FR2840689A1 - Integrated optical waveguide having channel/optical substrate and guide layer having index above substrate and waveguide having adaptation layer extending either side channel. - Google Patents
Integrated optical waveguide having channel/optical substrate and guide layer having index above substrate and waveguide having adaptation layer extending either side channel. Download PDFInfo
- Publication number
- FR2840689A1 FR2840689A1 FR0206975A FR0206975A FR2840689A1 FR 2840689 A1 FR2840689 A1 FR 2840689A1 FR 0206975 A FR0206975 A FR 0206975A FR 0206975 A FR0206975 A FR 0206975A FR 2840689 A1 FR2840689 A1 FR 2840689A1
- Authority
- FR
- France
- Prior art keywords
- substrate
- channel
- layer
- adaptation
- waveguide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
- G02B6/134—Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
- G02B6/1347—Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion implantation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B6/122—Basic optical elements, e.g. light-guiding paths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/12—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
- G02B2006/12097—Ridge, rib or the like
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
possede une entretoise n 4 support du bras de rglage n 4 cette entretoisehas a spacer no.4 support for the adjustment arm no.4 this spacer
est articulee en rotation.is articulated in rotation.
t Guide d'onde comportant un canal et une couche d'adaptation La presente invention concerne un guide d'onde comportant un canal et t Waveguide comprising a channel and an adaptation layer The present invention relates to a waveguide comprising a channel and
une couche d'adaptation.an adaptation layer.
Le domaine de ['invention est celui des dispositifs optiques integres sur substrat, domaine dans lequel un element essentiel est le guide d'onde qui assure la fonction de transport de l'energie lumineuse necessaire a l'acheminement d'un signal optique. Par reference a la demande de brevet FR 2 818 390, un tel guide est realise en creant un canal par implantation ionique du substrat a travers un masque, puis en deposant une couche guidante The field of the invention is that of integrated optical devices on a substrate, a field in which an essential element is the waveguide which performs the function of transporting the light energy necessary for the routing of an optical signal. With reference to patent application FR 2 818 390, such a guide is produced by creating a channel by ion implantation of the substrate through a mask, then by depositing a guiding layer.
o sur le canal.o on the canal.
Le guide n'etant pas limite au seul canal mais plutot constitue par ['association de ce canal et de la couche guidante, il presente alors des dimensions en adequation avec celle du coeur d'une fibre optique. En effet, les The guide not being limited to the single channel but rather constituted by the association of this channel and the guiding layer, it then has dimensions in adequacy with that of the core of an optical fiber. Indeed, the
dispositifs integres vent souvent interconnectes avec des fibres optiques. integrated devices are often interconnected with optical fibers.
La structure geometrique du guide fait que celui-ci est susceptible de The geometrical structure of the guide means that it is likely to
presenter un comportement qui differe selon l'etat de polarisation de la lumiere. exhibit behavior that differs depending on the state of polarization of the light.
Cette sensibilite a la polarisation est d'autant plus forte que la dose d'implantation est elevee. L'ecart entre les indices effectifs de refraction en mode transverse electrique (TE) et en mode transverse magnetique (TM) augmente a This sensitivity to polarization is all the stronger the higher the implantation dose. The difference between the effective indices of refraction in transverse electrical mode (TE) and in transverse magnetic mode (TM) increases to
mesure que l'indice de refraction du canal augmente. as the channel refraction index increases.
La sensibilite a la polarisation est un parametre critique pour tout dispositif raccorde a une fibre optique. En effet, lorsque la fibre est contrainte, notamment lorsqu'elle est courbee, cette courbure conduit a une modification de la polarisation de la lumiere qui y circule. II n'est done pas possible de conna^'tre I'etat de polarisation de la lumiere entrant dans le dispositif. II s'ensuit que ce d ispos itif d o it presenter u ne sensib il ite a la polarisation qu i so it la pl u s red u ite The sensitivity to polarization is a critical parameter for any device connected to an optical fiber. Indeed, when the fiber is stressed, in particular when it is bent, this curvature leads to a modification of the polarization of the light which circulates there. It is therefore not possible to know the state of polarization of the light entering the device. It follows that this it is necessary to present a sensitivity to the polarization that is most redu ite.
possible de sorte que l'integrite du signal optique soit preservee au mieux. possible so that the integrity of the optical signal is best preserved.
