the other sources). The PMOS transistors of the two identical differential branches receive respectively on their gate a potential E2 (T) coming from the thermometer circuit 2906903 13 and the reference potential VG. It can be shown that the current flowing through the transistor Q30 is equal tolo + [E2 (T)] 2/4 (R21) 2.Io is extracted from the junction point between the source SC3 of value Io and the drain of transistor Q30 a current equal to the difference between the current of the source SC3 and the current of the transistor Q30. This difference is equal to [E2 (T)] 2/4 (R21) 2.10 It is converted into a voltage in a differential amplifier A4 whose input is brought to the reference voltage VG and the other input, which receives the Current [E2 (T)] 2/4 (R21) 2.10 is connected by a loopback resistor R30 to the output of the amplifier. The voltage which appears at the output of the amplifier is then a voltage E3 (T) equal to R30 [E2 (T)] 2/4 (R21) 2.10 + VG The voltage E3 (T) is practically proportional to the square E2 (T) then squared T-Tr, provided, however, that Io is approximately temperature independent. To obtain this result, it is arranged to realize the current sources of value Io and 210 from the ratio between a voltage approximately independent of the temperature and a bias resistor Rpol. The voltage approximately independent of the temperature is preferably the output voltage EG from the bandgap circuit core.

20 Io est alors de la forme Io=Eg/Rpol et on peut noter que la tension E3(T) fait alors intervenir un rapport Rpol.R30/(R21)2. Ce rapport est lui aussi à peu près indépendant de la température, toutes les résistances variant de la même manière. Là encore, si le coefficient b de la courbe de variation EG(T) a un 25 signe quelconque, on peut placer un amplificateur opérationnel inverseur à la sortie de l'amplificateur A4. La sortie de l'un ou l'autre de ces amplificateurs sera choisie au test. Compensation des pains en courant des transistors PNP 30 Comme on l'a dit, les transistors PNP peuvent être de mauvaise qualité et notamment ils peuvent avoir un gain en courant béta faible et fortement dispersé. C'est le cas en particulier lorsque le circuit de référence de tension est réalisé dans une technologie CMOS où les seuls transistors bipolaires disponibles sont des transistors PNP formés entre le substrat de 35 type P, les caissons de type N et les diffusions de source et drain des PMOS 2906903 14 formés dans ces caissons. Ces transistors sont de mauvaise qualité. C'est pourquoi il est préférable de prévoir un circuit de compensation du générateur de courant PTAT, qu'on va décrire en référence à la figure 8. Le circuit représenté à la figure 8 comprend, sur sa partie droite, le 5 générateur de courant PTAT de la figure 1, et sur sa partie gauche le circuit de compensation dont la fonction est d'injecter dans l'émetteur du transistor T1 et dans l'émetteur du transistor T2 un courant égal au courant de base lb qui parcourt ces transistors lorsque la résistance R2 est parcourue par le courant 12 proportionnel à la température absolue. En injectant ces courants, 10 on fait en sorte que les courants égaux qui traversent QI et Q2 et donc le courant 12 qui traverse la résistance R2 ne soient pas le courant d'émetteur des transistors T1 et T2 mais soient le courant de collecteur Ic. Lorsque c'est le courant émetteur, il y a des imprécisions car les équations de fonctionnement du générateur PTAT se fondent sur le calcul des courants de 15 collecteur des transistors T1 et T2 de taille différente. Cela n'a pas d'importance lorsque le gain en courant est fort car la différence entre courant collecteur et courant émetteur est insignifiance. Cela a plus d'importance lorsque le gain est faible. Avec la compensation introduite, on fait fonctionner véritablement le générateur PTAT à partir de courants de 20 collecteur même si le gain est faible. Pour atteindre ce résultat, le courant 12 dans Q1 est recopié dans une branche Q10, T10. Le transistor Q10 est identique à QI et a sa grille et sa source aux mêmes potentiels que la grille et la source de QI. Le transistor T10 est identique à T1 et a son émetteur relié à la masse comme T1. La 25 base de T10 n'est cependant pas connectée directement à la masse comme celle de Ti, elle est connectée à la masse par l'intermédiaire d'un transistor NMOS Q11 monté en diode. Ce transistor Q11 est donc parcouru par un courant lb qui est le courant de base de T10, identique au courant de base de T1.Io is then of the form Io = Eg / Rpol and it may be noted that the voltage E3 (T) then involves a ratio Rpol.R30 / (R21) 2. This ratio is also approximately independent of the temperature, all the resistances varying in the same way. Again, if the coefficient b of the variation curve EG (T) has any sign, an inverting operational amplifier can be placed at the output of the amplifier A4. The output of one or the other of these amplifiers will be chosen on the test. COMPENSATION OF BREADS IN TRANSFER OF PNP TRANSISTORS As has been said, PNP transistors may be of poor quality and in particular they may have a gain in low and highly dispersed beta current. This is particularly the case when the voltage reference circuit is made in a CMOS technology where the only available bipolar transistors are PNP transistors formed between the P-type substrate, the N-type wells and the source and drain PMOS 2906903 14 formed in these boxes. These transistors are of poor quality. This is why it is preferable to provide a compensation circuit of the PTAT current generator, which will be described with reference to FIG. 8. The circuit represented in FIG. 8 comprises, on its right side, the current generator. PTAT of FIG. 1, and on its left side the compensation circuit whose function is to inject into the emitter of the transistor T1 and into the emitter of the transistor T2 a current equal to the base current lb which flows through these transistors when the resistance R2 is traversed by the current 12 proportional to the absolute temperature. By injecting these currents, it is ensured that the equal currents flowing through Q1 and Q2 and thus the current 12 flowing through the resistor R2 are not the emitter current of the transistors T1 and T2 but are the collector current Ic. When it is the emitter current, there are inaccuracies because the operating equations of the PTAT generator are based on the calculation of the collector currents of the transistors T1 and T2 of different size. This does not matter when the current gain is high because the difference between the collector current and the emitter current is insignificant. This is more important when the gain is low. With the compensation introduced, the PTAT generator is actually operated from collector currents even though the gain is small. To achieve this result, the current 12 in Q1 is copied into a branch Q10, T10. The transistor Q10 is identical to QI and has its gate and source at the same potentials as the gate and the source of IQ. Transistor T10 is identical to T1 and has its emitter connected to ground like T1. The base of T10, however, is not connected directly to ground like that of Ti, it is connected to ground via a diode mounted NMOS transistor Q11. This transistor Q11 is therefore traversed by a current lb which is the basic current of T10, identical to the basic current of T1.

