FR2763759A1 - ELECTRIC GENERATOR FOR WIND TURBINE - Google Patents

ELECTRIC GENERATOR FOR WIND TURBINE Download PDF

Info

Publication number
FR2763759A1
FR2763759A1 FR9706159A FR9706159A FR2763759A1 FR 2763759 A1 FR2763759 A1 FR 2763759A1 FR 9706159 A FR9706159 A FR 9706159A FR 9706159 A FR9706159 A FR 9706159A FR 2763759 A1 FR2763759 A1 FR 2763759A1
Authority
FR
France
Prior art keywords
turbines
armature
electric generator
conical
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR9706159A
Other languages
French (fr)
Other versions
FR2763759B1 (en
Inventor
Joseph Alphonse Armel Louis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to FR9706159A priority Critical patent/FR2763759B1/en
Priority to PCT/FR1998/000988 priority patent/WO1998053544A1/en
Priority to AU77740/98A priority patent/AU7774098A/en
Priority to ZA984274A priority patent/ZA984274B/en
Priority to ARP980102343A priority patent/AR011741A1/en
Publication of FR2763759A1 publication Critical patent/FR2763759A1/en
Application granted granted Critical
Publication of FR2763759B1 publication Critical patent/FR2763759B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/025Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the thickness of the air gap between field and armature
    • H02K21/026Axial air gap machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/12Combinations of wind motors with apparatus storing energy storing kinetic energy, e.g. using flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/022Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator
    • H02K21/025Means for mechanical adjustment of the excitation flux by modifying the relative position between field and armature, e.g. between rotor and stator by varying the thickness of the air gap between field and armature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • H02K23/28DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings having open windings, i.e. not closed within the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7066Application in combination with an electrical generator via a direct connection, i.e. a gearless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2220/00Application
    • F05B2220/70Application in combination with
    • F05B2220/706Application in combination with an electrical generator
    • F05B2220/7068Application in combination with an electrical generator equipped with permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

The invention concerns a generator comprising: 1) a flywheel magneto integrated in the turbine whereof the rim laterally supports the magnetising poles, not requiring rotation speed increasing gears or unit; 2) a partial armature for modifying the air gap size, thereby modifying the voltage; 3) an armature with coils offset at an angle cancelling the longitudinal attraction of the poles when facing each other at rest; 4) optionally an inductor with its poles angularly offset; 5) optionally a number of different poles for the inductor and the armature. The voltage is regulated by variable mutual coupling of the coils.

Description

L'énergie des éoliennes doit être transportée à distance pour pouvoir être utilisée sur les lieux d'activité. Energy from wind turbines must be transported remotely in order to be used at places of activity.

La manière la plus commode est l'électricité, produite par des alternateurs ou des dynamos.The most convenient way is electricity, produced by alternators or dynamos.

La faible vitesse de rotation des éoliennes habituelles oblige à multiplier celle-ci au moyen d'engrenages, ou de poulies et courroies, pour ne pas devoir construire des génératrices énormes, coûteuses et d'usage incommode. The low speed of rotation of conventional wind turbines means that it must be multiplied by means of gears, or pulleys and belts, so as not to have to build huge, expensive generators and inconvenient use.