En particulier, les pertes radiatives dans les courbures dependent du contraste d'indice lateral ANeff, contraste qui se definit comme l'ecart entre I'indice effectif de refraction defini au niveau du canal et celui defini en dehors de ce canal. Ce contraste depend lui-meme du mode de polarisation. II est souhaitable que le contraste lateral ANeffTE en mode TE soit le plus proche possible du contraste lateral ANeffTM en mode TM pour que le rayon de courbure In particular, the radiative losses in the bends depend on the contrast of lateral index ANeff, contrast which is defined as the difference between the effective index of refraction defined at the level of the channel and that defined outside this channel. This contrast itself depends on the polarization mode. It is desirable that the ANeffTE lateral contrast in TE mode is as close as possible to the ANeffTM lateral contrast in TM mode so that the radius of curvature
minimum admissible par le guide soit le meme en mode TE qu'en mode TM. minimum admissible by the guide is the same in TE mode as in TM mode.
3 A titre d'exemple, on considere un guide caracterise comme suit: longueur d'onde: 1 550 nm, - indice de refraction du substrat: 1,444, indice de refraction de la couche guidante: 1,45, 3 As an example, we consider a guide characterized as follows: wavelength: 1550 nm, - refractive index of the substrate: 1.444, refractive index of the guiding layer: 1.45,
- epaisseur de la couche guidante: 5,lm. - thickness of the guide layer: 5, lm.
Si l'on veut que l'ecart entre le contraste lateral NeffTE en mode TE et le contraste lateral ANeffTM en mode TM soit inferieur a 0,001, les contrastes If you want the difference between the NeffTE lateral contrast in TE mode and the ANeffTM lateral contrast in TM mode to be less than 0.001, the contrasts
optiques que l'on peut obtenir vent assez falbles. optics that we can get quite falble wind.
Pour une epaisseur du canal de 0,05pm,1'indice de refraction du canal doit etre inferieur a 1,70, ce qui conduit a un contraste lateral ANeffTE en mode TE de 0,003 et a un contraste lateral ANeffTM en mode TM de 0,002, le rayon de For a channel thickness of 0.05pm, the refraction index of the channel must be less than 1.70, which leads to an ANeffTE lateral contrast in TE mode of 0.003 and to an ANeffTM lateral contrast in TM mode of 0.002, the radius of
o courbure minimum etant alors estime entre 20 et 25 mm. o minimum curvature then being estimated between 20 and 25 mm.
Pour une epaisseur du canal de O,10m,1'indice de refraction du canal doit etre inferieur a 1,60, ce qui conduit a un contraste lateral ANeffTE en mode TE de 0,004 et a un contraste lateral ANeffTM en mode TM de 0,003, le rayon de For a channel thickness of 0.10 m, the refraction index of the channel must be less than 1.60, which leads to an ANeffTE lateral contrast in TE mode of 0.004 and to an ANeffTM lateral contrast in TM mode of 0.003, the radius of
courbure minimum etant alors estime entre 15 et 20 mm. minimum curvature then being estimated between 15 and 20 mm.
Pour une epaisseur du canal de 0,20,lm,1'indice de refraction du canal doit etre inferieur a 1,55, ce qui conduit a un contraste lateral ANeffTE en mode TE de 0,006 et a un contraste lateral ANeffTM en mode TM de 0,005, le rayon de For a channel thickness of 0.20 lm, the refraction index of the channel must be less than 1.55, which leads to an ANeffTE lateral contrast in TE mode of 0.006 and to an ANeffTM lateral contrast in TM mode of 0.005, the radius of
courbure minimum etant alors estime entre 10 et 15 mm. minimum curvature then being estimated between 10 and 15 mm.
La presente invention a ainsi pour objet un guide d'onde optique presentant une sensibilite reduite a la polarisation et un contraste d'indice lateral eleve. Selon ['invention, un guide d'onde comporte un canal sur un substrat optique, I'indice de refraction de ce canal etant superieur a celui du substrat, comporte aussi au moins une couche guidante agencee sur ce canal, l'indice de s cette couche guidante etant superieur a celui du substrat; de plus, le guide d'onde comporte une couche d'adaptation s'etendant lateralement de part et The present invention thus relates to an optical waveguide having a reduced sensitivity to polarization and a contrast of high lateral index. According to the invention, a waveguide comprises a channel on an optical substrate, the refractive index of this channel being greater than that of the substrate, also comprises at least one guiding layer arranged on this channel, the index of s this guiding layer being greater than that of the substrate; moreover, the waveguide comprises an adaptation layer extending laterally on the side and
d'autre du canal.across the canal.
Cette couche d'adaptation a en effet pour but de reduire la sensibilite du The purpose of this adaptation layer is to reduce the sensitivity of the
guide a la polarisation.polarization guide.
o De preference, I'epaisseur de la couche d'adaptation est inferieure a celle du canal. Par exemple, elle est comprise entre 20% et 60% de l'epaisseur o Preferably, the thickness of the adaptation layer is less than that of the channel. For example, it is between 20% and 60% of the thickness
du canal.of the canal.