30 Le courant dans Q11 est recopié à l'identique dans une branche à deux transistors Q12 NMOS), Q13 (PMOS monté en diode) ; de là, ce courant lb est encore recopié à l'identique par un transistor Q14 qui injecte son courant égal à lb dans le point de jonction entre les transistors QI et 35 T1. 2906903 15 à l'identique par un transistor Q15 qui injecte un courant lb dans le point de jonction entre les transistors Q2 et T2. Enfin, un transistor Q16 recopie le courant lb du transistor Q13 pour l'injecter au point de jonction des transistors Q10 et T10.The current in Q11 is copied identically into a branch with two transistors Q12 NMOS), Q13 (PMOS diode mounted); thence, this current lb is again copied identically by a transistor Q14 which injects its current equal to lb in the junction point between the transistors QI and T1. Similarly, transistor Q15 injects a current Ib into the junction point between transistors Q2 and T2. Finally, a transistor Q16 copies the current lb of the transistor Q13 to inject it at the junction point of the transistors Q10 and T10.

5 Il en résulte que le courant 12 dans les transistors Q1 et Q2 est bien un courant de collecteur des transistors Ti et T2. Avec ce schéma on aboutit à un fonctionnement où le courant proportionnel à la température est un courant de collecteur de transistor et non un courant d'émetteur comme dans les schémas classiques, de sorte 10 qu'il est insensible au fait que le gain en courant des transistors PNP soit faible et dispersé. On pourrait d'ailleurs faire un schéma sur le même principe si les transistors étaient NPN. 15As a result, the current 12 in the transistors Q1 and Q2 is indeed a collector current of the transistors T1 and T2. With this scheme, an operation is obtained in which the current proportional to the temperature is a transistor collector current and not an emitter current as in the conventional diagrams, so that it is insensitive to the fact that the current gain PNP transistors are weak and scattered. We could also make a diagram on the same principle if the transistors were NPN. 15

