FR2894967A1 - New interfering RNA, useful for treatment and prevention of diseases caused by morbilliviruses, are directed against the mRNA from the viral nucleoprotein gene - Google Patents

New interfering RNA, useful for treatment and prevention of diseases caused by morbilliviruses, are directed against the mRNA from the viral nucleoprotein gene Download PDF

Info

Publication number
FR2894967A1
FR2894967A1 FR0513029A FR0513029A FR2894967A1 FR 2894967 A1 FR2894967 A1 FR 2894967A1 FR 0513029 A FR0513029 A FR 0513029A FR 0513029 A FR0513029 A FR 0513029A FR 2894967 A1 FR2894967 A1 FR 2894967A1
Authority
FR
France
Prior art keywords
seq
sequence
interfering rna
gene
sirna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0513029A
Other languages
French (fr)
Other versions
FR2894967B1 (en
Inventor
Emmanuel Albina
Genevieve Libeau
Djeneba Keita
De Almeida Renata Sevran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre de Cooperation Internationalel en Recherche Agronomique pour le Development CIRAD
Original Assignee
Centre de Cooperation Internationalel en Recherche Agronomique pour le Development CIRAD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre de Cooperation Internationalel en Recherche Agronomique pour le Development CIRAD filed Critical Centre de Cooperation Internationalel en Recherche Agronomique pour le Development CIRAD
Priority to FR0513029A priority Critical patent/FR2894967B1/en
Priority to US12/158,620 priority patent/US8258287B2/en
Priority to EP06847097.0A priority patent/EP1974035B1/en
Priority to CA002634334A priority patent/CA2634334A1/en
Priority to PCT/FR2006/002819 priority patent/WO2007077339A1/en
Publication of FR2894967A1 publication Critical patent/FR2894967A1/en
Application granted granted Critical
Publication of FR2894967B1 publication Critical patent/FR2894967B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1131Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Interfering RNA (A) directed against a region (R) of the mRNA of the N gene, which encodes the nucleoprotein of a morbillivirus, is new. (R) contains the motif defined by Seq. (1) RRWYNNRHUGGUUHGARA (1) where R = A or G; Y = C or U; W = A or U; H = A, C or U; N = A, C, G or U. An independent claim is included for an expression vector that contains a DNA sequence encoding (I), transcribable to (A), under control of a promoter. ACTIVITY : Virucide. MECHANISM OF ACTION : Vaccine; inhibition of viral replication by RNA interference.

Description

La presente invention est relative a 1'obtention d'ARNs interferentsThe present invention relates to the obtaining of interfering RNAs

capables d'inhiber la replication de morbillivirus, et a leur utilisation pour la prophylaxie ou la therapie d'infections a morbillivirus, notamment pour 1'obtention de vaccins. Le genre des Morbillivirus appartient a la famille des Paramyxoviridae (Ordre des Mononegavirales) et regroupe notamment le PPRV (virus de la peste des petits ruminants), le RPV (Rinderpest virus ou virus de la peste bovine), le MV (ou MeV) (Measles virus ou virus de la rougeole), le CDV (canine distemper virus ou virus de la maladie de Carre), le DMV (dolphin morbillivirus ou morbillivirus du dauphin) et le PDV (phocine distemper virus ou virus du phoque veau marin).  capable of inhibiting the replication of morbilliviruses, and their use for the prophylaxis or therapy of morbillivirus infections, especially for obtaining vaccines. The genus Morbillivirus belongs to the family Paramyxoviridae (Order Mononegavirales) and includes the PPRV (peste des petits ruminants virus), the RPV (Rinderpest virus or rinderpest virus), the MV (or MeV) ( Measles virus or measles virus), CDV (canine distemper virus or Carre's disease virus), DMV (dolphin morbillivirus or dolphin morbillivirus) and PDV (phocine distemper virus or marine seal virus).

Le genome des morbillivirus est constitue d'un ARN monocatenaire non segmente, de polarite negative. Sa structure est schematisee sur la Figure 1. Cet ARN monocatenaire comprend 6 genes : N, P, M, F, H et L. Les produits des genes N (Nucleoproteine), P (Phosphoproteine) et L (proLeine Large ; ARN polymerase ARN dependante) s'associent avec 1'ARN genomique viral pour former la nucleocapside, qui protege le genome viral, et constitue un complexe polymerasique permettant la replication et la transcription du virus.  The genome of morbilliviruses is a single-stranded, non-segmented, negative polarity RNA. Its structure is schematised in FIG. 1. This single-stranded RNA comprises 6 genes: N, P, M, F, H and L. The products of the N (Nucleoprotein), P (Phosphoprotein) and L (proLein Large) genes RNA polymerase RNA dependent) associate with viral genomic RNA to form the nucleocapsid, which protects the viral genome, and provides a polymerase complex for replication and transcription of the virus.

Les produits des genes F (proteine de Fusion) et H (Hemagglutinine) font partie de 1'enveloppe virale. La glycoproteine H permet 1'attachement du virus a la cellule cible, et la glycoproteine F intervient dans la fusion de 1'enveloppe virale et de la membrane cellulaire.  The products of the F genes (Fusion protein) and H (Hemagglutinin) are part of the viral envelope. The glycoprotein H allows the attachment of the virus to the target cell, and the glycoprotein F is involved in the fusion of the viral envelope and the cell membrane.

Le produit du gene M (proteine de Matrice) assure 1'interface entre la nucleocapside et 1'enveloppe virale. L'interference ARN est un mecanisme biologique conserve au cours de 1'evolution, qui induit 1'extinction specifique de genes par degradation specifique des ARNs messagers et/ou arret de leur traduction. Elie a ete observee initialement chez Caenorhabditis elegans : 1'injection chez ce nematode d'ARN double-brin inhibe 1'expression du gene qui contient la sequence de la molecule injectee. I1 a ensuite ete montre (FIRE et al., Nature, 391, 806, 1998) que c'etait 1'ARN double-brin qui etait a 1'origine de ce mecanisme. Dans la cellule, cet ARN double-brin est rapidement segmente par une endonuclease de type ARNase III, appelee DICER, en petits ARN de 21 a 28 nucleotides : les o small interfering ARN siARN (ZAMORE et al., Cell, 101, 25, 2000). Les siARNs sont incorpores dans un complexe enzymatique nomme RISC pour << RNA-Induced Silencing Complex >>. Le complexe RISC dissocie les brins des siARNs, et guide 1'appariement des brins antisens avec leurs sequences-cibles complementaires. Les ARNs messagers contenant ces sequences-cibles sont alors clives au niveau du duplex ainsi forme ou leur traduction par les ribosomes est bloquee.  The M gene product (Matrix Protein) provides the interface between the nucleocapsid and the virus envelope. RNA interference is a biological mechanism conserved during evolution, which induces the specific extinction of genes by specific degradation of the messenger RNAs and / or stopping their translation. Elie was first observed in Caenorhabditis elegans: Injection into this double-stranded RNA nematode inhibits the expression of the gene which contains the sequence of the injected molecule. It was then shown (FIRE et al., Nature, 391, 806, 1998) that it was the double-stranded RNA that was responsible for this mechanism. In the cell, this double-stranded RNA is rapidly segmented by an RNase III type endonuclease, called DICER, into small 21 to 28 nucleotide RNAs: the small siRNA siRNA interfering agents (ZAMORE et al., Cell, 101, 25, 2000). SiRNAs are incorporated into an enzyme complex called RISC for "RNA-Induced Silencing Complex". The RISC complex dissociates the strands of siRNAs, and guides the pairing of the antisense strands with their complementary target sequences. The messenger RNAs containing these target sequences are then cleaved at the level of the duplex thus formed or their translation by the ribosomes is blocked.

Chez les mammiferes, la presence d'ARN doublebrin de taille superieure a 30pb clans une cellule induit egalement une reponse mediee par 1'interferon, qui se traduit par une degradation des ARN messagers, non specifique de sequence. I1 a ete montre (ELBASHIR et al., Nature, 411, 494, 2001) que 1'utilisation de siARNs dans des cellules de mammiferes n'induisait pas cette reponse de type interferon, et permettait d'inhiber specifiquement 1'expression des genes contenant les sequences complementaires de ces siARNs.  In mammals, the presence of double-stranded RNA larger than 30 pb in a cell also induces an interferon-mediated response, which results in non-sequence-specific messenger RNA degradation. It has been shown (ELBASHIR et al., Nature, 411, 494, 2001) that the use of siRNAs in mammalian cells does not induce this interferon response, and allows specific inhibition of gene expression. containing the complementary sequences of these siRNAs.

L'interference ARN a ete largement utilisee vis-a-vis de virus de diverses families, pour cibler differents genes dans le but d'etudier leur fonction, et/ou a des fins de therapie anti-virale. En ce qui concerne les virus a ARN monocatenaire negatif non segmente, les premieres experimentations ont ete effectuees chez un pneumovirus, le virus respiratoire syncitial (RSV) (BITKO & BARIK, BMC Microbiol, 1, 34, 2001). Un siARN ciblant le gene de la proteine P (sous-unite de 1'ARN polymerase ARN dependante), a permis d'obtenir une reduction de 90a de 1'expression de cette proteine, s'accompagnant d'une diminution drastique de 1'expression de 1'ensemble des proteines virales, et d'une reduction du titre viral ; un siARN ciblant le gene de la proteine F induit une reduction specifique de la synthese de cette proteine, sans affecter celle des autres proteines virales, et inhibe la formation de syncitia. La Demande PCT WO2005/056021 decrit 1'utilisation d'un siARN pour cibler et inactiver le gene codant pour une pro-Leine non-structurelle du RSV, la pro-Leine NS1, et augmenter ainsi la reponse interferon vis-a-vis du RSV. Une publication recente de S. BARIK (BARIK, Virus Res, 102, 27, 2004) passe en revue les differentes approches utilisees pour controler la replication de virus a ARN monocatenaire negatif non segmente a 1'aide de siARN. Le ciblage des genes codant les proteines P ou L, qui constituent des sous-unites essentielles du complexe polymerasique viral, conduit a une disparition quasi-totale de la synthese de 1'ARN viral ; le ciblage de genes non essentiels a la synthese de 1'ARN viral, mais impliques dans les interactions du virus avec la cellule-hote produit des resultats plus variables. L'interference ARN represente potentiellement un 20 outil particulierement intereenant pour la prophylaxie et/ou le traitement des infections virales. Cependant, malgre tout l'interet theorique de cette approche, sa mise en pratique pour obtenir une activite antivirale efficace pose differents problemes, 25 concernant notamment le choix des sequences-cibles utilisees dans les siARNs. On utilise ici le terme de << gene-cible >> pour designer un gene dont on cherche a obtenir 1'extinction, et celui de << sequence-cible >>, pour designer une portion de 30 1'ARNm d'un gene-cible reconnue par un siARN particulier. L'un des problemes relatifs au choix de sequences-cibles decoule de la frequence des mutations, qui est generalement tres elevee chez les virus. Une mutation intervenant dans la sequence-cible d'un siARN peut permettre 35 au virus mutant d'echapper a la reconnaissance. Il est donc souhaitable de choisir une sequence-cible conservee entre differents virus, ou des mutations sont moms susceptibles d'apparaitre.  RNA interference has been extensively used against viruses of various families, to target different genes for the purpose of studying their function, and / or for anti-viral therapy purposes. For non-segmented, single-stranded RNA viruses, the first experiments were performed in pneumovirus, the synovial respiratory virus (RSV) (BITKO & BARIK, BMC Microbiol, 1, 34, 2001). A siRNA targeting the P-protein gene (subunit of the RNA dependent RNA polymerase), resulted in a 90-fold reduction in the expression of this protein, accompanied by a drastic reduction in the size of the protein. expression of all the viral proteins, and a reduction of the viral titre; a siRNA targeting the F protein gene induces a specific reduction in the synthesis of this protein, without affecting that of the other viral proteins, and inhibits the formation of syncitia. PCT Application WO2005 / 056021 describes the use of siRNA to target and inactivate the gene coding for a non-structural pro-Lein of RSV, pro-Lein NS1, and thereby increase the interferon response to RSV. A recent publication by S. BARIK (BARIK, Virus Res, 102, 27, 2004) reviews the different approaches used to control the replication of unsegmented, single-stranded siRNA RNA viruses. Targeting the genes encoding the P or L proteins, which are essential subunits of the viral polymerase complex, leads to an almost complete disappearance of viral RNA synthesis; Targeting non-essential genes to the synthesis of viral RNA but implicated in the virus's interactions with the host cell produces more variable results. RNA interference potentially represents a particularly interdening tool for the prophylaxis and / or treatment of viral infections. However, in spite of all the theoretical interest of this approach, putting it into practice to obtain effective antiviral activity poses various problems, particularly with regard to the choice of target sequences used in siRNAs. The term "target gene" is used herein to designate a gene which is sought to be extinguished, and that of "target sequence" to designate a portion of the mRNA of a gene. -recognized by a particular siRNA. One of the problems in choosing target sequences is the frequency of mutations, which is usually very high among viruses. A mutation occurring in the siRNA target sequence may allow the mutant virus to escape recognition. It is therefore desirable to choose a target sequence kept between different viruses, or mutations are less likely to appear.