La couche d'adaptation se decomposant en deux bandes jouxtant chacune un bord lateral du canal, la largeur de chacune de ces bandes est au The adaptation layer decomposing into two bands each adjoining a lateral edge of the channel, the width of each of these bands is at
moins egale a celle du canal.less equal to that of the canal.
D'autre part, I'indice de refraction de la couche d'adaptation est superieur On the other hand, the refraction index of the adaptation layer is higher
a celui du canal.to that of the canal.
Avantageusement, le guide d'onde comporte au moins une couche de recouvrement disposee sur la couche guidante, I'indice de cette couche de recouvrement etant inferieur a celui de la couche guidante et a celui du canal. Selon un mode de realisation privilegie, le canal est integre dans le substrat. De meme, la couche d'adaptation est elle aussi integree dans le substrat. o Alternativement, le canal fait saillie sur le substrat et, par consequent la Advantageously, the waveguide comprises at least one covering layer disposed on the guiding layer, the index of this covering layer being lower than that of the guiding layer and that of the channel. According to a preferred embodiment, the channel is integrated into the substrate. Likewise, the adaptation layer is also integrated into the substrate. o Alternatively, the channel protrudes from the substrate and therefore the
couche d'adaptation peut elle aussi etre disposee en saillie sur le substrat. adaptation layer can also be arranged projecting on the substrate.
II est preferable que l'indice de la couche guidante vaille celui du substrat It is preferable that the index of the guiding layer corresponds to that of the substrate
multiplie par un facteur superieur a 1,001. multiplies by a factor greater than 1,001.
Selon une caracteristique additionnelle du guide d'onde, I'epaisseur de According to an additional characteristic of the waveguide, the thickness of
I'ensemble des couches guidantes est comprise entre 1 et 20 microns. All of the guiding layers are between 1 and 20 microns.
De preference, le canal et eventuellement la couche d'adaptation Preferably, the channel and possibly the adaptation layer
resultent d'une implantation ionique dans le substrat. result from ion implantation in the substrate.
A titre indicatif, la face du substrat sur laquelle est realisee ['implantation As an indication, the face of the substrate on which the implantation is carried out
ionique est en dioxyde de silicium.ionic is made of silicon dioxide.
2 o L'invention vise egalement une methode de fabrication d'un guide d'onde sur un substrat optique comprenant: - une etape de definition d'un canal consistent en la realisation d'un masque de canal sur le substrat, suivie d' - une etape d'implantation ionique du substrat comportant ce masque de canal, suivie d' - une etape de retrait du masque de canal, une etape de depot d'au moins une couche guidante sur le substrat, I'indice de refraction de cette couche guidante etant superieur a celui du substrat; cette methode comprend de plus, precedent lietape de depot: une etape de definition d'une couche d'adaptation consistent en la realisation diun masque d'adaptation sur le substrat, la couche d'adaptation s'etendant lateralement de part et d'autre du canal, cette etape etant suivie d' - une etape d'implantation ionique du substrat comportant le masque d'adaptation, suivie d' 2 o The invention also relates to a method of manufacturing a waveguide on an optical substrate comprising: - a step of defining a channel consisting in the production of a channel mask on the substrate, followed by - a step of ion implantation of the substrate comprising this channel mask, followed by - a step of removing the channel mask, a step of depositing at least one guiding layer on the substrate, the refraction index of this guide layer being higher than that of the substrate; this method further comprises, above the deposition step: a step of defining an adaptation layer consists of making an adaptation mask on the substrate, the adaptation layer extending laterally on either side of the canal, this step being followed by - a step for ion implantation of the substrate comprising the adaptation mask, followed by
3 5 - une etape de retrait du masque d'adaptation. 3 5 - a step of removing the adaptation mask.
Selon une premiere variante, cette methode de fabrication d'un guide d'onde sur un substrat optique comprend: - une premiere etape d'implantation ionique du substrat, - une etape de depot d'au moins une couche guidante sur le substrat, I'indice de refraction de cette couche guidante etant superieur a celui du substrat; et elle comprend de plus, suite a cette premiere etape: - une etape de definition d'une couche d'adaptation par application d'un masque d'adaptation sur le substrat et gravure de ce substrat, suivie d' - une deuxieme etape d'implantation ionique du substrat comportant ce masque o d'adaptation pour obtenir un canal, suivie d' According to a first variant, this method of manufacturing a waveguide on an optical substrate comprises: - a first step of ion implantation of the substrate, - a step of depositing at least one guiding layer on the substrate, I the refractive index of this guide layer being greater than that of the substrate; and it further comprises, following this first step: - a step of defining an adaptation layer by application of an adaptation mask on the substrate and etching of this substrate, followed by - a second step of ion implantation of the substrate comprising this mask or adaptation to obtain a channel, followed by
- une etape de retrait du masque d'adaptation. - a step of removing the adaptation mask.