Claims (7)

REVENDICATIONS 1. Circuit de référence de tension, comportant un premier circuit de type bandgap (Cl) fournissant une tension ou un courant stable en température au premier ordre, à partir - d'une tension base-émetteur de transistor bipolaire (T3) ayant une pente de variation négative en fonction de la température - et d'une tension ou un courant (12) ayant une pente de variation positive en fonction de la température, caractérisé en ce qu'il comprend un sommateur (ADD) pour établir une combinaison linéaire, avec des coefficients de pondération respectifs, de trois valeurs qui sont respectivement - la tension ou le courant de sortie (EG(T)) du premier circuit de type bandgap (Cl), - la tension ou le courant de sortie d'un deuxième circuit (C2) fournissant une tension (E2(T)) ou un courant proportionnel à la différence entre la température absolue T et une température de référence Tr, - la tension ou le courant de sortie (E3(T)) d'un troisième circuit (C3) fournissant une tension ou un courant proportionnel au carré de cette différence.  A voltage reference circuit, comprising a first bandgap circuit (C1) providing a first-order temperature stable voltage or current, from a bipolar transistor base-emitter voltage (T3) having a slope negative variation as a function of the temperature - and of a voltage or a current (12) having a slope of positive variation as a function of the temperature, characterized in that it comprises an adder (ADD) to establish a linear combination, with respective weighting coefficients, of three values which are respectively - the output voltage or current (EG (T)) of the first bandgap circuit (Cl), - the output voltage or current of a second circuit (C2) providing a voltage (E2 (T)) or a current proportional to the difference between the absolute temperature T and a reference temperature Tr, - the output voltage or current (E3 (T)) of a third circuit (C3) providing a voltage or a current proportional to the square of this difference. 2. Circuit de référence selon la revendication 1, caractérisé en ce que le premier circuit de référence comprend un générateur de courant proportionnel à la température absolue et des moyens pour produire un courant qui est le rapport entre une tension base-émetteur de transistor bipolaire et une valeur de résistance R2, ce courant étant appliqué à une entrée d'un amplificateur opérationnel (AO) du sommateur.  2. Reference circuit according to claim 1, characterized in that the first reference circuit comprises a current generator proportional to the absolute temperature and means for producing a current which is the ratio between a bipolar transistor base-emitter voltage and a resistance value R2, this current being applied to an input of an operational amplifier (AO) of the summator. 3. Circuit de référence selon la revendication 2, caractérisé en ce que le générateur de courant proportionnel à la température absolue comprend, entre une alimentation (Vdd) et une masse (GND), deux branches parallèles, l'une comprenant un premier transistor MOS (Q1) en série avec un transistor bipolaire (Tl) monté en diode, l'autre comprenant un deuxième transistor MOS identique au premier, une résistance (R2) et un deuxième transistor bipolaire (T2) monté en diode, ayant une surface d'émetteur N fois 2906903 17 plus grande que la surface d'émetteur du premier, les premier et deuxième transistor MOS fonctionnant en sources de courant variable identiques commandées par un même amplificateur différentiel (Al) dont les entrées sont reliées aux drains des deux transistors MOS de manière à établir dans 5 ces transistors une valeur de courant (12) telle que la chute de tension dans la résistance (R2) soit égale à la différence des tensions base-émetteur des deux transistors bipolaires.  3. Reference circuit according to claim 2, characterized in that the current generator proportional to the absolute temperature comprises, between a power supply (Vdd) and a ground (GND), two parallel branches, one comprising a first MOS transistor. (Q1) in series with a bipolar transistor (T1) diode-mounted, the other comprising a second MOS transistor identical to the first, a resistor (R2) and a second bipolar transistor (T2) diode-mounted, having a surface of transmitter N times 2906903 17 greater than the emitter surface of the first, the first and second MOS transistor operating in identical variable current sources controlled by the same differential amplifier (Al) whose inputs are connected to the drains of the two MOS transistors of so as to establish in these transistors a current value (12) such that the voltage drop in the resistor (R2) is equal to the difference of the base-emitter voltages of the d they bipolar transistors. 