D'autre part, meme s'il est relativement aise, pour un gene cible donne, de definir des siARNs permettant d'obtenir une certaine attenuation de 1'expression de ce gene, it est beaucoup plus problematique d'obtenir des siARNs permettant de parvenir a un niveau d'extinction du gene-cible suffisant pour inhiber la replication virale. Il est en effet connu que 1'efficacite de 1'interference ARN peut varier considerablement d'un siARN a 1'autre. De tres nombreux facteurs apparaissent impliques dans cette variabilite, relatifs notamment a la sequencecible elle-meme (par exemple la teneur en G/C, la presence de certaines bases a certaines positions), a la position de cette sequence-cible dans le gene cible, et a la presence de structures secondaires de 1'ARNm pouvant diminuer 1'accessibilite de la sequence-cible pour le siARN. Differentes methodes ont ete proposees pour tenter de predire 1'efficacite des siARNs (GILMORE et al., J Drug Target, 12, 315, 2004 ; UI-TEI & SAIGO, Tanpakushitsu Kakusan Koso, 49, 2662, 2004 ; AMARZGUIOUI & PRYDZ, Biochem Biophys Res Commun, 316, 1050, 2004 ; HEALE et al., Nucleic Acids Res, 33, e30, 2005 ; REYNOLDS et al., Nat Biotechnol, 22, 326, 2004 ; ARZIMAN et al., Nucleic Acids Res, 33, W582, 2005 ; HUESKEN et al., Nat Biotechnol, 23, 995, 2005). Cependant, malgre les progres effectues dans la rationalisation des criteres de choix des sequences-cibles optimales, ce choix demeure en grande partie empirique, et ses resultats aleatoires. Les Inventeurs ont emis 1'hypothese que 1'extinction du gene codant pour la proteine N des morbillivirus pourrait permettre d'obtenir 1'inhibition de la replication virale, et ont entrepris de rechercher si cette extinction pouvait etre obtenue a 1'aide de siARNs ciblant des regions de ce gene conservees entre les morbillivirus.  On the other hand, although it is relatively easy, for a given target gene, to define siRNAs allowing to obtain a certain attenuation of the expression of this gene, it is much more problematic to obtain siRNAs allowing achieve a target gene silencing level sufficient to inhibit viral replication. It is indeed known that the efficiency of the RNA interference can vary considerably from one siRNA to the other. Numerous factors appear to be involved in this variability, relating in particular to the sequencecible itself (for example the G / C content, the presence of certain bases at certain positions), to the position of this target sequence in the target gene. and the presence of secondary structures of mRNA that may decrease the accessibility of the target sequence for siRNA. Different methods have been proposed to try to predict the efficacy of siRNAs (GILMORE et al., J Drug Target, 12, 315, 2004; UI-TEI & SAIGO, Tanpakushitsu Kakusan Koso, 49, 2662, 2004; AMARZGUIOUI & PRYDZ, Biochem Biophys Res Commun, 316, 1050, 2004, HEALE et al., Nucleic Acids Res, 33, e30, 2005, REYNOLDS et al., Nat Biotechnol, 22, 326, 2004, ARZIMAN et al., Nucleic Acids Res, 33 , W582, 2005, HUESKEN et al., Nat Biotechnol, 23, 995, 2005). However, despite the progress made in rationalizing the selection criteria of optimal target sequences, this choice remains largely empirical, and its results are random. The inventors have hypothesized that the extinction of the gene coding for the N protein of morbilliviruses could make it possible to obtain the inhibition of viral replication, and began to investigate whether this extinction could be obtained using siRNAs. targeting regions of this gene conserved between morbilliviruses.

Its sont parvenus a definir, dans 1'une de ces regions conservees, un locus contenant une sequence-cible permettant de definir des siARNs capables d'inhiber 1'expression de la proteine N, cette inhibition induisant une inhibition de la replication des morbillivirus.  They have succeeded in defining, in one of these conserved regions, a locus containing a target sequence making it possible to define siRNAs capable of inhibiting the expression of the N protein, this inhibition inducing an inhibition of the replication of the morbilliviruses.

Au sens de la presente invention, on entend par inhibition de 1'expression d'un gene, une diminution d'au moins 85%, de preference au moms 90o du niveau d'expression d'un gene par rapport a son niveau normal. On entend par inhibition de la replication virale, une diminution d'au moins 95%, de preference au moins 98% de la quantite de virus par rapport a celle produite dans des conditions normales de replication. La presente invention a en consequence pour objet un procede pour inhiber la replication d'un morbillivirus, caracterise en ce qu'il comprend 1'inhibition du gene N d'un morbillivirus, a 1'aide d'un ARN interferent ciblant la region de 1'ARNm dudit gene contenant le motif defini par la sequence generale suivante : RRWYNNRHUGGUUHGARA (SEQ ID NO: 1) Bans laquelle : A = Adenine C = Cytosine G = Guanine U = Uracile R = A ou G Y = C ou U W = A ou U H = A ou C ou U N= A ou C ou G ou U. La sequence generale SEQ ID NO: 1 a ete etablie a partir de 1'alignement des sequences des genes N des morbillivirus PPRV, RPV, MV, CDV, DMV, et PDV, represents sur la Figure 2.  Within the meaning of the present invention, the term "inhibition of the expression of a gene" is understood to mean a reduction of at least 85%, preferably at least 90%, of the level of expression of a gene relative to its normal level. Inhibition of viral replication is understood to mean a decrease of at least 95%, preferably at least 98%, of the amount of virus compared to that produced under normal replication conditions. The subject of the present invention is therefore a method for inhibiting the replication of a morbillivirus characterized in that it comprises inhibiting the N gene of a morbillivirus with the aid of an interfering RNA targeting the MRNA of said gene containing the motif defined by the following general sequence: embedded image in which: A = Adenine C = Cytosine G = Guanine U = Uracil R = A or GY = C or UW = A or UH = A or C or UN = A or C or G or U. The general sequence SEQ ID NO: 1 was established from the alignment of the N gene sequences of the PPRV, RPV, MV, CDV, DMV morbilliviruses, and PDV, shown in Figure 2.

La presente invention a egalement pour objet des ARNs interferents utilisables pour la mise en oeuvre du procede conforme a 1'invention, a savoir des ARNs interferents diriges contre la region du gene N d'un morbillivirus contenant le motif defini par la sequence generale SEQ ID NO: 1. Par exemple, pour inhiber 1'expression du gene N du virus de la rougeole, on choisira un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GGUUCGGAUGGUUCGAGA (SEQ ID NO: 2) ; pour inhiber 1'expression du gene N du RPV, on choisira un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : AGUCUUACUGGUUUGAGA (SEQ ID NO: 3) ; pour inhiber l'expression du gene N du PPRV, on choisira un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GGAUCAACUGGUUUGAGA (SEQ ID NO: 4) ; pour inhiber 1'expression du gene N du CDV, on choisira un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : AAUUAGGCUGGUUAGAAA (SEQ ID NO: 5) ; pour inhiber 1'expression du gene N du PDV, on choisira un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : AAAUGGGCUGGUUAGAAA (SEQ ID NO: 6) ; pour inhiber 1'expression du gene N du DMV, on choisira un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GAACCCAUUGGUUUGAGA (SEQ ID NO : 7). Typiquement, un ARN interferent conforme a 1'invention comprend une portion de 19 a 29 pb, de preference de 19 a 23 pb, d'une sequence antisens du gene N d'un morbillivirus, ladite portion contenant un motif defini par la sequence generale UYUCDAACCADYNNRWYY (SEQ ID NO: 8), dans laquelle A, C, G, U, R, Y, W, et N sont tels que definis ci-dessus et D = G, A ou U.  The subject of the present invention is also interferent RNAs that can be used for carrying out the method according to the invention, namely interferent RNAs directed against the region of the N gene of a morbillivirus containing the motif defined by the general sequence SEQ ID. NO: 1. For example, to inhibit the expression of the N gene of measles virus, an interfering RNA targeting the mRNA region of said gene containing the following sequence will be selected: GGUUCGGAUGGUUCGAGA (SEQ ID NO: 2); to inhibit the expression of the N gene of the RPV, an interfering RNA targeting the mRNA region of said gene containing the following sequence will be selected: AGUCUUACUGGUUUGAGA (SEQ ID NO: 3); to inhibit the expression of the N gene of PPRV, an interfering RNA targeting the mRNA region of said gene containing the following sequence will be selected: GGAUCAACUGGUUUGAGA (SEQ ID NO: 4); to inhibit the expression of the CDV N gene, an interfering RNA targeting the mRNA region of said gene containing the following sequence will be selected: AAUUAGGCUGGUUAGAAA (SEQ ID NO: 5); to inhibit the expression of the N-gene of PDV, an interfering RNA targeting the mRNA region of said gene containing the following sequence will be selected: AAAUGGGCUGGUUAGAAA (SEQ ID NO: 6); to inhibit the expression of the DMV N gene, an interfering RNA targeting the mRNA region of said gene containing the following sequence will be selected: GAACCCAUUGGUUUGAGA (SEQ ID NO: 7). Typically, an interfering RNA according to the invention comprises a portion of 19 to 29 bp, preferably 19 to 23 bp, of an antisense sequence of the N gene of a morbillivirus, said portion containing a motif defined by the general sequence UYUCDAACCADYNNRWYY (SEQ ID NO: 8), wherein A, C, G, U, R, Y, W, and N are as defined above and D = G, A or U.

La sequence SEQ ID NO: 8 represente la sequence antisens de la sequence-cible SEQ ID NO: 1 definie cidessus. Par exemple, dans le cas du virus de la rougeole, un ARN interferent conforme a 1'invention contient au moins la sequence suivante : UCUCGAACCAUCCGAACC (SEQ ID NO: 9) ; dans le cas du RPV, un ARN interferent conforme a 1'invention contient au moins la sequence suivante : UCUCAAACCAGUAAGACU (SEQ ID NO: 10) ; dans le cas du PPRV, un ARN interferent conforme a 1'invention contient au moins la sequence suivante : UCUCAAACCAGUUGAUCC (SEQ ID NO: 11) ; dans le cas du CDV, un ARN interferent conforme a 1'invention contient au moins la sequence suivante : UCUCUAACCAGCCUAAUU (SEQ ID NO: 12) ; dans le cas du PDV, un ARN interferent conforme a 1'invention contient au moms la sequence suivante : UUUCUAACCAGCCCAUUU (SEQ ID NO: 13) ; dans le cas du DMV, un ARN interferent conforme a 1'invention contient au moms la sequence suivante : UCUCAAACCAAUGGGUUC (SEQ ID NO : 14).  The sequence SEQ ID NO: 8 represents the antisense sequence of the target sequence SEQ ID NO: 1 defined above. For example, in the case of measles virus, an interfering RNA according to the invention contains at least the following sequence: UCUCGAACCAUCCGAACC (SEQ ID NO: 9); in the case of RPV, an interfering RNA according to the invention contains at least the following sequence: UCUCAAACCAGUAAGACU (SEQ ID NO: 10); in the case of PPRV, an interfering RNA according to the invention contains at least the following sequence: UCUCAAACCAGUUGAUCC (SEQ ID NO: 11); in the case of CDV, an interfering RNA according to the invention contains at least the following sequence: UCUCUAACCAGCCUAAUU (SEQ ID NO: 12); in the case of PDV, an interfering RNA according to the invention contains at least the following sequence: UUUCUAACCAGCCCAUUU (SEQ ID NO: 13); in the case of DMV, an interfering RNA according to the invention contains at least the following sequence: UCUCAAACCAAUGGGUUC (SEQ ID NO: 14).

Le cas echeant, un ARN interferent conforme a 1'invention peut etre utilise en combinaison avec un ou plusieurs autres ARN interferents ciblant d'autres regions du genome de morbillivirus, et notamment d'autres regions du gene N.  If necessary, an interfering RNA according to the invention may be used in combination with one or more other interfering RNAs targeting other regions of the morbillivirus genome, and in particular other regions of the N. gene.