Selon une deuxieme variante, la methode comprend: - une premiere etape d'implantation ionique du substrat, - une etape de definition d'un canal par application d'un masque d'adaptation sur le substrat et gravure de ce substrat, - une etape de depot d'au moins une couche guidante sur le substrat, I'indice de refraction de cette couche guidante etant superieur a celui du substrat; et elle comprend de plus, suite a l'etape de definition du canal: - une deuxieme etape d'implantation ionique du substrat comportant ce masque o d'adaptation pour obtenir une couche d'adaptation, suivie d' According to a second variant, the method comprises: - a first step of ion implantation of the substrate, - a step of defining a channel by application of an adaptation mask on the substrate and etching of this substrate, - a step depositing at least one guiding layer on the substrate, the refractive index of this guiding layer being greater than that of the substrate; and it further comprises, following the step of defining the channel: - a second step of ion implantation of the substrate comprising this mask or adaptation to obtain an adaptation layer, followed by
- une etape de retrait du masque d'adaptation. - a step of removing the adaptation mask.
De preference, la methode comprend une etape de recuit du substrat qui Preferably, the method comprises a step of annealing the substrate which
fait suite a l'une des etapes d'implantation ionique. follows one of the stages of ion implantation.
Cette methode est d'autre part adaptee a la realisation des differentes This method is also suitable for carrying out the different
caracteristiques du guide d'onde mentionnees ci-dessus. characteristics of the waveguide mentioned above.
La presente invention appara^'tra maintenant avec plus de details dans le The present invention will now appear in more detail in the
cadre de la description qui suit d'exemples de realisation donnes a titre illustratif part of the following description of illustrative embodiments
en se referent aux figures annexees qui representent: - la figure 1, un schema d'un guide d'onde, - la figure 2, la fabrication d'un guide d'onde selon une premiere methode, - la figure 3, une premiere variante de cette methode, - la figure 4, une deuxieme variante de cette methode, et with reference to the appended figures which represent: - Figure 1, a diagram of a waveguide, - Figure 2, the manufacture of a waveguide according to a first method, - Figure 3, a first variant of this method, FIG. 4, a second variant of this method, and
- la figure 5, un guide d'onde fabrique selon une autre methode. - Figure 5, a waveguide manufactured according to another method.
En reference a la figure 1, le substrat est en silice ou bien il est en silicium sur lequel, soit on a fait cro^'tre un oxyde thermique, soit on a depose une couche de dioxyde de silicium ou d'un autre materiau. II presente ainsi une face superieure ou substrat optique 11, couramment en dioxyde de silicium, d'une epaisseur de 5 a 20 microns, par exemple. Le canal 12 realise par implantation ionique, de titane par exemple, est ici integre dans le substrat optique. La couche d'adaptation prend ici la forme de deux bandes 13, 14 egalement realisees par im plantation ion ique et done elles au ssi integ rees da n s le su bstrat optique. Ces deux bandes stetendent lateralement depuis chacun des flans du canal 12. Wiles presentent toutes deux une epaisseur inferieure a celle du canal, de preference comprise entre 20% et 60% de celle-ci. Ensuite le substrat 11 est recouvert d'une couche guidante 15 en dioxyde de silicium dope qui est realisee par o exemple au moyen d'un depBt chimique en phase vapeur (PECVD pour With reference to FIG. 1, the substrate is made of silica or else it is made of silicon on which either a thermal oxide has been grown or a layer of silicon dioxide or another material has been deposited. It thus presents an upper face or optical substrate 11, commonly made of silicon dioxide, with a thickness of 5 to 20 microns, for example. The channel 12 produced by ion implantation, of titanium for example, is here integrated into the optical substrate. The adaptation layer here takes the form of two bands 13, 14 also produced by ion implantation and therefore they are integrated into the optical substrate. These two bands stetendent laterally from each of the blanks of channel 12. Wiles both have a thickness less than that of the channel, preferably between 20% and 60% thereof. Then the substrate 11 is covered with a guiding layer 15 of doped silicon dioxide which is produced for example by means of a chemical vapor deposition (PECVD for
<< Plasma Enhanced Chemical Vapor Deposition >> en anglais). << Plasma Enhanced Chemical Vapor Deposition >>.