4. Circuit selon la revendication 3, caractérisé en ce qu'il 10 comprend un amplificateur différentiel (A2) et un troisième transistor MOS (Q4) contrôlée par cet amplificateur différentiel, pour établir dans une résistance (R4) de valeur R4 un courant égal à Vbe2/R4, où Vbe2 est la tension base-émetteur du deuxième transistor. 15  4. Circuit according to claim 3, characterized in that it comprises a differential amplifier (A2) and a third MOS transistor (Q4) controlled by this differential amplifier, for establishing in a resistor (R4) of value R4 an equal current at Vbe2 / R4, where Vbe2 is the base-emitter voltage of the second transistor. 15 5. Circuit selon l'une des revendications 3 et 4, caractérisé en ce qu'il comprend au moins un quatrième et un cinquième transistors (Q5, Q6) pour recopier le courant dans la résistance de valeur R4 et le courant dans la résistance de valeur R2. 20  5. Circuit according to one of claims 3 and 4, characterized in that it comprises at least a fourth and a fifth transistors (Q5, Q6) for copying the current in the resistance of value R4 and the current in the resistance of R2 value. 20 6. Circuit selon l'une des revendications 3 à 5, caractérisé en ce que le circuit (C2) fournissant une tension proportionnelle à la différence (TTr) comprend un générateur de courant proportionnel à la température absolue, des moyens pour appliquer ce courant à une résistance de valeur R7 et à un transistor bipolaire (T8), et un amplificateur différentiel pour établir 25 une tension qui est la différence entre la tension base-émetteur (Vbe8) de ce transistor bipolaire et de la chute de tension (R2.I2) aux bornes de la résistance.  6. Circuit according to one of claims 3 to 5, characterized in that the circuit (C2) providing a voltage proportional to the difference (TTr) comprises a current generator proportional to the absolute temperature, means for applying this current to a resistance of value R7 and a bipolar transistor (T8), and a differential amplifier for setting a voltage which is the difference between the base-emitter voltage (Vbe8) of this bipolar transistor and the voltage drop (R2.I2 ) at the terminals of the resistor. 7. Circuit selon l'une des revendications 3 à 6, caractérisé en ce 30 que les transistors bipolaires du générateur de courant PTAT sont des transistors PNP réalisés dans une technologie CMOS et il est prévu des moyens pour injecter au point de jonction entre le premier transistor bipolaire (Tl) et le premier transistor MOS (QI) un courant qui est égal au courant de base du premier transistor bipolaire (T1) et des moyens pour injecter au point de jonction du deuxième transistor bipolaire (T2) et du deuxième transistor 2906903 18 MOS (Q2) un courant qui est égal au courant de base du deuxième transistor bipolaire (T2), de manière que le courant de sortie du générateur de courant proportionnel à la température soit égal au courant de collecteur et non au courant d'émetteur d'un transistor bipolaire.  7. Circuit according to one of claims 3 to 6, characterized in that the bipolar transistors of the PTAT current generator are PNP transistors made in a CMOS technology and there is provided means for injecting at the junction point between the first and second bipolar transistor (Tl) and the first MOS transistor (QI) a current which is equal to the base current of the first bipolar transistor (T1) and means for injecting at the junction point of the second bipolar transistor (T2) and the second transistor 2906903 18 MOS (Q2) a current which is equal to the base current of the second bipolar transistor (T2), so that the output current of the current generator proportional to the temperature is equal to the collector current and not to the emitter current of a bipolar transistor.
FR0608789A 2006-10-06 2006-10-06 ELECTRONIC VOLTAGE REFERENCE CIRCUIT. Expired - Fee Related FR2906903B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FR0608789A FR2906903B1 (en) 2006-10-06 2006-10-06 ELECTRONIC VOLTAGE REFERENCE CIRCUIT.
AT07820997T ATE475925T1 (en) 2006-10-06 2007-10-05 VOLTAGE REFERENCE ELECTRONIC CIRCUIT
EP07820997A EP2067090B1 (en) 2006-10-06 2007-10-05 Voltage reference electronic circuit
US12/444,252 US20100007324A1 (en) 2006-10-06 2007-10-05 Voltage reference electronic circuit
PCT/EP2007/060624 WO2008040817A1 (en) 2006-10-06 2007-10-05 Voltage reference electronic circuit
DE602007008115T DE602007008115D1 (en) 2006-10-06 2007-10-05 VOLTAGE REFERENCE ELECTRONIC CIRCUIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0608789A FR2906903B1 (en) 2006-10-06 2006-10-06 ELECTRONIC VOLTAGE REFERENCE CIRCUIT.