Il est pourtant possible d'en réduire fortement les dimensions et le prix dans le cas des turbines plates ou coniques, en utilisant leur structure, c'est-à-dire la jante réunissant les pales. On peut transformer ces jantes en volants magnétiques, en garnissant leur périphérie d'aimants permanents ou bobinés, la vitesse périphérique des jantes étant comparable à celle des rotors des génératrices de même puissance. L'induit (C-Figure 1) est fixé au châssis de la turbine. L'inducteur-jante 3 (Figures 1 et 2) tourne. On peut en diminuer l'encombrement et le poids en ne conservant qu'une partie de l'induit (1-Figure 1), ce qui exige une augmentation de la surface des pôles restants, à puissance égale. Ce procédé n'est pas nouveau puisqu'en 1920 déjà, le brevet USA nO 1352960, et en 1968, le brevet de la GB nO 1253364 l'utilisaient. Cela permet de supprimer les enroulements là où ils sont le plus en danger, au haut des éoliennes, tout en diminuant le nombre des pôles à bobine, donc aussi le nombre de chignons (2-Figure 2), d'où une économie de cuivre. Cette amputation de la culasse rend possible le réglage de l'entrefer, cet induit partiel pouvant pivoter autour d'un axe fixe (O-Figure 4) sans perturber le mouvement du rotor (3-Figure 2). It is however possible to greatly reduce the dimensions and the price in the case of flat or conical turbines, by using their structure, that is to say the rim joining the blades. These rims can be transformed into magnetic flywheels, by lining their periphery with permanent or wound magnets, the peripheral speed of the rims being comparable to that of the rotors of generators of the same power. The armature (C-Figure 1) is attached to the turbine frame. The rim inductor 3 (Figures 1 and 2) rotates. We can reduce its size and weight by keeping only part of the armature (1-Figure 1), which requires an increase in the surface of the remaining poles, at equal power. This process is not new since in 1920 already, the US patent n ° 1352960, and in 1968, the patent of the GB nO 1253364 used it. This eliminates the windings where they are most at risk, at the top of the wind turbines, while reducing the number of coil poles, therefore also the number of chignon (2-Figure 2), hence saving copper . This amputation of the cylinder head makes it possible to adjust the air gap, this partial armature being able to pivot around a fixed axis (O-Figure 4) without disturbing the movement of the rotor (3-Figure 2).

Ce mouvement limité est commandé par une bielle (7-Figure 4), et une tige filetée (6) mue par un servomoteur (8-Figure 4). Le mouvement de la culasse est guidé par des glissières ne figurant pas sur le dessin par souci de clarté, et sert à régler la tension électrique, ou à corriger un jeu éventuel. This limited movement is controlled by a connecting rod (7-Figure 4), and a threaded rod (6) driven by a servomotor (8-Figure 4). The movement of the cylinder head is guided by slides not shown in the drawing for the sake of clarity, and is used to adjust the electrical tension, or to correct any play.

La situation des pôles inducteurs à la périphérie de la jante les soumet à une force centrifuge qui s'ajoute à l'attraction magnétique de la culasse, à laquelle la colle qui les fixe doit résister. The location of the inductor poles at the periphery of the rim subjects them to a centrifugal force which is added to the magnetic attraction of the cylinder head, to which the glue which fixes them must resist.

On peut diminuer cette fatigue en fixant les aimants ou pôles latéralement à la jante, du côté d'où vient le vent (9-Figure 5). On les bloque au moyen d'une bordure extérieure (10-Figure 5). Le réglage de l'entrefer est plus régulier, ses deux côtés restant parallèles. Ce réglage ne serait pas possible avec une double rangée de pôles de chaque côté de la jante, l'espace 13 augmentant si l'entrefer 14 (Figure 6) diminue. This fatigue can be reduced by fixing the magnets or poles laterally to the rim, on the side from which the wind comes (9-Figure 5). They are blocked by means of an external border (10-Figure 5). The adjustment of the air gap is more regular, its two sides remaining parallel. This adjustment would not be possible with a double row of poles on each side of the rim, the space 13 increasing if the air gap 14 (Figure 6) decreases.

Pour éviter un démarrage difficile des volants magnétiques, dû à la permanence du flux magnétique des aimants, on peut incliner d'un angle a les bobines ou les aimants de l'inducteur par rapport à leur position normale (5
Figure 3), ou incliner les bobines de l'induit (11-Figure 7), par rapport à leur position normale (12-Figure 7).
To avoid difficult starting of the magnetic flywheels, due to the permanence of the magnetic flux of the magnets, the coils or the magnets of the inductor can be tilted at an angle relative to their normal position (5
Figure 3), or tilt the armature coils (11-Figure 7), relative to their normal position (12-Figure 7).

L'attraction mutuelle des pôles inducteurs qui se font face à l'arrêt est ainsi annulée. On peut aussi, plus simplement avoir un nombre de pôles inducteurs différent de celui de 1' induit. The mutual attraction of the inducing poles which face the stop is thus canceled. It is also possible, more simply, to have a different number of inducing poles than that of the armature.