L'indice de refraction du canal 12 est naturellement plus eleve que celui du dioxyde de silicium. L'indice de refraction de la couche d'adaptation 13, 14 est quant a lui plus eleve que celui du canal 12. La couche guidante 15 de 5 microns s d'epaisseur, par exemple, presente un indice de refraction superieur a celui du substrat optique 11, de 0,3% par exemple. Wile peut eventuellement resulter d'un empilement de couches minces. De preference, une couche de recouvrement 16 qui peut egalement consister en un empilement de couches minces est prevue sur la couche guidante 15. Cette couche de recouvrement, de 5 microns o d'epaisseur egalement, a un indice inferieur a celui de la couche guidante 15 et a The refractive index of channel 12 is naturally higher than that of silicon dioxide. The refraction index of the adaptation layer 13, 14 is itself higher than that of the channel 12. The guiding layer 15 of 5 microns s thickness, for example, has a refraction index greater than that of the optical substrate 11, for example 0.3%. Wile can possibly result from a stack of thin layers. Preferably, a covering layer 16 which may also consist of a stack of thin layers is provided on the guiding layer 15. This covering layer, also 5 microns o thick, has an index lower than that of the guiding layer 15 and a
celui du canal 12; dans le cas present elle est en dioxyde de silicium non dope. that of channel 12; in the present case it is made of non-doped silicon dioxide.
En reference a la figure 2a, une premiere methode de fabrication du guide d'onde comporte une premiere etape qui consiste a realiser un masque 22 sur le substrat optique 21 pour definir le canal 23, ceci au moyen d'un procede s classique de photolithographie. Le masque 22 est en resine, en metal ou en tout autre materiau susceptible de constituer une barriere infranchissable pour les ions lors de ['implantation. Eventuellement, le masque peut etre obtenu par un With reference to FIG. 2a, a first method of manufacturing the waveguide comprises a first step which consists in producing a mask 22 on the optical substrate 21 to define the channel 23, this by means of a conventional photolithography process. . The mask 22 is made of resin, metal or any other material capable of constituting an insurmountable barrier for the ions during implantation. Optionally, the mask can be obtained by a
procede d'ecriture directe.direct writing process.
Le canal 23 est produit par implantation ionique du substrat masque. A o titre d'exemple, pour une implantation de titane, la dose d'implantation est comprise entre 1016/cm2 et 1048/cm2 et l'energie est comprise entre quelques Channel 23 is produced by ion implantation of the mask substrate. For example, for a titanium implantation, the implantation dose is between 1016 / cm2 and 1048 / cm2 and the energy is between a few
dizaines et quelques centaines de Key. tens and a few hundred Key.
En reference a la figure 2b, le masque est retire, par exemple au moyen Referring to Figure 2b, the mask is removed, for example by means
d'un procede de gravure chimique.of a chemical etching process.
En reference a la figure 2c, les deux bandes 24, 25 de la couche d'adaptation vent obtenues par masquage et implantation, tout comme le canal 23. II convient de noter que ces deux bandes auraient pu etre realisees avant le canal. Le substrat est ensuite soumis a un recuit pour reduire les pertes a la propagation au sein du canal 23. A titre d'exemple, la temperature est comprise entre 400 et 500 C, I'atmosphere est contrBlee ou bien il s'agit de l'air libre, With reference to FIG. 2c, the two bands 24, 25 of the wind adaptation layer obtained by masking and implantation, just like the channel 23. It should be noted that these two bands could have been produced before the channel. The substrate is then subjected to an annealing in order to reduce the losses to propagation within the channel 23. For example, the temperature is between 400 and 500 C, the atmosphere is controlled or else it is the 'outdoors,
tandis que la duree est de l'ordre de quelques dizaines d'heures. while the duration is of the order of a few tens of hours.
o En reference a la figure 2d, la couche guidante 26 est alors deposee sur le substrat 21 au moyen de l'une quelconque des techniques connues pourvu que celle-ci conduise a un materiau a faibles pertes dont l'indice de refraction peut etre aisement contrBle. Enfin, la couche de recouvrement 27 est o With reference to FIG. 2d, the guiding layer 26 is then deposited on the substrate 21 by means of any of the known techniques, provided that this leads to a material with low losses whose refractive index can be easily contrBle. Finally, the covering layer 27 is
eventuellement deposee sur la couche guidante 26. possibly deposited on the guide layer 26.
En reference a la figure 3a, une premiere variante de cette methode de fabrication comporte une premiere etape qui consiste a implanter la totalite du With reference to FIG. 3a, a first variant of this manufacturing method comprises a first step which consists in implanting the whole of the
substrat optique 31.optical substrate 31.
En reference a la figure 3b, une deuxieme etape consiste a definir les deux bandes 34, 35 de la couche d'adaptation, ceci par masquage et gravure du With reference to FIG. 3b, a second step consists in defining the two strips 34, 35 of the adaptation layer, this by masking and etching the
2 o substrat 31.2 o substrate 31.