Publications (2)

Publication Number Publication Date
FR2906903A1 true FR2906903A1 (en) 2008-04-11
FR2906903B1 FR2906903B1 (en) 2009-02-20

Family

ID=37909068

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0608789A Expired - Fee Related FR2906903B1 (en) 2006-10-06 2006-10-06 ELECTRONIC VOLTAGE REFERENCE CIRCUIT.

Country Status (6)

Country Link
US (1) US20100007324A1 (en)
EP (1) EP2067090B1 (en)
AT (1) ATE475925T1 (en)
DE (1) DE602007008115D1 (en)
FR (1) FR2906903B1 (en)
WO (1) WO2008040817A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975510B1 (en) * 2011-05-17 2013-05-03 St Microelectronics Rousset DEVICE FOR GENERATING AN ADJUSTABLE PROHIBITED BAND REFERENCE VOLTAGE WITH HIGH FEED REJECTION RATES
FR2975512B1 (en) * 2011-05-17 2013-05-10 St Microelectronics Rousset METHOD AND DEVICE FOR GENERATING AN ADJUSTABLE REFERENCE VOLTAGE OF BAND PROHIBITED
JP5842164B2 (en) * 2011-05-20 2016-01-13 パナソニックIpマネジメント株式会社 Reference voltage generation circuit and reference voltage source
JP6242274B2 (en) * 2014-04-14 2017-12-06 ルネサスエレクトロニクス株式会社 Band gap reference circuit and semiconductor device including the same
US9864389B1 (en) * 2016-11-10 2018-01-09 Analog Devices Global Temperature compensated reference voltage circuit
US11740281B2 (en) 2018-01-08 2023-08-29 Proteantecs Ltd. Integrated circuit degradation estimation and time-of-failure prediction using workload and margin sensing
US11068011B2 (en) * 2019-10-30 2021-07-20 Taiwan Semiconductor Manufacturing Company Ltd. Signal generating device and method of generating temperature-dependent signal
DE102021112735B3 (en) 2021-05-17 2022-08-04 Infineon Technologies Ag BANDGAP REFERENCE CIRCUIT
US11619551B1 (en) * 2022-01-27 2023-04-04 Proteantecs Ltd. Thermal sensor for integrated circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391980A (en) * 1993-06-16 1995-02-21 Texas Instruments Incorporated Second order low temperature coefficient bandgap voltage supply
US5629612A (en) * 1996-03-12 1997-05-13 Maxim Integrated Products, Inc. Methods and apparatus for improving temperature drift of references
US6255807B1 (en) * 2000-10-18 2001-07-03 Texas Instruments Tucson Corporation Bandgap reference curvature compensation circuit
US20030117120A1 (en) * 2001-12-21 2003-06-26 Amazeen Bruce E. CMOS bandgap refrence with built-in curvature correction
US20050001605A1 (en) * 2003-07-03 2005-01-06 Analog Devices, Inc. CMOS bandgap current and voltage generator
US7091713B2 (en) * 2004-04-30 2006-08-15 Integration Associates Inc. Method and circuit for generating a higher order compensated bandgap voltage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7486065B2 (en) * 2005-02-07 2009-02-03 Via Technologies, Inc. Reference voltage generator and method for generating a bias-insensitive reference voltage
TWI256725B (en) * 2005-06-10 2006-06-11 Uli Electronics Inc Bandgap reference circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5391980A (en) * 1993-06-16 1995-02-21 Texas Instruments Incorporated Second order low temperature coefficient bandgap voltage supply
US5629612A (en) * 1996-03-12 1997-05-13 Maxim Integrated Products, Inc. Methods and apparatus for improving temperature drift of references
US6255807B1 (en) * 2000-10-18 2001-07-03 Texas Instruments Tucson Corporation Bandgap reference curvature compensation circuit
US20030117120A1 (en) * 2001-12-21 2003-06-26 Amazeen Bruce E. CMOS bandgap refrence with built-in curvature correction
US20050001605A1 (en) * 2003-07-03 2005-01-06 Analog Devices, Inc. CMOS bandgap current and voltage generator
US7091713B2 (en) * 2004-04-30 2006-08-15 Integration Associates Inc. Method and circuit for generating a higher order compensated bandgap voltage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GABRIEL A RINCON-MORA ET AL: "Brief PapersA 1.1-V Current-Mode and Piecewise-Linear Curvature-Corrected Bandgap Reference", October 1998, IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, ISSN: 0018-9200, XP011060833 *
PAUL R ET AL: "Design of Second-Order Sub-Bandgap Mixed-Mode Voltage Reference Circuit for Low Voltage Applications", VLSI DESIGN, 2005. 18TH INTERNATIONAL CONFERENCE ON KOLKATA, INDIA 03-07 JAN. 2005, PISCATAWAY, NJ, USA,IEEE, 3 January 2005 (2005-01-03), pages 307 - 312, XP010769872, ISBN: 0-7695-2264-5 *