Dans ce cadre, on peut notamment utiliser, en combinaison avec un ARN interferent conforme a 1'invention : - un ARN interferent dirige contre une region de 1'ARNm du gene N contenant un motif defini par la sequence generale suivante : GSMGRUUYAUGGUVKCDYU (SEQ ID NO : 15), dans laquelle A, C, G, U, R, Y, et D sont tels que definis ci dessus et M = A ou C, K = G ou U, S = G ou C, V = G, A ou C, et/ou - un ARN interferent dirige contre une region de 1'ARNm du gene N contenant un motif defini par la sequence generale suivante : GCHYUDGGNYUDCAYGARU (SEQ ID NO : 16) dans laquelle A, C, G, U, R, Y, D, H, et N sont tels que definis ci-dessus. Les sequences generales SEQ ID NO: 15 et SEQ ID NO: 16 ont ete etablies a partir de 1'alignement des sequences des genes N des morbillivirus PPRV, RPV, MV, CDV, DMV, et PDV, represents sur la Figure 2. Par exemple : - pour inhiber 1'expression du gene N du virus de la rougeole, on peut utiliser, en combinaison avec un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence GGUUCGGAUGGUUCGAGA (SEQ ID NO: 2), un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GCCGAUUCAUGGUCGCUCU (SEQ ID NO: 17) et/ou un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GCUCUUGGACUGCAUGAAU (SEQ ID NO : 18); - pour inhiber 1'expression du gene N du RPV, on peut utiliser, en combinaison avec un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence AGUCUUACUGGUUUGAGA (SEQ ID NO: 3) un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GCAGAUUUAUGGUGGCAUU (SEQ ID NO: 19) et/ou un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GCACUGGGCCUGCAUGAAU (SEQ ID NO 20) - pour inhiber 1'expression du gene N du PPRV, on peut utiliser, en combinaison avec un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence GGAUCAACUGGUUUGAGA (SEQ ID NO: 4) un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GGCGGUUCAUGGUAUCUCU (SEQ ID NO: 21) et/ou un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GCAUUAGGCCUUCACGAGU (SEQ ID NO : 22); - pour inhiber 1'expression du gene N du CDV, on peut utiliser, en combinaison avec un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence AAUUAGGCUGGUUAGAGA (SEQ ID NO: 5) un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GGCGAUUCAUGGUGGCGCU (SEQ ID NO: 23) et/ou un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GCUCUUGGGUUGCAUGAGU (SEQ ID NO 24) - pour inhiber 1'expression du gene N du PDV, on peut utiliser, en combinaison avec un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence AAAUGGGCUGGUUAGAAA (SEQ ID NO: 6) un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GGCGAUUUAUGGUGGCAUU (SEQ ID NO: 25) et/ou un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GCACUUGGUCUACAUGAGU (SEQ ID NO 26) - pour inhiber 1'expression du gene N du DMV, on peut utiliser, en combinaison avec un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence GAACCCAUUGGUUUGAGA (SEQ ID NO : 7) un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GGAGAUUCAUGGUGGCAUU (SEQ ID NO : 27) et/ou un ARN interferent ciblant la region de 1'ARNm dudit gene contenant la sequence suivante : GCCUUAGGGUUGCAUGAAU (SEQ ID NO : 28). Un ARN interferent dirige contre une region de 1'ARNm du gene N contenant un motif defini par la sequence SEQ ID NO : 15 comprend une portion de 19 a 29 pb, de preference de 19 a 23 pb, d'une sequence antisens du gene N d'un morbillivirus, ladite portion contenant la sequence generale ARHGMBACCAURAAYCKSC (SEQ ID NO: 29), dans laquelle A, C, G, U, R, Y, M, H, K et S sont tels que definis ci- dessus, et B = G, U ou C. Un ARN interferent dirige contre une region de 1'ARNm du gene N contenant un motif defini par la sequence SEQ ID NO : 16 comprend une portion de 19 a 29 pb, de preference de 19 a 23 pb, d'une sequence antisens du gene N d'un morbillivirus, ladite portion contenant la sequence generale AYUCRUGHARNCCHARDGC (SEQ ID NO: 30), dans laquelle A, C, G, U, R, Y, H, et N sont tels que definis ci-dessus. Les sequences SEQ ID NO: 29 et SEQ ID NO : 30 representent respectivement les sequences antisens des sequence-cible SEQ ID NO: 15 et SEQ ID NO : 16 definies cidessus. Par exemple, dans le cas du virus de la rougeole, un ARN interferent conforme a 1'invention contenant au moms la sequence UCUCGAACCAUCCGAACC (SEQ ID NO: 9) peut titre utilise en combinaison avec un ARN interferent contenant au moms la sequence suivante : AGAGCGACCAUGAAUCGGC (SEQ ID NO: 31) et/ou avec un ARN interferent contenant au moms la sequence suivante : AUUCAUGCAGUCCAAGAGC (SEQ ID NO : 32); dans le cas du RPV, un ARN interferent conforme a 1'invention contenant au moms la sequence UCUCAAACCAGUAAGACU (SEQ ID NO: 10) peut titre utilise en combinaison avec un ARN interferent contenant au moms la sequence suivante : AAUGCCACCAUAAAUCUGC (SEQ ID NO: 33) et/ou avec un ARN interferent contenant au moms la sequence suivante : AUUCAUGCAGGCCCAGUGC (SEQ ID NO : 34) ; dans le cas du PPRV, un ARN interferent conforme a 1'invention contenant au moms la sequence UCUCAAACCAGUUGAUCC (SEQ ID NO: 11) peut titre utilise en combinaison avec un ARN interferent contenant au moms la sequence suivante : AGAGAUACCAUGAACCGCC (SEQ ID NO: 35) et/ou avec un ARN interferent contenant au moms la sequence suivante : ACUCGUGAAGGCCUAAUGC (SEQ ID NO : 36) ; dans le cas du CDV, un ARN interferent conforme a 1'invention contenant au moins la sequence UCUCUAACCAGCCUAAUU (SEQ ID NO: 12) peut etre utilise en combinaison avec un ARN interferent contenant au moins la sequence suivante : AGCGCCACCAUGAAUCGCC (SEQ ID NO: 37) et/ou avec un ARN interferent contenant au moins la sequence suivante : ACUCAUGCAACCCAAGAGC (SEQ ID NO : 38) ; dans le cas du PDV, un ARN interferent conforme a 1'invention contenant au moins la sequence UUUCUAACCAGCCCAUUU (SEQ ID NO: 13) peut etre utilise en combinaison avec un ARN interferent contenant au moins la sequence suivante : AAUGCCACCAUAAAUCGCC (SEQ ID NO: 39) et/ou avec un ARN interferent contenant au moins la sequence suivante : ACUCAUGUAGACCAAGUGC (SEQ ID NO : 40) ; dans le cas du DMV, un ARN interferent conforme a 1'invention contenant au moins la sequence UCUCAAACCAAUGGGUUC (SEQ ID NO : 14) peut etre utilise en combinaison avec un ARN interferent contenant au moins la sequence suivante : AAUGCCACCAUGAAUCUCC (SEQ ID NO: 41) et/ou avec un ARN interferent contenant au moins la sequence suivante : AUUCAUGCAACCCAAAAGC (SEQ ID NO : 42). Les differents ARNs interferents definis ci-25 dessus peuvent se presenter sous diverses formes. I1 peut s'agir d'un ARN antisens simple-brin, capable de s'integrer dans le complexe RISC, et de s'apparier avec la sequence cible, induisant son clivage (TIJSTERMAN et al., Science, 295, 694, 2002 ; MARTINEZ et 30 al., Cell, 110, 563, 2002 ; BARIK, Virus Res, 102, 27, 2004). Cependant it s'agira de preference d'un ARN contenant a la fois la sequence-cible et la sequence antisens correspondante, sous forme de siARN, ou le cas 35 echeant de sh(<< short hairpin >>)ARNs (YU et al., Proc Natl Acad Sci U S A, 99, 6047, 2002 ; PADDISON et al., Genes Dev, 16, 948, 2002 ; SIOLAS et al., Nat Biotechnol, 23, 227, 2005), qui est transforms dans la cellule en siARN.  In this context, it is possible in particular to use, in combination with an interfering RNA according to the invention: an interfering RNA directed against a region of the mRNA of the N gene containing a motif defined by the following general sequence: GSMGRUUYAUGGUVKCDYU (SEQ ID NO: 15), wherein A, C, G, U, R, Y, and D are as defined above and M = A or C, K = G or U, S = G or C, V = G, A or C, and / or an interfering RNA directed against a region of the mRNA of the N gene containing a motif defined by the following general sequence: GCHYUDGGNYUDCAYGARU (SEQ ID NO: 16) wherein A, C, G, U, R, Y, D, H, and N are as defined above. The general sequences SEQ ID NO: 15 and SEQ ID NO: 16 were established from the alignment of the N-gene sequences of the PPRV, RPV, MV, CDV, DMV, and PDV morbilliviruses, shown in FIG. For example: to inhibit the expression of the N gene of the measles virus, an RNA may be used in combination with an interfering RNA targeting the mRNA region of said gene containing the sequence GGUUCGGAUGGUUCGAGA (SEQ ID NO: 2). interferent targeting the mRNA region of said gene containing the following sequence: GCCGAUUCAUGGUCGCUCU (SEQ ID NO: 17) and / or an interfering RNA targeting the mRNA region of said gene containing the following sequence: GCUCUUGGACUGCAUGAAU (SEQ ID NO: 18 ); to inhibit the expression of the N gene of the RPV, it is possible to use, in combination with an interfering RNA targeting the mRNA region of said gene containing the sequence AGUCUUACUGGUUUGAGA (SEQ ID NO: 3), an interfering RNA targeting the region of 1 MRNA of said gene containing the following sequence: GCAGAUUUAUGGUGGCAUU (SEQ ID NO: 19) and / or an interfering RNA targeting the mRNA region of said gene containing the following sequence: GCACUGGGCCUGCAUGAAU (SEQ ID NO. 20) - to inhibit the expression of the N gene of the PPRV, in combination with an interfering RNA targeting the mRNA region of said gene containing the GGAUCAACUGGUUUGAGA sequence (SEQ ID NO: 4), an interfering RNA targeting the mRNA region of said gene containing the following sequence: GGCGGUUCAUGGUAUCUCU (SEQ ID NO: 21) and / or interfering RNA targeting the mRNA region of said gene containing the following sequence: GCAUUAGGCCUUCACGAGU (SEQ ID NO: 22); to inhibit the expression of the N gene of CDV, it is possible to use, in combination with an interfering RNA targeting the mRNA region of said gene containing the AAUUAGGCUGGUUAGAGA sequence (SEQ ID NO: 5), an interfering RNA targeting the region of 1 MRNA of said gene containing the following sequence: GGCGAUUCAUGGUGGCGCU (SEQ ID NO: 23) and / or interfering RNA targeting the mRNA region of said gene containing the following sequence: GCUCUUGGGUUGCAUGAGU (SEQ ID NO. 24) - to inhibit the expression of the N gene of the PDV, it is possible to use, in combination with an interfering RNA targeting the mRNA region of said gene containing the sequence AAAUGGGCUGGUUAGAAA (SEQ ID NO: 6), an interfering RNA targeting the mRNA region of said gene containing the next sequence: GGCGAUUUAUGGUGGCAUU (SEQ ID NO: 25) and / or interfering RNA targeting the mRNA region of said gene containing the following sequence: GCACUUGGUCUACAUGAGU (SEQ ID NO. 26) - to inhibit the expression of the DMV N gene, one can use, in combination with a Interfering RNA targeting the mRNA region of said gene containing the sequence GAACCCAUUGGUUUGAGA (SEQ ID NO: 7) an interfering RNA targeting the mRNA region of said gene containing the following sequence: GGAGAUUCAUGGUGGCAUU (SEQ ID NO: 27) and / or an interfering RNA targeting the mRNA region of said gene containing the following sequence: GCCUUAGGGUUGCAUGAAU (SEQ ID NO: 28). Interferent RNA directed against a region of the mRNA of the N gene containing a motif defined by the sequence SEQ ID NO: 15 comprises a portion of 19 to 29 bp, preferably 19 to 23 bp, of an antisense sequence of the gene N of a morbillivirus, said portion containing the general sequence ARHGMBACCAURAAYCKSC (SEQ ID NO: 29), wherein A, C, G, U, R, Y, M, H, K and S are as defined above, and B = G, U or C. An interfering RNA directed against a region of the mRNA of the N gene containing a motif defined by the sequence SEQ ID NO: 16 comprises a portion of 19 to 29 bp, preferably 19 to 23 pb, of an antisense sequence of the N gene of a morbillivirus, said portion containing the general sequence AYUCRUGHARNCCHARDGC (SEQ ID NO: 30), wherein A, C, G, U, R, Y, H, and N are such as defined above. The sequences SEQ ID NO: 29 and SEQ ID NO: 30 respectively represent the antisense sequences of the target sequences SEQ ID NO: 15 and SEQ ID NO: 16 defined above. For example, in the case of measles virus, an interfering RNA according to the invention containing at least the sequence UCUCGAACCAUCCGAACC (SEQ ID NO: 9) may be used in combination with an interfering RNA containing at least the following sequence: AGAGCGACCAUGAAUCGGC (SEQ ID NO: 31) and / or with interfering RNA containing at least the following sequence: AUUCAUGCAGUCCAAGAGC (SEQ ID NO: 32); in the case of RPV, an interfering RNA according to the invention containing at least the UCUCAAACCAGUAAGACU sequence (SEQ ID NO: 10) may be used in combination with an interfering RNA containing at least the following sequence: AAUGCCACCAUAAAUCUGC (SEQ ID NO: 33) ) and / or with an interfering RNA containing at least the following sequence: AUUCAUGCAGGCCCAGUGC (SEQ ID NO: 34); in the case of PPRV, an interfering RNA according to the invention containing at least the sequence UCUCAAACCAGUUGAUCC (SEQ ID NO: 11) may be used in combination with an interfering RNA containing at least the following sequence: AGAGAUACCAUGAACCGCC (SEQ ID NO: 35 ) and / or with interfering RNA containing at least the following sequence: ACUCGUGAAGGCCUAAUGC (SEQ ID NO: 36); in the case of CDV, an interfering RNA according to the invention containing at least the sequence UCUCUAACCAGCCUAAUU (SEQ ID NO: 12) may be used in combination with an interfering RNA containing at least the following sequence: AGCGCCACCAUGAAUCGCC (SEQ ID NO: 37 and / or with an interfering RNA containing at least the following sequence: ACUCAUGCAACCCAAGAGC (SEQ ID NO: 38); in the case of PDV, an interfering RNA according to the invention containing at least the sequence UUUCUAACCAGCCCAUUU (SEQ ID NO: 13) can be used in combination with an interfering RNA containing at least the following sequence: AAUGCCACCAUAAAUCGCC (SEQ ID NO: 39) and / or with an interfering RNA containing at least the following sequence: ACUCAUGUAGACCAAGUGC (SEQ ID NO: 40); in the case of DMV, an interfering RNA according to the invention containing at least the sequence UCUCAAACCAAUGGGUUC (SEQ ID NO: 14) may be used in combination with an interfering RNA containing at least the following sequence: AAUGCCACCAUGAAUCUCC (SEQ ID NO: 41 ) and / or with an interfering RNA containing at least the following sequence: AUUCAUGCAACCCAAAAGC (SEQ ID NO: 42). The different interfering RNAs defined above can be in various forms. It can be a single-stranded antisense RNA, capable of integrating into the RISC complex, and pairing with the target sequence, inducing its cleavage (TIJSTERMAN et al., Science, 295, 694, 2002 MARTINEZ et al., Cell, 110, 563, 2002, BARIK, Virus Res, 102, 27, 2004). However, it will preferably be an RNA containing both the target sequence and the corresponding antisense sequence, in the form of siRNA, or the case of sh (<< short hairpin >>) RNAs (YU et al. Proc Natl Acad Sci USA, 99, 6047, 2002, PADDISON et al., Genes Dev, 16, 948, 2002, SIOLAS et al., Nat Biotechnol, 23, 227, 2005), which is transformed into the cell. siRNA.