En reference a la figure 3c, le canal 33 est obtenu par implantation au travers du masque utilise pour la gravure des deux bandes 34, 35 de la couche With reference to FIG. 3c, the channel 33 is obtained by implantation through the mask used for the etching of the two strips 34, 35 of the layer
d'adaptation. Ensuite, le masque est retire. adaptation. Then the mask is removed.
Le substrat est eventuellement soumis a un recuit. The substrate is optionally subjected to annealing.
En reference a la figure 3d, vent enfin successivement deposees la With reference to figure 3d, finally wind successively deposited the
couche guidante 36 et la couche de recouvrement 37. guiding layer 36 and the covering layer 37.
En reference a la figure 4a, une deuxieme variante de la premiere methode de fabrication comporte une premiere etape qui consiste a implanter la With reference to FIG. 4a, a second variant of the first manufacturing method comprises a first step which consists in implanting the
totalite du substrat optique 41, tout comme dans la premiere variante. all of the optical substrate 41, as in the first variant.
En reference a la figure 4b, une deuxieme etape consiste a definir le Referring to Figure 4b, a second step is to define the
canal 43, ceci par masquage et gravure du substrat 41. channel 43, this by masking and etching of the substrate 41.
En reference a la figure 4c, les deux bandes 34, 35 de la couche d'adaptation vent obtenues par implantation au travers du masque utilise pour la gravure du canal 43. Ensuite, le masque est retire, puis le substrat est soumis a With reference to FIG. 4c, the two bands 34, 35 of the wind adaptation layer obtained by implantation through the mask used for the etching of the channel 43. Then, the mask is removed, then the substrate is subjected to
un recuit.annealing.
En reference a la figure 4d, vent enfin successivement deposees la With reference to FIG. 4d, finally wind successively deposited the
couche guidante 46 et la couche de recouvrement 47. guide layer 46 and cover layer 47.
Une deuxieme methode met en cauvre la technologie d'echange d'ions. A second method harnesses ion exchange technology.
Dans ce cas, le substrat est un verre contenant des ions mobiles a temperature relativement basse, un verre de silicates contenant de l'oxyde de sodium par exemple. Cette methode est tres similaire a la premiere methode si ce n'est que les etapes diimplantation vent remplacees par des etapes diimmersion dans un bain contenant des ions polarisables tel que argent ou potassium. Le motif est ainsi realise par augmentation de l'indice de refraction consecutive a l'echange o des ions polarisables avec les ions mobiles du substrat. Puis, generalement, le canal et la couche d'adaptation vent enterres par application d'un champ In this case, the substrate is a glass containing mobile ions at relatively low temperature, a glass of silicates containing sodium oxide for example. This method is very similar to the first method except that the implantation steps are replaced by immersion steps in a bath containing polarizable ions such as silver or potassium. The pattern is thus produced by increasing the refractive index following the exchange o of the polarizable ions with the mobile ions of the substrate. Then, generally, the channel and the layer of adaptation wind buried by application of a field
electrique perpendiculaire a la face du substrat. electric perpendicular to the face of the substrate.
En reference a la figure 5, une troisieme methode met en ceuvre la technologie des couches minces. Generalement, la face superieure du substrat 50 est en dioxyde de silicium. Une premiere couche d'indice superieur a celui du dioxyde de silicium est deposee sur le substrat optique au moyen d'une quelconque technique connue telle que depot par hydrolyse a la flamme (< Flame Hydrolysis Deposition >> en terminologie anglo-saxonne) depot chimique en phase vapeur haute ou basse pression et assiste ou non par plasma, Referring to Figure 5, a third method implements the thin film technology. Generally, the upper face of the substrate 50 is made of silicon dioxide. A first layer with an index higher than that of silicon dioxide is deposited on the optical substrate by means of any known technique such as deposit by flame hydrolysis (<Flame Hydrolysis Deposition >> in chemical English terminology) in high or low pressure vapor phase and assisted or not by plasma,
o evaporation sous vice, pulverisation cathodique ou depot par centrifugation. o evaporation under vice, cathodic pulverization or deposit by centrifugation.
Cette couche est souvent du dioxyde de silicium dope, de l'oxy-nitrure de silicium, du nitrure de silicium et l'on peut aussi employer des polymeres ou des sole-gels. Un masque definissant le canal est alors applique sur la couche deposee. Ensuite, ce canal 51 est realise par un procede de gravure chimique ou de gravure seche tel que gravure plasma, gravure ionique reactive ou gravure This layer is often doped silicon dioxide, silicon oxy-nitride, silicon nitride and it is also possible to use polymers or sole-gels. A mask defining the channel is then applied to the deposited layer. Then, this channel 51 is produced by a chemical etching or dry etching process such as plasma etching, reactive ion etching or etching
par faisceau d'ions.by ion beam.