Also Published As

Publication number Publication date
DE602007008115D1 (en) 2010-09-09
EP2067090A1 (en) 2009-06-10
EP2067090B1 (en) 2010-07-28
ATE475925T1 (en) 2010-08-15
FR2906903B1 (en) 2009-02-20
WO2008040817A1 (en) 2008-04-10
US20100007324A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
EP2067090B1 (en) Voltage reference electronic circuit
EP0733961B1 (en) Reference current generator in CMOS technology
EP0424264B1 (en) Current source with low temperature coefficient
EP1380914A1 (en) Reference voltage source, temperature sensor, temperature threshold detectors, chip and corresponding system
FR2623307A1 (en) TWO-TERMINAL CURRENT SOURCE WITH TEMPERATURE COMPENSATION
FR2975510A1 (en) DEVICE FOR GENERATING AN ADJUSTABLE PROHIBITED BAND REFERENCE VOLTAGE WITH HIGH FEED REJECTION RATES
FR2975512A1 (en) METHOD AND DEVICE FOR GENERATING AN ADJUSTABLE REFERENCE VOLTAGE OF BAND PROHIBITED
FR2465355A1 (en) BAND REFERENCE VOLTAGE GENERATOR CIRCUIT PROHIBITED
CH642451A5 (en) TEMPERATURE SENSOR DEVICE.
CH697322B1 (en) A method of generating a substantially Independent current temperature and device for carrying out this method.
EP1566717B1 (en) Device for the generation of an improved reference voltage and corresponding integrated circuit
FR2832819A1 (en) Temperature compensated current source, uses three branches in a circuit forming two current mirrors to provide reference currents and switches between resistance paths to provide compensation
FR2637747A1 (en) METHOD FOR PRODUCING ZERO SHIFTING VOLTAGE IN A VOLTAGE FOLLOWING CIRCUIT AND NULL SHIFT VOLTAGE AMPLIFIER
FR2695522A1 (en) Voltage / current converter circuit.
FR2809833A1 (en) Current source with weak temperature dependence, for use in electronic integrated circuits or parts of circuits, e.g. in portable transmitter-receiver sets
FR2825806A1 (en) Polarization circuit with functioning point which is stable with respect to supply voltage and ambient temperature variations, comprises a third branch with two transistors
EP0524294B1 (en) Amplification circuit with exponential gain control
FR2801145A1 (en) CONSTANT CURRENT POWER CIRCUIT
FR2677822A1 (en) DIFFERENTIAL AMPLIFIER.
FR2757964A1 (en) Voltage regulator for supplying power to integrated circuits
FR2969328A1 (en) GENERATING CIRCUIT FOR REFERENCE VOLTAGE UNDER LOW POWER SUPPLY VOLTAGE
EP0536063B1 (en) Precision current generator
FR2752961A1 (en) VOLTAGE CONTROLLER WITH SENSITIVITY TO ATTENUATED TEMPERATURE VARIATIONS
FR3041838A1 (en) ELEMENTARY ELECTRONIC CIRCUIT FOR STAGE OF AMPLIFICATION OR RECOPIA OF ANALOG SIGNALS
FR2769103A1 (en) Fixed current source providing steady bias current

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20120629