Les siARNs ont generalement une longueur de 21 a 25 nucleotides ; ils contiennent une portion double-brin, generalement de 19 a 21 nucleotides, constituee de la sequence cible et de la sequence antisens correspondante ; 1'un ou 1'autre brin, ou les deux, comporte(nt) generalement a 1'extremite 3' une extension simple-brin de 2 ou 3 nucleotides ; le plus souvent (mais non obligatoirement), it s'agit d'un dinucleotide, de sequence TT. Les shARNs sont constitues d'un seul brin, d'une longueur de 50 a 70 nucleotides, qui peut se replier pour former une structure en epingle a cheveux, contenant une portion double-brin d'une longueur de 19 a 29 nucleotides, constituee par la sequence cible et la sequence antisens correspondante, et une boucle de 5 a 10 nucleotides. Its peuvent comprendre egalement, a 1'extremite 3', une extension simple-brin de 2 ou 3 nucleotides. Les ARN interferents peuvent etre aussi utilises sous forme de precurseurs de microARNs (pre-miARN). Les microARNs (miARN) sont des ARNs d'environ 22 nucleotides, constitues d'un seul brin et qui se fixent sur 1'extremite 3' non codante de 1'ARNm, ce qui a pour effet de reprimer 1'expression de cet ARNm sans le degrader (contrairement aux siARNs ou shARNs). Les miARNs sont des molecules importantes pour la regulation naturelle >> de 1'expression des genes dans les cellules eucaryotes. Les miARNs sont produits dans le cytoplasme des cellules a partir de precurseurs nucleaires d'environ 70 nucleotides en forme d'epingle a cheveux, appeles pre-miARNs, olives en miARNs par le complexe DICER. La sequence d'un pre-miARN, identifie dans les conditions naturelles dans une cellule eucaryote, peut etre modifiee pour y introduire une sequence siARN, qui, liberee par le DICER ira alors degrader un autre ARNm. Ce pre-miARN modifie sert alors de << vehicule >> pour le siARN d'interet, ce qui a pour resultat d'augmenter 1'efficacite de 1'interference. La possibilite d'utiliser des pre-miARNs modifies pour inhiber la replication virale a ete demontree par BODEN et al. (Nucleic Acids Res., 13, 1154, 2004) pour HIV-1. Dans ce cas, 1'efficacite de 1'interference peut etre superieure de 80o a celle conferee par le siARN equivalent.  SiRNAs are generally 21 to 25 nucleotides in length; they contain a double-stranded portion, usually 19 to 21 nucleotides, consisting of the target sequence and the corresponding antisense sequence; Either strand, or both, generally has at the end 3 a single-stranded extension of 2 or 3 nucleotides; most often (but not necessarily) it is a dinucleotide, of sequence TT. The sRNAs consist of a single strand, 50 to 70 nucleotides in length, which can fold to form a hairpin structure, containing a double-stranded portion of 19 to 29 nucleotides in length. by the target sequence and the corresponding antisense sequence, and a 5 to 10 nucleotide loop. They can also include, at the 3 'end, a single-stranded extension of 2 or 3 nucleotides. Interfering RNAs can also be used as microRNA precursors (pre-miRNAs). MicroRNAs (miRNAs) are about 22 single-stranded nucleotide RNAs that bind to the 3 'non-coding end of mRNA, thereby repressing the expression of this mRNA. without degrading it (unlike siRNAs or shRNAs). MiRNAs are important molecules for the natural regulation of gene expression in eukaryotic cells. The miRNAs are produced in the cytoplasm of cells from nuclear precursors of about 70 hairpin-like nucleotides, called pre-miRNAs, olives in miRNAs by the DICER complex. The sequence of a pre-miRNA, identified under natural conditions in a eukaryotic cell, can be modified to introduce an siRNA sequence, which, released by the DICER will then degrade another mRNA. This modified pre-miRNA then serves as a "vehicle" for the siRNA of interest, which results in increasing the efficiency of the interference. The possibility of using modified pre-miRNAs to inhibit viral replication has been demonstrated by BODEN et al. (Nucleic Acids Res., 13, 1154, 2004) for HIV-1. In this case, the efficiency of the interference may be greater than 80o that provided by the equivalent siRNA.

Ces ARNs interferents peuvent titre obtenus par des methodes classiques de preparation des acides nucleiques (pour revue cf. par exemple AMARZGUIOUI et al., FEBS Lett, 579, 5974, 2005).  These interfering RNAs can be obtained by conventional methods for the preparation of nucleic acids (for review see, for example, AMARZGUIOUI et al., FEBS Lett, 579, 5974, 2005).

Its peuvent ainsi titre prepares par exemple par synthese chimique, ou bien par genie genetique. Dans ce dernier cas on utilisera un vecteur d'expression contenant une sequence d'ADN pouvant titre transcrite en un ARN interferent conforme a 1'invention, placee sous controle d'un promoteur approprie. Generalement, ledit promoteur est un promoteur viral, par exemple le promoteur T3, T7, SP6, pCMV ou un promoteur reconnu par la polymerase III, par exemple le promoteur du petit ARN U6, ou celui de 1'ARN HI (MIYAGISHI & TAIRA, Nucleic Acids Res Suppl, 113, 2002) ; des promoteurs reconnus par la polymerase II sont toutefois egalement utilisables. Les vecteurs d'expression definis ci-dessus font egalement partie de 1'objet de la presente invention. De tres nombreuses methodes pour introduire des ARNs interferents dans des cellules ou des organismes dans lesquelles on souhaite obtenir 1'extinction de 1'expression d'un gene-cible sont connues en elles-memes. Dans le cas ou 1'on souhaite obtenir une extinction temporaire de 1'expression du gene-cible, on peut administrer directement 1'ARN interferent, preferablement associe a un vehicule approprie, permettant de faciliter son entree dans la cellule et/ou de le pro-Leger de la degradation. A titre d'exemples de vehicules utilisables, on citera notamment des liposomes ou des nanoparticules.  They can thus be prepared, for example by chemical synthesis, or by genetic engineering. In the latter case, an expression vector will be used containing a DNA sequence that can be transcribed into an interfering RNA according to the invention, placed under the control of an appropriate promoter. Generally, said promoter is a viral promoter, for example the T3 promoter, T7, SP6, pCMV or a polymerase III recognized promoter, for example the small U6 RNA promoter, or that of the HI RNA (MIYAGISHI & TAIRA, Nucleic Acids Res Suppl, 113, 2002); however, promoters recognized by polymerase II are also useful. The expression vectors defined above are also part of the subject of the present invention. Many methods for introducing interfering RNAs into cells or organisms in which it is desired to terminate the expression of a target gene are known per se. In the case where it is desired to temporarily extinguish the expression of the target gene, the interfering RNA can be directly administered, preferably associated with a suitable vehicle, to facilitate its entry into the cell and / or to Pro-Leger of degradation. Examples of vehicles that may be used include liposomes or nanoparticles.