Le masque est retire apres la gravure et, une deuxieme couche est deposee. Un autre masque definissant les deux bandes 53, 54 de la couche d'adaptation est ensuite applique sur la deuxieme couche avant une nouvelle 3 o etape de gravure. Ensuite, vent deposees la couche guidante 55 puis The mask is removed after engraving and a second layer is deposited. Another mask defining the two bands 53, 54 of the adaptation layer is then applied to the second layer before a new 3 o etching step. Then, wind deposited the guide layer 55 then
eventuellement la couche de recouvrement 56. possibly the covering layer 56.
Bien entendu, il est envisageable de realiser d'abord les deux bandes 53, Of course, it is possible to realize first the two bands 53,
54 de la couche d'adaptation et ensuite le canal 51. 54 of the adaptation layer and then the channel 51.
Cette methode requiert une operation de gravure qu'il est difficile de ma^triser tent sur le plan de la resolution spatiale que sur l'etat de surface des flancs du canal 51 et des bandes 53, 54, caracteristiques qui conditionnent This method requires an engraving operation which is difficult to control in terms of spatial resolution than in the surface state of the flanks of the channel 51 and of the bands 53, 54, characteristics which condition
directement les pertes a la propagation du guide d'onde. directly the propagation losses of the waveguide.
Les exemples de realisation de ['invention presentes ci-dessus ont ete choisis pour leur caractere concret. II ne serait cependant pas possible de The embodiments of the invention presented above have been chosen for their specific nature. However, it would not be possible to
repertorier de maniere exhaustive tous les modes de realisation que recouvre list in an exhaustive manner all the embodiments that cover
cette invention. En particulier, toute etape ou tout moyen decrit peutetre remplace par une etape ou un moyen equivalent sans sortir du cadre de la this invention. In particular, any stage or any means described may be replaced by a stage or equivalent means without departing from the scope of the
presente invention.present invention.
Claims (14)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0206975A FR2840689B1 (en) | 2002-06-06 | 2002-06-06 | WAVEGUIDE COMPRISING A CHANNEL AND AN ADAPTATION LAYER |
AU2003255641A AU2003255641A1 (en) | 2002-06-06 | 2003-06-06 | Waveguide comprising a channel and an adaptation layer |
PCT/FR2003/001682 WO2003104865A2 (en) | 2002-06-06 | 2003-06-06 | Waveguide comprising a channel and an adaptation layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0206975A FR2840689B1 (en) | 2002-06-06 | 2002-06-06 | WAVEGUIDE COMPRISING A CHANNEL AND AN ADAPTATION LAYER |
Publications (2)
Publication Number | Publication Date |
---|---|
FR2840689A1 true FR2840689A1 (en) | 2003-12-12 |
FR2840689B1 FR2840689B1 (en) | 2004-10-15 |
Family
ID=29559018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
FR0206975A Expired - Fee Related FR2840689B1 (en) | 2002-06-06 | 2002-06-06 | WAVEGUIDE COMPRISING A CHANNEL AND AN ADAPTATION LAYER |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2003255641A1 (en) |
FR (1) | FR2840689B1 (en) |
WO (1) | WO2003104865A2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0272689A (en) * | 1988-09-07 | 1990-03-12 | Sony Corp | Semiconductor laser |
US5395793A (en) * | 1993-12-23 | 1995-03-07 | National Research Council Of Canada | Method of bandgap tuning of semiconductor quantum well structures |
JPH0927656A (en) * | 1995-07-12 | 1997-01-28 | Oki Electric Ind Co Ltd | Manufacture of ridge waveguide semiconductor laser |
GB2316185A (en) * | 1996-08-10 | 1998-02-18 | Northern Telecom Ltd | Optical waveguide Bragg reflection gratings by ion implantation |
US5825524A (en) * | 1994-10-25 | 1998-10-20 | Commissariat A L'energie Atomique | Transverse electric mode electro-optic cell for a modulator and process for producing such a cell |
JPH11233884A (en) * | 1998-02-18 | 1999-08-27 | Furukawa Electric Co Ltd:The | Manufacture of semiconductor laser element |
DE10042045A1 (en) * | 2000-08-08 | 2001-08-30 | Eichler Hans Joachim | Optical component for frequency conversion, has periodically structured rib waveguide consisting of polymer containing non-linear polymer molecules |
-
2002
- 2002-06-06 FR FR0206975A patent/FR2840689B1/en not_active Expired - Fee Related
-
2003
- 2003-06-06 AU AU2003255641A patent/AU2003255641A1/en not_active Abandoned
- 2003-06-06 WO PCT/FR2003/001682 patent/WO2003104865A2/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0272689A (en) * | 1988-09-07 | 1990-03-12 | Sony Corp | Semiconductor laser |