Pour ne pas laisser tourner les roues éoliennes par vent trop faible, on peut ne pas compenser totalement les attractions entre pôles, pour démarrer seulement à partir d'une certaine vitesse du vent. In order not to let the wind wheels turn in too weak wind, it is not possible to completely compensate the attractions between poles, to start only from a certain wind speed.

La fixation des inducteurs latéralement à la jante, d'un seul côté de la turbine, et perpendiculairement à l'axe de celle-ci, face au vent, procure les avantages suivants 1) Régler l'entrefer est possible, et celui-ci peut être fai
ble, ce qui est difficile avec un entrefer double (en U,
figure 6).
Attaching the inductors laterally to the rim, on one side of the turbine, and perpendicular to the axis thereof, facing the wind, provides the following advantages 1) Adjust the air gap is possible, and the latter maybe be
ble, which is difficult with a double air gap (in U,
figure 6).

2) Ce réglage permet de stabiliser la tension électrique en
faisant varier le flux magnétique, sans enroulement magné
tisant (Figures 4 et 5).
2) This setting stabilizes the electrical voltage by
varying the magnetic flux, without magnet winding
waking (Figures 4 and 5).

3) La poussée du vent tend à éloigner la turbine de l'induit,
en cas de rafales anormalement fortes, ce qui favorise la
sécurité.
3) The thrust of the wind tends to move the turbine away from the armature,
abnormally strong gusts, which promotes
security.

4) Cette disposition évite les amas de feuilles et matières
étrangères toujours possibles dans le cas d'un entrefer en
U.
4) This provision avoids clumps of leaves and materials
always possible in the case of an air gap in
U.

Stabilisation de la tension électrique
La variation de la largeur de l'entrefer ne suffit pas toujours à maintenir la constance de la tension électrique. Quand le vent varie beaucoup, il faut agir sur le couplage des bobines induites. A basse vitesse, elles sont toutes branchées en série. Si la vitesse augmente trop, les bobines 15, 16 etc.. de la figure 8 sont successivement débranchées, ce qui ramène la tension à sa valeur normale.
Electric voltage stabilization
The variation in the width of the air gap is not always sufficient to maintain the constancy of the electrical voltage. When the wind varies a lot, it is necessary to act on the coupling of the induced coils. At low speed, they are all connected in series. If the speed increases too much, the coils 15, 16 etc. of FIG. 8 are successively disconnected, which brings the voltage back to its normal value.

Quand le nombre des bobines débranchées atteint la moitié du total des bobines induites, elles sont reconnectées en parallèle avec les bobines restantes (Figure 10), ce qui réduit la résistance interne du générateur, et augmente sa puissance potentielle, l'échauffement des bobines diminuant de moitié.When the number of the disconnected coils reaches half of the total of the induced coils, they are reconnected in parallel with the remaining coils (Figure 10), which reduces the internal resistance of the generator, and increases its potential power, the heating of the coils decreasing A half.

En cas de nouvelle accélération de l'inducteur, on reprend le processus initial, en débranchant successivement des fractions de bobines 20, 21, etc.. (Figure 11). La combinaison de la variation de l'entrefer avec la mise hors service temporaire de fractions de bobines permet de ramener la tension de service dans la fourchette des tolérances industrielles (par exemple E + ou - 10 %).In the event of further acceleration of the inductor, the initial process is resumed, by successively disconnecting fractions of coils 20, 21, etc. (Figure 11). The combination of the variation in the air gap with the temporary deactivation of coil fractions allows the operating voltage to be brought back within the range of industrial tolerances (for example E + or - 10%).

Variante de ce système
Les bobines induites peuvent aussi avoir une section de cuivre croissant de 15 à 18 (Figure 8), tout en utilisant les couplages précédents. Ce qui précède n'exclut pas l'utilisation du hachage, méthode qui consiste à interrompre le courant un grand nombre de fois par seconde pour provoquer une chute de tension. Ce hachage est produit par un semiconducteur (Thyristor ou autre), 22, Figure 12, en série avec les bobines.
Variant of this system
Induced coils can also have a growing copper section from 15 to 18 (Figure 8), while using the previous couplings. The above does not exclude the use of hashing, a method which consists in interrupting the current a large number of times per second to cause a voltage drop. This chopping is produced by a semiconductor (Thyristor or other), 22, Figure 12, in series with the coils.