Pour obtenir une extinction a plus long terme de 1'expression du gene-cible, notamment dans le cas des cellules de mammiferes, on utilise un vecteur permettant d'exprimer 1'ARN interferent dans la cellule. De tres nombreux vecteurs utilisables dans ce but sont connus en eux-memes. On citera notamment des vecteurs derives de retrovirus, de lentivirus, ou d'adenovirus (BARTON & MEDZHITOV, Proc Natl Acad Sci U S A, 99, 14943, 2002 ; TISCORNIA et al., Proc Natl Acad Sci USA, 100, 1844, 2003; XIA et al., Nat Biotechnol, 20, 1006, 2002 ; SHEN et al., FEBS Lett, 539, 111, 2003). La presente invention a egalement pour objet 1'utilisation d'un ARN interferent ou d'un vecteur d'expression conforme a 1'invention pour 1'obtention d'un medicament destine au traitement ou a la prevention d'une infection a morbillivirus, et notamment au traitement ou a la prevention de la rougeole, de la peste bovine, de la peste des petits ruminants, de la maladie de Carre, de la peste des phoques ou d'une infection au DMV. La presente invention a egalement pour objet une composition pharmaceutique comprenant un ARN interferent ou un vecteur d'expression conforme a 1'invention. Avantageusement, ladite composition pharmaceutique est un vaccin. La presente invention sera mieux comprise a 1'aide du complement de description qui va suivre, qui se refere a des exemples illustrant 1'obtention d'un ARN interferent conforme a 1'invention, et son utilisation pour bloquer la replication des morbillivirus PPRV et RPV. LEGENDE DES FIGURES Figure 1 : Representation schematique du genome des morbillivirus. Figure 2 : Alignement multiple des sequences d'ADNc du gene N de differents morbillivirus, PPRV (X74443), RPV (X98291), MV (Z66517), CDV (NC001921), DMV (AJ608288) et PDV (X75717) par le logiciel Vector NTI (Informax Inc). Les nucleotides identiques a ceux de la sequence consensus indiquee en bas de 1'alignement sont representes par un point ; les nucleotides qui different de la sequence consensus sont indiques. Les regions encadrees, ou tous les nucleotides sont indiques, representent les sequences-cibles des siARNs NRP1 et 2 sur la sequence de RPV, et des siARNs NPPR1 et 3 et des siARNs NPPR5 a 10 sur la sequence de PPRV. Les codons << start >> et << stop >> sont en caracteres gras et soulignes. Figure 3 : Effet des siARNs sur 1'effet cytopathique (ECP) induit par le virus de la peste des petits ruminants sur des cellules VERO. Ordonnees echelle de pourcentages d'inhibition de 1'ECP. Abscisses : concentration des siARNs en nM. --•-- : siARN NPPR1 ; ù ^ . siARN NPPR2 ; : siARN NPPR3 ; ùAù siARN NPPR10 ; ùIù :siARN GAPDH ; - - cellules non-infectees; - -- . cellules infectees non transfectees. Figure 4 : Effet des siARNs sur 1'expression de la proteine N du virus PPRV dans les cellules VERO. (a) Abscisses fluorescence nee a 1'expression de la proteine N ; Ordonnees : nombre de cellules fluorescentes ; siARN1 siARN NPPR1 ; siARN2 : siARN NPPR2 ; cellules non .infectees : controle negatif ; cellules infectees controle positif. (b) Abscisses : concentration (en nM) des siARNs. Ordonnees : pourcentage de cellules fluorescentes ; ^ : siARN NPPR1 ; : siARN GAPDH. Figure 5 : effet des siARNs NPPR1, 2 et 3 sur la synthese d'ARN viraux mesuree par RT-PCR quantitative en temps reel (QRT-PCR). Representation de deux essais independants. Figure 6 : effet des siARNs NPPR1 (hachures verticales), NPPR2 (blanc), NPPR3 (grise), NPPR10 (noir) et GAPDH (hachures diagonales) sur la replication virale mesuree par le titre viral dans les tapis cellulaires infectes. EXEMPLES : MATERIEL ET METHODES 1) Virus et sequences d'interet Le virus PPRV utilise est la souche Nigeria 75/1 (DIALLO et al. Rev Elev Med Vet Pays Trop 42, 311, 1989), attenuee par passages en serie sur cellules (SK/l, BK/1 et Vero/55). Il s'agit d'une souche vaccinale. La sequence complete du genome de cette souche est disponible sur 30 Genbank (numero d'accession X74443) Le virus RPV utilise est la souche RBOK (PLOWRIGHT et FERRIS, Res. Vet. Sci, 3, 172, 1962), souche vaccinale a virus attenue par passages en serie sur cellules (BK/98 et Vero/2). La sequence complete du genome de cette 35 souche est disponible sur Genbank (numero d'accession Z30697) Les virus PPRV et RPV sont multiplies sur cellules VERO (ATCC) entretenues en monocouche en presence de milieu complet soit, milieu essentiel de Eagle MEM avec sels de Earle (Eurobio, Courtaboeuf, France), 10o de serum de foetus de bovin (Eurobio, Courtaboeuf, France) et 2 mM de L-glutamine (Gibco, Mife Technologies, UK). 2) Culture cellulaire, transfection et infection virale Des cellules VERO adherentes sont decollees a 1' aide d' une solution contenant de la trypsine et de 1' EDTA (Sigma-Aldrich, Lyon, France) puis resuspendues dans du milieu MEM (Minimum Eagle Medium) complet a raison de105 cellules/ ml et distribuees dans des puits de plaque 24 puits. Les plaques sont incubees a 37 C et 5% CO2. Par la suite, toutes les incubations de cellules ont lieu a 37 C en presence de 5% de CO2. Lorsque le tapis cellulaire atteint 70-80o de confluence, le milieu est elimine, puis les cellules sont incubees 30 minutes dans du milieu MEM depourvu de serum de foetus de bovin. Pour la transfection, le milieu est elimine et remplace par de la LIPOFECTAMINETM 2000 (Invitrogen) a raison de 500 ng dans 200 pl de milieu de transfection OPTI-MEM I Invitrogen) contenant les siRNA a differentes concentrations (de 6,5 a 100 nM final dans le melange de transfection). L'incubation suivante a lieu pendant trois heures. Pour 1'infection virale, le milieu de transfection est elimine et remplace par du MEM et 5% de 25 serum de foetus de bovin. Les cellules sont incubees 24 30 heures puis multiplicite cellule, en cytopathique sur 50o des contact, le milieu MEM, bovin est observees infectees avec le virus PPRV ou RPV a une d'infection de 0,1 dose cytopathique 50o par milieu sans serum de fetus de bovin, la dose 50o etant la quantite de virus induisant un ECP tapis cellulaires infectes. Apres une heure de tapis cellulaire est rince deux fois avec du puis du milieu MEM avec 5% de serum de fetus de ajoute sur les cellules. Les cellules sont quotidiennement et 1'evolution de 1'effet 35 cytopathique (ECP) du au virus est evaluee selon une grille de pourcentages (echelle allant de 0%, pas d'ECP a 100%, ECP maximal). L'effet des siARN est exprime en pourcentage d'inhibition de 1'ECP.  To achieve a longer-term extinction of the expression of the target gene, particularly in the case of mammalian cells, a vector is used to express the interfering RNA in the cell. Many vectors usable for this purpose are known in themselves. These include vectors derived from retroviruses, lentiviruses, or adenoviruses (BARTON & MEDZHITOV, Proc Natl Acad Sci USA, 99, 14943, 2002, TISCORNIA et al., Proc Natl Acad Sci USA, 100, 1844, 2003; XIA et al., Nat Biotechnol, 20, 1006, 2002, SHEN et al., FEBS Lett, 539, 111, 2003). The present invention also relates to the use of an interfering RNA or an expression vector according to the invention for the purpose of obtaining a medicament for the treatment or prevention of a morbillivirus infection. and in particular the treatment or prevention of measles, rinderpest, peste des petits ruminants, Carre's disease, seals' plague or DMV infection. The present invention also relates to a pharmaceutical composition comprising an interfering RNA or an expression vector according to the invention. Advantageously, said pharmaceutical composition is a vaccine. The present invention will be better understood with the aid of the following description, which refers to examples illustrating the obtaining of an interfering RNA according to the invention, and its use to block the replication of PPRV morbilliviruses. VPN. LEGEND OF FIGURES Figure 1: Schematic representation of the genome of morbilliviruses. Figure 2: Multiple alignment of the cDNA sequences of the N gene of different morbilliviruses, PPRV (X74443), RPV (X98291), MV (Z66517), CDV (NC001921), DMV (AJ608288) and PDV (X75717) by the Vector software NTI (Informax Inc.). The nucleotides identical to those of the consensus sequence indicated at the bottom of the alignment are represented by a dot; nucleotides that differ from the consensus sequence are indicated. Framed regions, or all nucleotides are indicated, represent the target sequences of siRNAs NRP1 and 2 on the sequence of RPV, and siRNAs NPPR1 and 3 and siRNAs NPPR5 to 10 on the sequence of PPRV. The codons << start >> and << stop >> are in bold and underlined characters. Figure 3: Effect of siRNAs on cytopathic effect (CPE) induced by peste des petits ruminants virus on VERO cells. Scale order of percent inhibition of CEP. Abscisses: concentration of siRNAs in nM. - • -: siRNA NPPR1; where. siRNA NPPR2; : siRNA NPPR3; where siRNA NPPR10; where: siRNA GAPDH; - - non-infected cells; - -. infected cells not transfected. Figure 4: Effect of siRNAs on expression of PPRV virus N protein in VERO cells. (a) Abscisses fluorescence due to the expression of the N protein; Ordinates: number of fluorescent cells; siRNA1 siRNA NPPR1; siRNA2: siRNA NPPR2; uninfected cells: negative control; infected cells positive control. (b) Abscisses: concentration (in nM) of siRNAs. Ordinates: percentage of fluorescent cells; ^: siRNA NPPR1; : siARN GAPDH. Figure 5: Effect of siRNAs NPPR1, 2 and 3 on the synthesis of viral RNA measured by quantitative RT-PCR in real time (QRT-PCR). Representation of two independent tests. Figure 6: Effect of siRNAs NPPR1 (vertical hatching), NPPR2 (white), NPPR3 (gray), NPPR10 (black) and GAPDH (diagonal hatching) on viral replication measured by viral titer in infected cell mats. EXAMPLES: MATERIALS AND METHODS 1) Viruses and sequences of interest The PPRV virus uses is the strain Nigeria 75/1 (DIALLO et al Rev Elev Med Vet Pays Trop 42, 311, 1989), attenuated by serial passages on cells ( SK / 1, BK / 1 and Vero / 55). This is a vaccine strain. The complete genome sequence of this strain is available on Genbank (accession number X74443). The RPV virus uses is the RBOK strain (PLOWRIGHT and FERRIS, Res Vet Sci, 3, 172, 1962), virus vaccine strain. attenuated by serial passages on cells (BK / 98 and Vero / 2). The complete genome sequence of this strain is available from Genbank (accession number Z30697). The PPRV and RPV viruses are propagated on VERO (ATCC) cells maintained in a monolayer in the presence of complete medium, ie Eagle MEM essential medium with salts. of Earle (Eurobio, Courtaboeuf, France), 10% of fetal bovine serum (Eurobio, Courtaboeuf, France) and 2 mM of L-glutamine (Gibco, Mife Technologies, UK). 2) Cell culture, transfection and viral infection Adjacent VERO cells were removed with a solution containing trypsin and EDTA (Sigma-Aldrich, Lyon, France) and then resuspended in MEM medium (Minimum Eagle Medium) complete at 105 cells / ml and distributed in 24-well plate wells. The plates are incubated at 37 ° C and 5% CO2. Subsequently, all cell incubations take place at 37 C in the presence of 5% CO2. When the cell layer reaches 70-80% confluence, the medium is eliminated, and then the cells are incubated for 30 minutes in MEM medium devoid of serum fetal bovine. For transfection, the medium is eliminated and replaced with LIPOFECTAMINETM 2000 (Invitrogen) at the rate of 500 ng in 200 μl of OPTI-MEM I Invitrogen transfection medium containing the siRNAs at different concentrations (from 6.5 to 100 nM). final in the transfection mixture). The following incubation takes place for three hours. For viral infection, the transfection medium is removed and replaced with MEM and 5% fetal bovine serum. The cells are incubated for 24 hours and then multiplied in cytopathic cells over 50% of the contacts. The MEM medium, bovine, is observed infected with the PPRV or RPV virus at an infection level of 0.1 50% cytopathic dose per medium without fetal serum. of bovine, the 50o dose being the amount of virus inducing an ECP-infecting cellular carpets. After one hour of cellular mat is rinsed twice with then MEM medium with 5% fetal serum added on the cells. The cells are daily and the evolution of the cytopathic effect (CPE) of the virus is evaluated according to a grid of percentages (scale ranging from 0%, not 100% CPE, maximum CPE). The effect of siRNAs is expressed as percent inhibition of ECP.

Quatre a cinq jours apres infection, le surnageant de culture cellulaire d'une part, et les cellules d'autre part sont recueillis pour analyse en titrage viral et en expression d'antigenes viraux par cytometrie en flux. Des controles consistant en des cellules non transfectees et non infectees et des cellules infectees et non transfectees sont inclus dans chaque serie de tests des siARNs. 4) Titrage viral Les surnageants de culture cellulaire ou les cellules elles-memes sont conserves a -70 C jusqu'a utilisation pour titrage. Le titrage viral est effectue sur culture cellulaire (VERO) a partir d'une serie de dilutions de raison 10 de la suspension virale a titrer. Le titre est determine selon la methode de REED et MUENCH (Am J Trop Med Hyg, 127, 493, 1938) et exprime en dose cytopathique 50 (DCP50) par ml. 5) Mesure de 1'expression d'antigenes viraux L'expression des proteines de nucleocapside (N) et de matrice (M) virales a ete mesuree par cytometrie en flux en utilisant des anticorps monoclonaux specifiques : anticorps 38-4 specifique de la proteine N du PPRV ; anticorps IVB2-4 specifique de la proteine N du RPV ; anticorps 19-6 specifique de la proteine M du PPRV et de la proteine M du RPV (LIBEAU et al., Revue d'Elevage et de Medecine Veterinaire des Pays Tropicaux, 50, 181-190, 1997), et anticorps 11/295/33 specifique de la molecule CD8 lymphocytaire de porc (SAALMULLER et al., Vet Immunol Immunopathol, 43, 249, 1994) utilise comme controle isotypique de specificite du marquage.  Four to five days after infection, the cell culture supernatant on the one hand and the cells on the other hand are collected for viral titration and expression of viral antigens by flow cytometry. Controls consisting of untransfected and non-infected cells and infected and non-transfected cells are included in each series of siRNAs assays. 4) Viral Titration The cell culture supernatants or the cells themselves are stored at -70 ° C until used for titration. The viral titration is performed on cell culture (VERO) from a series of dilutions of reason 10 of the viral suspension to be titrated. The titer is determined according to the method of REED and MUENCH (Am J Trop Med Hyg, 127, 493, 1938) and expresses in cytopathic dose 50 (DCP50) per ml. 5) Measurement of Viral Antigen Expression The expression of the viral nucleocapsid (N) and matrix (M) proteins was measured by flow cytometry using specific monoclonal antibodies: 38-4 protein-specific antibody N from PPRV; IVB2-4 antibody specific for RPV N protein; 19-6 antibody specific for the PPRV M protein and the VPV M protein (LIBEAU et al., Journal of Veterinary Medicine and Veterinary Medicine of the Tropics, 50, 181-190, 1997), and antibody 11/295 Specifically, the porcine lymphocyte CD8 molecule (SAALMULLER et al., Vet Immunol Immunopathol, 43, 249, 1994) uses as isotype specificity control of labeling.

Les cellules adherentes sont decollees du plastique par incubation avec une solution contenant de la trypsine et de 1'EDTA pendant 5 minutes a 37 C. Les cellules sont lavees dans du tampon phosphate PBS, 0,1% d'azide de sodium, 5% de serum de cheval et 0,0062% de saponine (poids/volume). Elles sont denombrees et distribuees a raison de 106 de cellules par puits d'une plaque 96 puits. Tous les marquages sont effectues en plaque. Apres sedimentation des cellules par centrifugation et elimination du surnageant, 100 1 d'une dilution 1'anticorps monoclonal anti-N, anti-M ou ajoutes et les cellules re-suspendues m&canique. Les cellules sont incubees 30 Elles sont ensuite lavees deux fois dans phosphate, puis incubees 30 minutes a +4 C, dilution appropriee d'un anticorps anti-anticorps de souris, conjugue a la fluorescenne (BIORAD, France). Les cellules sont lavees deux fois puis fixes 15 minutes a temperature ambiante avec 100 !Al d'une solution de paraformaldehyde. Les cellules sont resuspendues clans 400 l de PBS FACS FLOW (Becton Dickinson, USA). L'analyse des cellules s'effectue au FACsort (Becton Dickinson, USA). Les debris cellulaires sont elimines de 1'analyse au FACS par un fenetrage place sur FSCxSSC (FSC : Forward SCatter ; SSC : Side SCatter), puis la fluorescence est mesuree sur 20 000 cellules. 6) Mesure quantitative de la synthese des ARN viraux Les cellules et le surnageant de culture sont recolt&s 96 heures apres infection et congeles a -70 C.  The adherent cells are removed from the plastic by incubation with a solution containing trypsin and EDTA for 5 minutes at 37 ° C. The cells are washed in phosphate buffer PBS, 0.1% sodium azide, 5% horse serum and 0.0062% saponin (weight / volume). They are counted and distributed at the rate of 106 cells per well of a 96-well plate. All markings are made in plate. After sedimentation of the cells by centrifugation and removal of the supernatant, 100 μl of a dilution anti-N monoclonal antibody, anti-M or additions and mechanically re-suspended cells. The cells are incubated. They are then washed twice in phosphate and then incubated for 30 minutes at +4 ° C., appropriate dilution of an anti-mouse antibody conjugated to the fluorescene (BIORAD, France). The cells are washed twice and then fixed for 15 minutes at room temperature with 100 μl of a paraformaldehyde solution. The cells are resuspended in 400 μl of FACS FLOW PBS (Becton Dickinson, USA). Cell analysis is performed at FACsort (Becton Dickinson, USA). Cell debris was removed from FACS analysis by a window on FSCxSSC (FSC: Forward SCatter, SSC: Side SCatter), and fluorescence was measured on 20,000 cells. 6) Quantitative measurement of viral RNA synthesis The cells and the culture supernatant are harvested 96 hours after infection and frozen at -70 ° C.

L'ARN total est extrait a partir de 100 l de cette suspension cellulaire melanges a la solution de lyse du kit RNeasy, selon les instructions du fabricant (Qiagen, Courtaboeuf, France). La suite du protocole correspond au manuel d'instruction du fabricant. L'ARN extrait est conserve a -70 C. L'ARN est quantifie par QRT-PCR en une &tape (Brilliant SYBR Green QRT-PCR Master Mix, 1 step, Stratagene). Les amorces utilisees sont NP3bis = 5'-GTCTCGGAAATCGCCTCACAG-3' (sens) (SEQ ID NO : 43) et NP4bis = 5'-CCTCCTCCTGGTCCTCCAGAA-3' (antisens) (SEQ ID NO : 44).  The total RNA is extracted from 100 l of this cell suspension mixed with the lysis solution of the RNeasy kit, according to the manufacturer's instructions (Qiagen, Courtaboeuf, France). The rest of the protocol corresponds to the manufacturer's instruction manual. The extracted RNA is stored at -70 ° C. The RNA is quantitated by QRT-PCR in one step (Brilliant SYBR Green QRT-PCR Master Mix, 1 step, Stratagene). The primers used are NP3bis = 5'-GTCTCGGAAATCGCCTCACAG-3 '(sense) (SEQ ID NO: 43) and NP4bis = 5'-CCTCCTCCTGGTCCTCCAGAA-3' (antisense) (SEQ ID NO: 44).