US5395793A (en) * | 1993-12-23 | 1995-03-07 | National Research Council Of Canada | Method of bandgap tuning of semiconductor quantum well structures |
US5825524A (en) * | 1994-10-25 | 1998-10-20 | Commissariat A L'energie Atomique | Transverse electric mode electro-optic cell for a modulator and process for producing such a cell |
JPH0927656A (en) * | 1995-07-12 | 1997-01-28 | Oki Electric Ind Co Ltd | Manufacture of ridge waveguide semiconductor laser |
GB2316185A (en) * | 1996-08-10 | 1998-02-18 | Northern Telecom Ltd | Optical waveguide Bragg reflection gratings by ion implantation |
JPH11233884A (en) * | 1998-02-18 | 1999-08-27 | Furukawa Electric Co Ltd:The | Manufacture of semiconductor laser element |
DE10042045A1 (en) * | 2000-08-08 | 2001-08-30 | Eichler Hans Joachim | Optical component for frequency conversion, has periodically structured rib waveguide consisting of polymer containing non-linear polymer molecules |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 014, no. 252 (E - 0934) 30 May 1990 (1990-05-30) * |
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 05 30 May 1997 (1997-05-30) * |
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13 30 November 1999 (1999-11-30) * |
RIDDER DE R M ET AL: "SILICON OXYNITRIDE PLANAR WAVEGUIDING STRUCTURES FOR APPLICATION IN OPTICAL COMMUNICATION", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, IEEE SERVICE CENTER, US, vol. 4, no. 6, November 1998 (1998-11-01), pages 930 - 937, XP000801339, ISSN: 1077-260X * |
Also Published As
Publication number | Publication date |
---|---|
AU2003255641A1 (en) | 2003-12-22 |
WO2003104865A2 (en) | 2003-12-18 |
WO2003104865A3 (en) | 2006-04-20 |
FR2840689B1 (en) | 2004-10-15 |
AU2003255641A8 (en) | 2003-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2175478B1 (en) | Method for transferring a thin film comprising a step of generating inclusions | |
EP1155442B1 (en) | Method for fabricating a multilayer structure with controlled internal stresses | |
EP1918744B1 (en) | Process for manufacturing a slot waveguide | |
EP0665587A1 (en) | Substrate for integrated components having a thin film and method of realisation | |
EP2808297B1 (en) | Methof for forming a suspended portion of a microelectronic and/or nanoelectronic structure in a monolithic part of a substrate | |
EP1008169A1 (en) | Producing microstructures or nanostructures on a support | |
EP0323317A1 (en) | Method of manufacturing micro light guides having a low optical propagation loss by depositing multiple layers | |
EP3646374A1 (en) | Process for transferring a thin layer to a support substrate that have different thermal expansion coefficients | |
EP1631982B1 (en) | Method for production of a very thin layer with thinning by means of induced self-support | |
EP0707237B1 (en) | Process for the fabrication of holes in photoresist layers, use for the fabrication of electron sources comprising emissive cathodes with microtips and flat display screens | |
EP0716321A1 (en) | Method of forming a silicon etch stop layer for an integrated optical component | |
FR2607600A1 (en) | METHOD FOR PRODUCING ON ONE SUBSTRATE ELEMENTS SPACES ONE OF OTHERS | |
EP0728318B1 (en) | Manufacture of a waveguide embedded at several depths | |
FR2840689A1 (en) | Integrated optical waveguide having channel/optical substrate and guide layer having index above substrate and waveguide having adaptation layer extending either side channel. | |
FR2746545A1 (en) | PROCESS FOR PRODUCING A CRYSTALLINE SILICON SUBSTRATE COMPONENT | |
FR2768232A1 (en) | METHOD FOR MANUFACTURING AN INTEGRATED OPTICAL COMPONENT COMPRISING A THICK WAVEGUIDE COUPLED TO A THIN WAVEGUIDE | |
CA2431797C (en) | Wave guide with channel for optical substrate | |
TW202207391A (en) | Air-gap encapsulation of nanostructured optical devices | |
WO2004057390A1 (en) | Integrated optics coupling element comprising a grating produced in a cladding and method for making same | |
CA2367064A1 (en) | Methods of fabricating etched structures | |
EP3701574A1 (en) | Energy storage device | |
WO2022003270A1 (en) | Method for manufacturing a thermo-optic component | |
WO2004059356A2 (en) | Artificial cladding grating in integrated optics comprising a coupling variation and production method thereof | |
WO2022175618A1 (en) | Pyroelectric device comprising a substrate having a pyroelectric surface layer, and method for producing same | |
EP1481273A1 (en) | Optical mode adapter provided with two separate channels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ST | Notification of lapse |
Effective date: 20120229 |