Claims (5)

REVENDICATIONS 1") Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, caractérisée par le fait que les inducteurs, bobinés ou à aimants permanents, sont fixés latéralement sur la jante des turbines, et seulement du côté d'où vient le vent (10-Figure 5).CLAIMS 1 ") Electric generator with partial armature, for wind turbines, incorporated in the structure of flat or conical turbines, characterized in that the inductors, wound or with permanent magnets, are fixed laterally on the rim of the turbines, and only on the side where does the wind come from (10-Figure 5). 20) Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, selon la revendication précédente, caractérisée par le fait que l'induit partiel peut s'écarter ou s'approcher de la couronne inductrice (figures 4 et 5).20) Electric generator with partial armature, for wind turbine, incorporated in the structure of flat or conical turbines, according to the preceding claim, characterized in that the partial armature can deviate or approach the inductor ring (Figures 4 and 5). 3 ) Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, selon l'une quelconque des revendications précédentes, prises ensemble ou séparément, caractérisée par le fait que les bobines induites ne sont pas perpendiculaires à l'axe de la culasse, mais font un angle a avec cette perpendiculaire (12-Figure 7). 3) Electric generator with partial armature, for wind turbine, incorporated in the structure of flat or conical turbines, according to any one of the preceding claims, taken together or separately, characterized in that the induced coils are not perpendicular to the axis of the cylinder head, but make an angle a with this perpendicular (12-Figure 7). 4 ) Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, selon l'une quelconque des revendications précédentes, prises ensemble ou séparément, caractérisée par le fait que l'axe des pôles inducteurs est incliné par rapport à la perpendiculaire à la jante (Figure 3). 4) Electric generator with partial armature, for wind turbine, incorporated in the structure of flat or conical turbines, according to any one of the preceding claims, taken together or separately, characterized in that the axis of the inductive poles is inclined relative to perpendicular to the rim (Figure 3). 50) Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, selon l'une quelconque des revendications 1 et 2, prises ensemble ou séparément, caractérisée par le fait que le nombre des pôles inducteurs est différent de celui des pôles induits.50) Electric generator with partial armature, for wind turbine, incorporated in the structure of flat or conical turbines, according to any one of claims 1 and 2, taken together or separately, characterized in that the number of the inducing poles is different from that of the induced poles. 60) Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, selon l'une des revendications 3 et 4, caractérisée par le fait que l'inclinaison des bobines ou des pôles inducteurs n'annule pas complètement l'attraction longitudinale des pôles.60) Electric generator with partial armature, for wind turbine, incorporated in the structure of flat or conical turbines, according to one of claims 3 and 4, characterized in that the inclination of the coils or inductor poles does not completely cancel the longitudinal attraction of the poles. 70) Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, selon l'une quelconque des revendications précédentes, prises ensemble ou séparément, caractérisée par le fait que la section du fil bobiné de l'induit croît de la première à la dernière bobine de l'induit.70) Electric generator with partial armature, for wind turbine, incorporated in the structure of flat or conical turbines, according to any one of the preceding claims, taken together or separately, characterized in that the section of the wound wire of the armature increases from the first to the last armature coil. 8 ) Génératrice électrique à induit partiel, incorporée dans la structure des turbines plates ou coniques, selon l'une quelconque des revendications précédentes, prises ensemble ou séparément, caractérisée par le fait que les bobines induites initialement connectées en série sont successivement déconnectées au fur et à mesure que la tension monte, pour la maintenir à sa valeur normale. 8) Electric generator with partial armature, incorporated in the structure of flat or conical turbines, according to any one of the preceding claims, taken together or separately, characterized in that the induced coils initially connected in series are successively disconnected as and as the voltage increases, to keep it at its normal value. 90) Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, selon la revendication précédente, caractérisée par le fait que les bobines débranchées sont rebranchées en parallèle avec les bobines restantes quand leur nombre est égal à celui des bobines restantes, pour maintenir la tension à sa valeur normale. 90) Electric generator with partial armature, for wind turbine, incorporated in the structure of flat or conical turbines, according to the preceding claim, characterized in that the disconnected coils are reconnected in parallel with the remaining coils when their number is equal to that of remaining coils, to maintain the voltage at its normal value. 10 ) Génératrice électrique à induit partiel, pour éolienne, incorporée dans la structure des turbines plates ou coniques, selon la revendication précédente, caractérisée par le fait qu' en cas de nouveau dépassement de la tension, après la mise en parallèle, on reprend le processus initial de la revendication nO 8, en débranchant cette fois des fractions seulement des paires de bobines induites.  10) Electric generator with partial armature, for a wind turbine, incorporated in the structure of flat or conical turbines, according to the preceding claim, characterized in that in the event of a further overshooting of the voltage, after paralleling, the initial process of claim 8, this time disconnecting fractions only of the pairs of coils induced.
FR9706159A 1997-05-21 1997-05-21 ELECTRIC GENERATOR FOR WIND TURBINE Expired - Fee Related FR2763759B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR9706159A FR2763759B1 (en) 1997-05-21 1997-05-21 ELECTRIC GENERATOR FOR WIND TURBINE
PCT/FR1998/000988 WO1998053544A1 (en) 1997-05-21 1998-05-18 Electric generator for wind power engine
AU77740/98A AU7774098A (en) 1997-05-21 1998-05-18 Electric generator for wind power engine
ZA984274A ZA984274B (en) 1997-05-21 1998-05-20 Wind-driven generator
ARP980102343A AR011741A1 (en) 1997-05-21 1998-05-20 PARTIAL INDUCTION ELECTRIC GENERATOR FOR WIND TURBINES.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR9706159A FR2763759B1 (en) 1997-05-21 1997-05-21 ELECTRIC GENERATOR FOR WIND TURBINE