Ces amorces ont ete derivees des amorces pr&cedemment d&crites (COUACY-HYMANN et al., J Virol Methods, 100, 17, 2002) par addition d'un G en 5' de NP3bis et deletion de quatre bases en 3' et deletion de trois bases en 3' de NP4bis. Ces amorces amplifient un fragment de 351 bases. Une solution reactionnelle principale constitu&e de 12,5 l SYBR Green Master mix (2x), 2,5 l de 1 M de chaque amorce, 0,0625 l de Stratascript Reverse Transcriptase RT et 2,4375 l d'eau est deposee dans un microtube, puis 5 [Al de 1'ARN appropriee de isotypique sont par agitation minutes a +4 C. le meme tampon dans 50 l d'une extrait sont ajoutes. La QRT-PCR est mise en oeuvre sur un appareil Mx3000P (Stratagene, Amsterdam, NL) selon le protocole suivant : transcription inverse a 50 C pendant 30 minutes - denaturation a 95 C pendant 10 minutes amplification avec 35 cycles [95 C, 30 secondes ; 55 C, 1 minute ; 72 C, 30 secondes] dissociation avec un cycle [95 C, 1 minute ; 55 C, 30 secondes ; 95 C, 30 secondes] L'etalon standard pour la quantification est constitue du gene de la pro-Leine N du PPRV insere dans un plasmide pBluescript KS+ (COUACY-HYMANN et al., 2002, precite). Pour la quantification, le plasmide est linearise, purifie par precipitation a 1'alcool et dilue de fagon serielle de 10 en 10. La quantite d'ARN detectee dans les echantillons soumis a analyse est ramenee au nombre de copies de gene N incorporees dans la serie de dilutions de 1'etalon standard. EXEMPLE 1 : SELECTION ET SYNTHESE DE siARNs Les zones conservees du gene N ont ete localisees par un alignement multiple des sequences correspondantes issues de differents morbillivirus a 1'aide d'un logiciel d'analyse de sequences (Vector NTI package, Informax Inc). Cet alignement multiple de sequences a ete effectue sur les sequences des genes N des morbillivirus PPRV (souche vaccinale Nigeria 75/1; GenBank X74443), RPV (GenBank Z30697), MV (GenBank Z66517), CDV (GenBank NC 001921), DMV (GenBank AJ608288) et PDV (GenBank X75717). Dans les regions presentant le plus fort degre d'homologie, 7 sequences-cibles ont ete definies pour le virus PPRV. Les siARNs derives du gene N du virus PPRV, et contenant des sequences identiques aux sequences-cibles definies dans ce gene, sont denommes NPPR1, et NPPR5 a 10 ; un siARN denomme NPPR2, ne presentant au mieux que 58% d'identite avec la sequence du gene N du virus PPRV (en positions.256-274, 751-769, et 850-869 de la sequence d'ADNc), et un siARN denomme NPPR3, derive de la meme sequence cible que le siARN NPPR10, mais presentant une difference d'une base avec ladite sequence-cible (C dans la sequence cible remplace par G a 1'extremite 5' du brin sens du siRNA NPPR3) ont egalement ete synthetises.  These primers were derived from the previously described primers (COUACY-HYMANN et al., J. Virol Methods, 100, 17, 2002) by addition of a 5 'G of NP3bis and deletion of four bases at 3' and deletion of three. 3 'bases of NP4bis. These primers amplify a fragment of 351 bases. A main reaction solution consisting of 12.5 l SYBR Green Master mix (2x), 2.5 l of 1 M of each primer, 0.0625 l of Stratascript Reverse Transcriptase RT and 2.4375 l of water is deposited in a Microtube, then 5 μl of the appropriate isotype RNA is stirred for minutes at +4 C. the same buffer in 50 l of an extract is added. The QRT-PCR is carried out on a Mx3000P apparatus (Stratagene, Amsterdam, NL) according to the following protocol: reverse transcription at 50 ° C. for 30 minutes - denaturation at 95 ° C. for 10 minutes amplification with 35 cycles [95 ° C., 30 seconds] ; 55 C, 1 minute; 72 C, 30 seconds] dissociation with a cycle [95 C, 1 minute; 55 C, 30 seconds; 95 C, 30 seconds] The standard standard for quantitation is the PPRV pro-Lein N gene inserted into a pBluescript KS + plasmid (COUACY-HYMANN et al., 2002, supra). For quantitation, the plasmid is linearised, purified by alcohol precipitation, and serially diluted 10-fold. The amount of RNA detected in the samples submitted for analysis is reduced to the number of N gene copies incorporated in the assay. series of dilutions of the standard standard. EXAMPLE 1: SELECTION AND SYNTHESIS OF siRNAs The conserved regions of the N gene were localized by multiple alignment of the corresponding sequences from different morbilliviruses using a sequence analysis software (Vector NTI package, Informax Inc.). This multiple sequence alignment was performed on the N gene sequences of the PPRV morbilliviruses (Nigeria strain 75/1, GenBank X74443), RPV (GenBank Z30697), MV (GenBank Z66517), CDV (GenBank NC 001921), DMV ( GenBank AJ608288) and PDV (GenBank X75717). In areas with the highest degree of homology, 7 target sequences have been defined for PPRV. The siRNAs derived from the N gene of the PPRV virus, and containing sequences identical to the target sequences defined in this gene, are referred to as NPPR1, and NPPR5 to 10; a siRNA known as NPPR2, having at most only 58% identity with the sequence of the N gene of the PPRV virus (at positions 256-274, 751-769, and 850-869 of the cDNA sequence), and a siRNA denotes NPPR3, derived from the same target sequence as siRNA NPPR10, but having a difference of one base with said target sequence (C in the target sequence replaced by G at the 5 'end of siRNA sense strand NPPR3) have also been synthesized.

Pour le virus RPV, 2 sequences cibles ont ete definies au niveau du locus correspondant a la sequencecible du siARN-NPPR1. Les siARNs correspondants sont denommes NRP1 et NRP2. Tous les siARNs mentionnes ci-dessus ont ete 10 synthetises chimiquement par la societe Ambion (Europe) (Cambridgeshire, UK). Pour tester la specificite de 1'interference, un siARN ciblant la sequence de la Glyceraldehyde-3-phosphate deshydrogenase (GAPDH) a ete utilise : la sequence et le 15 siARN sont disponibles chez Ambion (Europe) (SilencerTM GAPDH siARN (Human) Control 4605). Toutes les sequences siARNs identifiees ont ete soumises a une recherche d'homologie dans Genbank a 1'aide du logiciel Blast. Le maximum d'identite observe entre le 20 siARN-GAPDH et la sequence codant pour la pro-Leine N du virus PPRV est de 72%. Les sequences des brins sens et antisens des differents siARNs mentionnes ci-dessus, ainsi que leur position par rapport a la sequence du gene N et par rapport 25 a la sequence du cadre de lecture dudit gene, sont indiquees dans le Tableau I ci-apres. Les positions des sequences cibles des siARNs NPPR1, NPPR3, NPPR5 a NPPR10, et NRP1 et NRP2 sont indiquees sur la Figure 2.  For the RPV virus, 2 target sequences were defined at the locus corresponding to the sequencecible siRNA-NPPR1 sequence. The corresponding siRNAs are referred to as NRP1 and NRP2. All the siRNAs mentioned above were chemically synthesized by Ambion (Europe) (Cambridgeshire, UK). To test the specificity of the interference, a siRNA targeting the sequence of Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used: the sequence and siRNA are available from Ambion (Europe) (SilencerTM GAPDH siRNA (Human) Control 4605). All identified siRNA sequences were genomically searched for in Genbank using Blast software. The maximum identity observed between the siRNA-GAPDH and the pro-Leine N coding sequence of the PPRV virus is 72%. The sequences of the sense and antisense strands of the various siRNAs mentioned above, as well as their position relative to the sequence of the N gene and with respect to the sequence of the reading frame of said gene, are indicated in Table I below. . The target sequence positions of siRNAs NPPR1, NPPR3, NPPR5 to NPPR10, and NRP1 and NRP2 are shown in Figure 2.

EXEMPLE 2 : EFFET DES siARNs NPPR1, 2, ET 3 ET DU siRNAGAPDH SUR L'EFFET CYTOPATHIQUE DU VIRUS DE LA PESTE DES PETITS RUMINANTS.  EXAMPLE 2 Effect of siRNAs NPPR1, 2 and 3 and siRNAGAPDH on the CYTOPATHIC EFFECT OF SMALL RUMINANT FIRE FIGHTING VIRUS.

Des cellules VERO ont ete transfectees avec differentes doses des siARNs NPPR1, 2, et 3 ou du siARN-GAPDH, puis infectees par le PPRV, selon le protocole decrit daps la section << Materiel et Methodes >> ; 1'effet cytopathique a ete evalue 4 jours apres infection, independamment par deux personnes differentes. La Figure 3 illustre les resultats observes : Parmi les siARNs testes, le siARN NPPR1 est celui qui inhibe le plus 1'ECP, quelle que soft la dose utilisee. A la dose de 100 nM, on observe une inhibition TABLEAU I Sequence Nom du siARN Position dans I'ADNc / dans le cadre de lecture siARN-NPPR1 sens : 5'-GGAUCAACUGGUUUGAGAAtt -3' (SEQ ID NO : 45) (position 480-498/428-446) antisens : 5'-UUCUCAAACCAGUUGAUCCtt û 3' (SEQ ID NO : 46)  VERO cells were transfected with different doses of NPPR1, 2, and 3 siRNAs or siRNA-GAPDH, and then infected with PPRV, according to the protocol described in the section "Materials and Methods"; The cytopathic effect was evaluated 4 days after infection, independently by two different persons. Figure 3 illustrates the results observed: Among the siRNAs tested, the siRNA NPPR1 is the one that inhibits the most ECP, whatever the dose used. At the dose of 100 nM, an inhibition was observed TABLE I Sequence siRNA name Position in the cDNA / in the siRNA-NPPR1 reading frame direction: 5'-GGAUCAACUGGUUUGAGAAtt -3 '(SEQ ID NO: 45) (position 480 -498 / 428-446) antisense: 5'-UUCUCAAACCAGUUGAUCCTT 3 '(SEQ ID NO: 46)

siARN-NPPR2 sens : 5'-GCUCACCUUCAUUCUUUUCtt -3' (SEQ ID NO:47) (seulement 63% d'homologie) antisens : 5'-GAAAAGAAUGAAGGUGAGCtc -3' (SEQ ID NO: 48)  siRNA-NPPR2 sense: 5'-GCUCACCUUCAUUCUUUUCTT -3 '(SEQ ID NO: 47) (only 63% homology) antisense: 5'-GAAAAGAAUGAAGGUGAGCtc -3' (SEQ ID NO: 48)

siARN-NPPR3 Sens : 5'-GGCCAGUUUCAUUCUUACUtt -3' (SEQ ID NO : 49) (position 850-868/798-816) antisens : 5'-AGUAAGAAUGAAACUGGCCtc -3' (SEQ ID NO : 50)  siRNA-NPPR3 Sense: 5'-GGCCAGUUUCAUUCUUACACT -3 '(SEQ ID NO: 49) (position 850-868 / 798-816) antisense: 5'-AGUAAGAAUGAAACUGGCCtc -3' (SEQ ID NO: 50)

siARN-NPPR5 sens: 5'- GAGAACUCAAUUCAGAACAtt -3'(SEQ ID NO:51) (position 1001-1019/949-968) antisens : 5'- UGUUCUGAAUUGAGUUCUCtt -3' (SEQ ID NO: 52)  siRNA-NPPR5 sense: 5'-GAGAACUCAAUUCAGAACAtt -3 '(SEQ ID NO: 51) (position 1001-1019 / 949-968) antisense: 5'-UGUUCUGAAUUGAGUUCUCTT -3' (SEQ ID NO: 52)

siARN-NPPR6 sens : 5'- GGCGGUUCAUGGUAUCUCUtt -3' (SEQ ID NO: 53) (position 741-759/689-707) antisens : 5'- AGAGAUACCAUGAACCGCCtt -3' (SEQ ID NO : 54)  siRNA-NPPR6 sense: 5'-GGCGGUUCAUGGUAUCUCUtt -3 '(SEQ ID NO: 53) (position 741-759 / 689-707) antisense: 5'-AGAGAUACCAUGAACCGCCTT -3' (SEQ ID NO: 54)

siARN-NPPR7 sens : 5'- GCAUUAGGCCUUCACGAGUtt -3' (SEQ ID NO : 55) (position 869-917/847-865) antisens : 5'- ACUCGUGAAGGCCUAAUGCtt -3' (SEQ ID NO : 56)  siRNA-NPPR7 sense: 5'-GCAUUAGGCCUUCACGAGUtt -3 '(SEQ ID NO: 55) (position 869-917 / 847-865) antisense: 5'-ACUCGUGAAGGCCUAAUGCTT -3' (SEQ ID NO: 56)

siARN-NPPR8 sens : 5'- GUAUCAACAGCUAGGAGAGtt -3' (SEQ ID NO : 57)(position 958-976/906-924) antisens : 5'- CUCUCCUAGCUGUUGAUACtt -3' (SEQ ID NO : 58)  siRNA-NPPR8 sense: 5'-GUAUCAACAGCUAGGAGAGTT -3 '(SEQ ID NO: 57) (position 958-976 / 906-924) antisense: 5'-CUCUCCUAGCUGUUGAUACTT -3' (SEQ ID NO: 58)

siARN-NPPR9 sens:5'-GAACUUUGGCAGGUCAUAUtt -3'(SEQ ID No:59)(position 1102-1120/1050-1068) antisens : 5'- AUAUGACCUGCCAAAGUUCtt -3' (SEQ ID NO : 60)  siRNA-NPPR9 sense: 5'-GAACUUUGGCAGGUCAUAUtt -3 '(SEQ ID No: 59) (position 1102-1120 / 1050-1068) antisense: 5'- AUAUGACCUGCCAAAGUUCTT -3' (SEQ ID NO: 60)

siARN-NPPRIO sens : 5'- CGCCAGUUUCAUUCUUACUtt -3' (SEQ ID NO: 61) (position 850-868/798-816) antisens : 3'- AGUAAGAAUGAAACUGGCGtt -3' (SEQ ID NO: 62)  siRNA-NPPRIO sense: 5'-CGCCAGUUUCAUUCUUACACT -3 '(SEQ ID NO: 61) (position 850-868 / 798-816) antisense: 3'-AGUAAGAAUGAAACUGGCGTT -3' (SEQ ID NO: 62)

siARN-NRP 1 sens : 5'-GCAGUCUUACUGGUUUGAGtt -3' (SEQ ID NO: 63) (position 478-496/426-444) antisens : 5'-CUCAAACCAGUAAGACUGCtt -3' (SEQ ID NO : 64)  SiRNA-NRP 1 sense: 5'-GCAGUCUUACUGGUUUGAGTT -3 '(SEQ ID NO: 63) (position 478-496 / 426-444) antisense: 5'-CUCAAACCAGUAAGACUGCTT -3' (SEQ ID NO: 64)

siARN-NRP2 sens : 5'-CAGUCUUACUGGUUUGAGAtt -3' (SEQ ID NO: 65) (position 479-497/427-445) antisens : 5'-UCUCAAACCAGUAAGACUGtc -3' (SEQ ID NO: 66)  siRNA-NRP2 sense: 5'-CAGUCUUACUGGUUUGAGAtt -3 '(SEQ ID NO: 65) (position 479-497 / 427-445) antisense: 5'-UCUCAAACCAGUAAGACUGtc -3' (SEQ ID NO: 66)

siARN-GAPDH sens : 5'-AAGGUCAUCCAUGACAACUtt -3' (SEQ ID NO: 67) antisens : 5'-AGUUGUCAUGGAUGACCUUtt -3' (SEQ ID NO : 68) complete de 1'ECP. Le siARN NPPR3, dont la sequence varie d'un nucleotide par rapport a la sequence cible definie sur le virus (cf. Exemple 1) inhibe 1'ECP de fagon moins marquee que NPPR1. Le siARN NPPR10, qui dirige contre la meme sequence-cible que le siARN NPPR3, mais qui, contrairement a ce dernier est parfaitement complementaire de ladite sequence-cible, inhibe egalement 1'ECP de fawn moins marquee que NPPR1 (resultats non-montres) Comme attendu, le siARN-NPPR2 ainsi que le 10 siARN-GAPDH ne produisent aucune neutralisation de 1'ECP. EXEMPLE 3 : EFFET DES siARN SUR L'EXPRESSION DE LA PROTEINE N ET DE LA PROTEINE M DU PPRV ET DU RPV. Des cellules VERO ont ete transfectees avec differentes doses du siARN NPPR1, du siARN NPPR2 ou du siARN 15 GAPDH, puis infectees par le PPRV, comme decrit clans la section << Materiel et Methodes >> ; 4 a 5 jours apres infection, la production de la proteine N dans les cellules est mesuree par cytometrie en flux, comme decrit dans la section << Materiel et Methodes >>. 20 La figure 4 (a) illustre les resultats observes dans des cellules transfectees avec 100 nM du siARN NPPR1 ou du siARN NPPR2, ainsi que dans des cellules non-infectees et non transfectees, et dans des cellules non-transfectees et infectees, utilisees a titre de controle. On observe une 25 tres forte inhibition de 1'expression de la pro-Leine N dans les cellules infectees transfectees avec le siARN NPPR1, alors que dans celles transfectees avec le siARN NPPR2, le profil d'expression de la proteine N est tres similaire a celui observe avec les cellules infectees non-transfectees, 30 bien qu'une certaine diminution de 1'expression soit observee. La figure 4 (b) illustre les resultats observes dans des cellules transfectees avec differentes doses du siARN NPPR1 ou du siARN GAPDH. On observe une diminution 35 tres significative du pourcentage de cellules exprimant la proteine N a partir de 12,5 nM de siARN NPPR1.  siRNA-GAPDH sense: 5'-AAGGUCAUCCAUGACAACUTT -3 '(SEQ ID NO: 67) antisense: 5'-AGUUGUCAUGGAUGACCUUtt -3' (SEQ ID NO: 68) complete with ECP. The siRNA NPPR3, whose sequence varies one nucleotide with respect to the target sequence defined on the virus (see Example 1) inhibits the CEP less marked than NPPR1. The siRNA NPPR10, which directs against the same target sequence as the siRNA NPPR3, but which, unlike the latter is perfectly complementary to said target sequence, also inhibits the ECP in a less marked way than NPPR1 (non-clocked results). As expected, siRNA-NPPR2 as well as siRNA-GAPDH produce no neutralization of the CEP. EXAMPLE 3 Effect of SiRNA on the Expression of the Protein N and the Protein M of PPRV and RPV VERO cells were transfected with different doses of NPPR1 siRNA, NPPR2 siRNA or siRNA GAPDH, and then infected with PPRV as described in the "Materials and Methods" section; 4 to 5 days after infection, the production of protein N in the cells is measured by flow cytometry, as described in the section "Materials and Methods". FIG. 4 (a) illustrates the results observed in cells transfected with 100 nM of NPPR1 siRNA or NPPR2 siRNA, as well as in non-infected and non-transfected cells, and in non-transfected and infected cells, used in vitro. title of control. A very strong inhibition of pro-Lein N expression was observed in infected cells transfected with NPPR1 siRNA, whereas in those transfected with NPPR2 siRNA, the expression profile of N protein was very similar to that observed with non-transfected infected cells, although some decrease in expression is observed. Figure 4 (b) illustrates the results observed in cells transfected with different doses of NPPR1 siRNA or GAPDH siRNA. A very significant decrease in the percentage of cells expressing the N protein was observed from 12.5 nM of siRNA NPPR1.

Dans une seconde serie d'experimentations, 1'expression de la pro-Leine N et de la pro-Leine M a ete mesuree : - Bans des cellules VERO transfectees avec la dose optimale pour chacun des siARNs testes, a savoir 100 nM pour les siARNs NPPR1, 2, 3, ou 5 a 9, ou 25 nM pour le siARN NPPR10 , puis infectees avec PPRV ou avec RPV; - dans des cellules VERO transfectees avec 100 nM de Pun des siARNs NRP1 ou NRP2, puis infectees avec PPRV ou avec RPV. La mesure de 1'expression de la pro-Leine M permet de verifier que 1'inhibition de 1'expression de la pro-Leine N entraine une inhibition des autres proteines virales, ce qui traduit un effet sur la replication du genome viral. Les resultats sont resumes par le Tableau II ciapres. TABLEAU II Inhibition de Inhibition de Inhibition de Inhibition de I'expression de ('expression de la ('expression de la I'expression Ia proteine de nucleoproteine de la nucleoproteine matrice PPRV (en RPV proteine de PPRV (en %) %) (en %) matrice RPV (en %) siARN-NPPR1 (100 nM) 90 89 0 0 siARN-NPPR2 (100 nM) 25 11 nt nt siARN-NPPR3 (100 nM) 40 30 nt nt siARN-NPPR5 (100 nM) 16 nt nt nt siARN-NPPR6 (100 nM) 68 nt nt nt siARN-NPPR7 (100 nM) 63 nt nt nt siARN-NPPR8 (100 nM) 34 nt nt nt siARN-NPPR9 (100 nM) 35 nt nt nt siARN-NPPR10 (25 nM) 60 55 nt nt siARN-NRP1 (100 nM) 0 nt 35 31 siARN- NRP2 (100 nM) 0 nt 97 92,5 siARN-GAPDH (100 nM) 0 5 13 3 nt : non teste Quatre des siARN testes (siARNs NPPR1, 6, 7 et 10) ont un effet significatif sur le PPRV. Parmi ceux-ci, seul le siARN NPPR1 permet d'atteindre un pourcentage de 90% d'inhibition de 1'expression de la pro-Leine N (les autres siRNAs ne permettent pas d'atteindre 70o d'inhibition de 1'expression) et un pourcentage de 89% d'inhibition de 1'expression de la pro-Leine M. En ce qui concerne le RPV, seul le siARN NRP2 possede un effet significatif. Le siARN NRP1, qui ne Nature du siARN (concentration optimale) contient pas la totalite de la sequence cible, a un effet tres amoindri. Ces resultats montrent que le locus reconnu par les siARNS NPPR1, et NRP2 constitue une cible particulierement interessante pour 1'extinction du gene de la proteine N des morbillivirus. Cette cible est tres circonscrite, puisqu'une base manquante diminue considerablement les effets obtenus. EXEMPLE 4 : EFFET INHIBITEUR DU siARN NPPR1 SUR LA SYNTHESE 10 DES ARN VIRAUX. L'effet du siARN NPPR1 sur la replication virale a ete evalue en quantifiant la synthese de 1'ARN viral, comme decrit dans la section << Materiel et Methodes >>, dans des cellules VERO infectees par PPRV, non-transfectees, ou 15 transfectees avec 100 nM de l'un des siARNs NPPR1, NPPR3, NPPR2 ou GAPDH, ainsi que dans des cellules VERO noninfectees. Les resultats sont illustres par la figure 5. Dans les cellules infectees non-transfectees, la 20 replication virale se traduit par une quantite d'ARN viral 100 fois superieure a celle apportee par 1'inoculum initial. La transfection avec les siARNs NPPR2 et GAPDH n'a pas d'effet significatif sur la replication virale. Dans les cellules transfectees avec NPPR3, la quantite d'ARN viral 25 demeure plus de 10 fois superieure a celle apportee par 1'inoculum initial. En revanche, dans les cellules transfectees avec NPPR1, la quantite d'ARN viral correspond a celle apportee par 1'inoculum initial, ce qui confirme que ce siARN inhibe la replication virale. 30 EXEMPLE 5 : EFFET INHIBITEUR DU siARN NPPR1 SUR LA REPLICATION VIRALE MESUREE PAR LE TITRE VIRAL L'effet du siARN NPPR1 sur la replication virale a ete evalue en mesurant le titre viral, comme decrit dans Materiels et Methodes >>, 4 jours apres 1'infection par 35 PPRV de cellules VERO transfectees avec 6,25, 12,5, 25, 50 ou 100 nM de l'un des siARNs NPPR1, NPPR2, NPPR3, NPPR10 ou GAPDH. Les resultats sont illustres par la figure 6.  In a second series of experiments, the expression of pro-Leine N and pro-Leine M was measured: Bans of VERO cells transfected with the optimal dose for each of the siRNAs tested, namely 100 nM for siRNAs NPPR1, 2, 3, or 5 to 9, or 25 nM for siRNA NPPR10, then infected with PPRV or with RPV; in VERO cells transfected with 100 nM of NRP NRP1 or NRP2 siRNAs, then infected with PPRV or with RPV. Measurement of the expression of pro-Leine M makes it possible to verify that the inhibition of the expression of pro-Lein N causes an inhibition of the other viral proteins, which reflects an effect on the replication of the viral genome. The results are summarized in Table II below. TABLE II Inhibition of Inhibition of Inhibition of Inhibition of the Expression of the Expression of the Expression of the Nucleoprotein Protein Protein Nucleoprotein PPRV (in PPRV Protein RPV (%)) (in%) %) RPV matrix (in%) siRNA-NPPR1 (100 nM) 90 89 0 0 siRNA-NPPR2 (100 nM) 25 11 nt nt siRNA-NPPR3 (100 nM) 40 30 nt nt siRNA-NPPR5 (100 nM) 16 nt siRNA-NPPR6 (100 nM) and siRN-NPPR7 (100 nM) 63 nt siRNA-NPPR8 (100 nM) 34 nt siRNA-NPPR9 (100 nM) 35 nt siRNA-NPPR10 ( 25 nM) 60 siRNA-NRP1 (100 nM) 0 nt 35 31 siRNA-NRP2 (100 nM) 0 nt 97 92.5 siRNA-GAPDH (100 nM) 0 5 13 3 nt: not tested Four of the siRNAs tested (siRNAs NPPR1, 6, 7 and 10) have a significant effect on PPRV, of which only NPPR1 siRNA achieves 90% inhibition of pro-Lein N expression ( the other siRNAs do not achieve 70% inhibition of expression) and a percentage of 89% inhibition of Expression of pro-Lein M. With regard to RPV, only siRNA NRP2 has a significant effect. The siRNA NRP1, which does not contain the totality of the siRNA (optimal concentration), has a very reduced effect. These results show that the locus recognized by the siRNAs NPPR1, and NRP2 constitutes a particularly interesting target for the extinction of the gene of the N protein of morbilliviruses. This target is very circumscribed, since a missing base considerably reduces the effects obtained. EXAMPLE 4: INHIBITOR EFFECT OF siRNA NPPR1 ON THE SYNTHESIS OF VIRAL RNA The effect of NPRP1 siRNA on viral replication was evaluated by quantifying the synthesis of viral RNA, as described in the "Materials and Methods" section, in non-transfected PPRV-infected VERO cells, or transfected with 100 nM of one of the siRNAs NPPR1, NPPR3, NPPR2 or GAPDH, as well as in non-infected VERO cells. The results are shown in Fig. 5. In non-transfected infected cells, viral replication results in a quantity of viral RNA 100 times greater than that provided by the initial inoculum. Transfection with NPPR2 and GAPDH siRNAs has no significant effect on viral replication. In cells transfected with NPPR3, the amount of viral RNA remained more than 10-fold higher than that provided by the initial inoculum. On the other hand, in the cells transfected with NPPR1, the amount of viral RNA corresponds to that brought by the initial inoculum, which confirms that this siRNA inhibits the viral replication. EXAMPLE 5: INHIBITOR EFFECT OF NPPR1 siRNA ON VIRAL TIR-MEASURED REPLICATION The effect of NPR1 siRNA on viral replication was evaluated by measuring the viral titre, as described in Materials and Methods, 4 days after 1 PPRV infection of VERO cells transfected with 6.25, 12.5, 25, 50 or 100 nM of one of the siRNAs NPPR1, NPPR2, NPPR3, NPPR10 or GAPDH. The results are illustrated in Figure 6.