Publications (2)

Publication Number Publication Date
FR2763759A1 true FR2763759A1 (en) 1998-11-27
FR2763759B1 FR2763759B1 (en) 1999-10-22

Family

ID=9507051

Family Applications (1)

Application Number Title Priority Date Filing Date
FR9706159A Expired - Fee Related FR2763759B1 (en) 1997-05-21 1997-05-21 ELECTRIC GENERATOR FOR WIND TURBINE

Country Status (5)

Country Link
AR (1) AR011741A1 (en)
AU (1) AU7774098A (en)
FR (1) FR2763759B1 (en)
WO (1) WO1998053544A1 (en)
ZA (1) ZA984274B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793528A1 (en) 1999-05-12 2000-11-17 Cie Internationale Des Turbine WINDMILL WITH OBLIQUE BLADES AND ELECTRIC GENERATOR
EP1267474A2 (en) * 2001-06-11 2002-12-18 Prüftechnik Dieter Busch Ag Device for producing electric energy from the rotary motion of a shaft
EP1751426A2 (en) * 2004-02-20 2007-02-14 Wecs, Inc. Wind energy conversion system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030091513A1 (en) * 2001-10-03 2003-05-15 Mohsen Nahed M. Method to generate water soluble or nonwater soluble in nanoparticulates directly in suspension or dispersion media
EP1650432A4 (en) * 2003-07-08 2012-01-25 Kinpara Shiro Wind power generation system, arrangement structure of permanent magnets, and electricity/force conversion system
AU2010307248B2 (en) 2009-10-15 2012-08-16 Danny J. Smith Wind power generation system
US8253268B1 (en) 2009-10-15 2012-08-28 Airgenesis, LLC Wind power generation system
CN104704234A (en) 2012-04-06 2015-06-10 埃尔金斯公司 Rpm controlled wind power generation system
US9617979B2 (en) 2013-10-30 2017-04-11 Airgenesis, LLC Motor assisted power generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352960A (en) * 1916-12-28 1920-09-14 Albert H Heyroth Wind-wheel electric generator
FR714513A (en) * 1930-03-19 1931-11-16 electro-aeromotor
FR967895A (en) * 1948-06-09 1950-11-14 Scient Et Tech Bureau Et Low speed electric machine and its applications
US3867655A (en) * 1973-11-21 1975-02-18 Entropy Ltd Shaftless energy conversion device
JPS5749077A (en) * 1980-09-05 1982-03-20 Osamu Ito Disk-shaped power generating apparatus utilizing power of water, wind or steam

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1352960A (en) * 1916-12-28 1920-09-14 Albert H Heyroth Wind-wheel electric generator
FR714513A (en) * 1930-03-19 1931-11-16 electro-aeromotor
FR967895A (en) * 1948-06-09 1950-11-14 Scient Et Tech Bureau Et Low speed electric machine and its applications
US3867655A (en) * 1973-11-21 1975-02-18 Entropy Ltd Shaftless energy conversion device
JPS5749077A (en) * 1980-09-05 1982-03-20 Osamu Ito Disk-shaped power generating apparatus utilizing power of water, wind or steam

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 006, no. 124 (M - 141) 9 July 1982 (1982-07-09) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793528A1 (en) 1999-05-12 2000-11-17 Cie Internationale Des Turbine WINDMILL WITH OBLIQUE BLADES AND ELECTRIC GENERATOR
EP1267474A2 (en) * 2001-06-11 2002-12-18 Prüftechnik Dieter Busch Ag Device for producing electric energy from the rotary motion of a shaft
EP1267474A3 (en) * 2001-06-11 2006-02-08 Prüftechnik Dieter Busch Ag Device for producing electric energy from the rotary motion of a shaft
EP1751426A2 (en) * 2004-02-20 2007-02-14 Wecs, Inc. Wind energy conversion system
EP1751426A4 (en) * 2004-02-20 2012-09-05 Wecs Inc Wind energy conversion system

Also Published As

Publication number Publication date
ZA984274B (en) 1998-11-30
AU7774098A (en) 1998-12-11
WO1998053544A1 (en) 1998-11-26
FR2763759B1 (en) 1999-10-22
AR011741A1 (en) 2000-08-30

Similar Documents

Publication Publication Date Title
FR2763759A1 (en) ELECTRIC GENERATOR FOR WIND TURBINE
JP3363682B2 (en) Magnet generator
US20120242087A1 (en) Hollow Core Wind Turbine
CA2779155A1 (en) Turbine engine starter/generator, and method for the control thereof
JP2005143293A (en) Synchronous generator used in wind power station, and wind power station
US8198748B1 (en) Magnetically levitated linear barrel generator
CN101795040A (en) Overall salient type intermediate-frequency brushless excitation synchronous generator
JP2569360B2 (en) Generator
JPH11299197A (en) Wind power generator
Safe et al. Design, fabrication & analysis of twisted blade vertical axis wind turbine (VAWT) and a simple alternator for VAWT
JP2659774B2 (en) Power generation control method
CN202309445U (en) Overall salient pole type intermediate-frequency brushless synchronous generator
CN102088233A (en) Alternator and corresponding electric system
JP5598777B2 (en) EMF stabilization permanent magnet generator
EP2873139A1 (en) Rotating electrical machine for a motor vehicle
JP2000287426A (en) Wind turbine power generator
Chu Multiobjective design and performance analysis of the ultra-low speed axial flux disc motor for maglev wind yaw system
RU2685424C1 (en) Stabilized two-input wind-solar axial-radial electric machine-generator
JP3935702B2 (en) Wind power generator
JP2002317748A (en) Wind power generator system
JPS6146149A (en) Inductor type brushless generator
CN107313950A (en) Electromagnetic drive fan device
JP2001078410A (en) Magnet type multipolar generator, and portable wind- power generation unit
Alavijeh et al. Design and optimization of a new dual-rotor Vernier machine for wind-turbine application
WO2009100600A1 (en) Low-speed harmonic elimination synchronous power generator

Legal Events

Date Code Title Description
CJ Change in legal form
TP Transmission of property
ST Notification of lapse