Pour les cellules transfectees par l'un des siARNs NPPR2, NPPR3 et NPPR10, on observe une Legere diminution du titre viral par rapport au controle (cellules transfectees par le siARN GAPDH), qui ne varie pas significativement en fonction de la concentration testee. Pour les cellules transfectees par NPPR1, le titre viral diminue tres significativement a partir de 12,5 nM de siARN. A 100 nM de siARN, on observe une inhibition totale de la replication virale.  For the cells transfected with one of the siRNAs NPPR2, NPPR3 and NPPR10, there is a slight decrease in the viral titre compared with the control (cells transfected with the siRNA GAPDH), which does not vary significantly as a function of the concentration tested. For the cells transfected by NPPR1, the viral titer decreases very significantly from 12.5 nM of siRNA. At 100 nM siRNA, complete inhibition of viral replication is observed.

Claims (8)

REVENDICATIONS 1) ARN interferent, caracterise en ce qu'il est dirige contre une region de 1'ARNm du gene N codant pour la nucleoproteine d'un morbillivirus, ladite region contenant le motif defini par la sequence generale suivante : RRWYNNRHUGGUUHGARA (SEQ ID NO: 1) dans laquelle : A = Adenine C = Cytosine G = Guanine U = Uracile R = A ou G Y = C ou U W = A ou U H = A ou C ou U N = A ou C ou G ou U.  1) interfering RNA, characterized in that it is directed against a region of the mRNA of the N gene coding for the nucleoprotein of a morbillivirus, said region containing the motif defined by the following general sequence: RRWYNNRHUGGUUHGARA (SEQ ID NO: 1) in which: A = Adenine C = Cytosine G = Guanine U = Uracil R = A or GY = C or UW = A or UH = A or C or UN = A or C or G or U. 2) ARN interferent selon la revendication 1, caracterise en ce que ledit motif est defini par une sequence cible choisie parmi : - la sequence GGUUCGGAUGGUUCGAGA (SEQ ID NO: 2) - la sequence AGUCUUACUGGUUUGAGA (SEQ ID NO:  2) interfering RNA according to claim 1, characterized in that said unit is defined by a target sequence chosen from: - the sequence GGUUCGGAUGGUUCGAGA (SEQ ID NO: 2) - the sequence AGUCUUACUGGUUUGAGA (SEQ ID NO: 3) - la sequence GGAUCAACUGGUUUGAGA (SEQ ID NO:  3) - the sequence GGAUCAACUGGUUUGAGA (SEQ ID NO: 4) - la sequence AAUUAGGCUGGUUAGAGA (SEQ ID NO:  4) - the sequence AAUUAGGCUGGUUAGAGA (SEQ ID NO: 5) - la sequence AAAUGGGCUGGUUAGAAA (SEQ ID NO:  5) - the sequence AAAUGGGCUGGUUAGAAA (SEQ ID NO: 6) ; - la sequence GAACCCAUUGGUUUGAGA (SEQ ID NO:  6); the sequence GAACCCAUUGGUUUGAGA (SEQ ID NO: 7) 3) ARN interferent selon la revendication 1, caracterise en ce qu'il comprend une portion de 19 a 29 pb d'une sequence antisens de celle du gene N d'un morbillivirus, ladite portion contenant un motif defini par 30 la sequence generale UYUCDAACCADYNNRWYY (SEQ ID NO:  7) 3) Interfering RNA according to claim 1, characterized in that it comprises a 19 to 29 bp portion of an antisense sequence of that of the N gene of a morbillivirus, said portion containing a pattern defined by the sequence General UYUCDAACCADYNNRWYY (SEQ ID NO: 8), dans laquelle A, C, G, U, R, Y, W et N sont tels que definis ci-dessus, et D = G, A ou U. 4) ARN interferent selon une quelconque des revendications 1 a 3, caracterise en ce qu'il est choisi 35 parmi les siARNs, les shARNs et les pre-miARNs. 5) Vecteur d'expression contenant une sequence d'ADN pouvant titre transcrite en un ARN interferent selon 15 20 25une quelconque des revendications 1 a 4, placee sous controle d'un promoteur approprie. 6) Utilisation d'un ARN interferent selon une quelconque des revendications 1 a 4 pour 1'obtention d'un medicament destine au traitement ou a la prevention d'une infection a morbillivirus. 7) Utilisation selon la revendication 6, caracterisee en ce que ledit ARN interferent est utilise en combinaison avec au moins un autre ARN interferent choisi parmi : - un ARN interferent dirige contre une region de 1'ARNm du gene N contenant un motif defini par la sequence generale GSMGRUUYAUGGUVKCDYU (SEQ ID NO : 15), dans laquelle A, C, G, U, R, Y, et D sont tels que definis ci dessus et M = A ou C, K = G ou U, S = G ou C, V = G, A ou C ; - un ARN interferent dirige contre une region de 1'ARNm du gene N contenant un motif defini par la sequence generale GCHYUDGGNYUDCAYGARU (SEQ ID NO : 16) Bans laquelle A, C, G, U, R, Y, D, H, et N sont tels que definis ci- dessus. 10) Utilisation selon une quelconque des revendications 6 ou 7, caracterisee en ce que ledit morbillivirus est choisi dans le groupe constitue du virus de la rougeole (NV), du virus de la peste bovine (RPV), du virus de la peste des petits ruminants (PPRV), du virus de la maladie de Carre (CDV), du virus de la peste des phoques (PDV), et du morbillivirus du dauphin (DMV). 11) Composition pharmaceutique comprenant un ARN interferent selon une quelconque des revendications 1 a 4. 10) Composition pharmaceutique selon la revendication 9, caracterisee en ce qu'elle comprend en outre au moins un ARN interferent tel que defini dans la revendication 7. 11) Composition pharmaceutique selon une quelconque des revendications 9 ou 10, caracterisee en ce qu'il s'agit d'un vaccin.  8), wherein A, C, G, U, R, Y, W and N are as defined above, and D = G, A or U. 4) Interfering RNA according to any one of claims 1 to 3, characterized in that it is selected from siRNAs, shRNAs and pre-miRNAs. 5) An expression vector containing a transcriptionally transposable DNA sequence of an interfering RNA according to any one of claims 1 to 4, placed under the control of an appropriate promoter. 6) Use of an interfering RNA according to any one of claims 1 to 4 for obtaining a medicament for treating or preventing a morbillivirus infection. 7) The use according to claim 6, characterized in that said interfering RNA is used in combination with at least one other interfering RNA selected from: an interfering RNA directed against a region of the mRNA of the N gene containing a motif defined by the general sequence GSMGRUUYAUGGUVKCDYU (SEQ ID NO: 15), wherein A, C, G, U, R, Y, and D are as defined above and M = A or C, K = G or U, S = G or C, V = G, A or C; an interfering RNA directed against a region of the mRNA of the N gene containing a motif defined by the general sequence GCHYUDGGNYUDCAYGARU (SEQ ID NO: 16), in which A, C, G, U, R, Y, D, H, and N are as defined above. 10) Use according to any one of claims 6 or 7, characterized in that said morbillivirus is selected from the group consisting of measles virus (NV), rinderpest virus (RPV), peste des petits virus ruminants (PPRV), Carre's disease virus (CDV), seal plague virus (PDV), and dolphin morbillivirus (DMV). 11) A pharmaceutical composition comprising an interfering RNA according to any one of claims 1 to 4. 10) A pharmaceutical composition according to claim 9, characterized in that it further comprises at least one interfering RNA as defined in claim 7. 11) Pharmaceutical composition according to any one of claims 9 or 10, characterized in that it is a vaccine.
FR0513029A 2005-12-21 2005-12-21 INTERFERING RNA TARGETING THE NUCLEOPROTEIN GENE OF MORBILLIVIRUS Expired - Fee Related FR2894967B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR0513029A FR2894967B1 (en) 2005-12-21 2005-12-21 INTERFERING RNA TARGETING THE NUCLEOPROTEIN GENE OF MORBILLIVIRUS
US12/158,620 US8258287B2 (en) 2005-12-21 2006-12-12 Interfering RNAs targeting the morbillivirus nucleoprotein gene
EP06847097.0A EP1974035B1 (en) 2005-12-21 2006-12-21 Interfering rnas targeting the morbillivirus nucleoprotein gene
CA002634334A CA2634334A1 (en) 2005-12-21 2006-12-21 Interfering rnas targeting the morbillivirus nucleoprotein gene
PCT/FR2006/002819 WO2007077339A1 (en) 2005-12-21 2006-12-21 Interfering rnas targeting the morbillivirus nucleoprotein gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0513029A FR2894967B1 (en) 2005-12-21 2005-12-21 INTERFERING RNA TARGETING THE NUCLEOPROTEIN GENE OF MORBILLIVIRUS

Publications (2)

Publication Number Publication Date
FR2894967A1 true FR2894967A1 (en) 2007-06-22
FR2894967B1 FR2894967B1 (en) 2008-02-22

Family

ID=37072962

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0513029A Expired - Fee Related FR2894967B1 (en) 2005-12-21 2005-12-21 INTERFERING RNA TARGETING THE NUCLEOPROTEIN GENE OF MORBILLIVIRUS

Country Status (1)

Country Link
FR (1) FR2894967B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107881169A (en) * 2016-09-29 2018-04-06 上海吉玛制药技术有限公司 The oligomeric nucleic acid combination and its application of prevention or treatment canine distemper

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOSCHEL K ET AL: "MEASLES VIRUS ANTISENSE SEQUENCES SPECIFICALLY CURE CELLS PERSISTENTLY INFECTED WITH MEASIES VIRUS", VIROLOGY, ACADEMIC PRESS,ORLANDO, US, vol. 207, no. 1, 20 February 1995 (1995-02-20), pages 168 - 178, XP000575957, ISSN: 0042-6822 *
REUTER THORSTEN ET AL: "RNA interference with measles virus N, P, and L mRNAs efficiently prevents and with matrix protein mRNA enhances viral transcription", JOURNAL OF VIROLOGY, vol. 80, no. 12, June 2006 (2006-06-01), pages 5951 - 5957, XP002402876, ISSN: 0022-538X *

Also Published As

Publication number Publication date
FR2894967B1 (en) 2008-02-22

Similar Documents

Publication Publication Date Title
US10093923B2 (en) Modulation of HSP47 expression
AU2007228570B2 (en) Treatment of CNS conditions
CA2962219C (en) Methods for treating eye disorders
KR101852210B1 (en) Rna interference in dermal and fibrotic indications
AU2009236219B8 (en) Silencing of CSN5 gene expression using interfering RNA
EA033653B1 (en) Antisense oligonucleotides for the treatment of leber congenital amaurosis
EP1974035B1 (en) Interfering rnas targeting the morbillivirus nucleoprotein gene
KR20050084607A (en) Influenza therapeutic
WO2016061549A1 (en) Compositions comprising small interfering rna molecules for prevention and treatment of ebola virus disease
EP3819377A1 (en) Circular rna and uses thereof for inhibiting rna-binding proteins
FR2894967A1 (en) New interfering RNA, useful for treatment and prevention of diseases caused by morbilliviruses, are directed against the mRNA from the viral nucleoprotein gene
US20210348167A1 (en) siNA MOLECULES, METHODS OF PRODUCTION AND USES THEREOF
JPWO2006090906A1 (en) New method to overcome RNAi resistant virus strains
WO2023145884A1 (en) SARS-CoV-2-DERIVED POLYNUCLEOTIDE AND USE THEREOF
WO2005113014A1 (en) siRNA TO VP-1 OF JC VIRUS AND MEDICINAL COMPOSITION CONTAINING THE SAME
US9765333B2 (en) Compositions and methods for silencing marburg virus gene expression
WO2021219708A1 (en) Sina molecules, methods of production and uses thereof
WO2011098615A1 (en) Cells modified for virus production by inhibition of the hipk2 gene
JP2009526516A (en) Composition for treating respiratory viral infection and use thereof
JP2005333809A (en) siRNA AGAINST JC VIRUS AGNOPROTEIN AND MEDICINE CONTAINING THE SAME

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

ST Notification of lapse

Effective date: 20190906